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Preface

This handbook was motivated in part by our experience (and that of others) in
performing research and in teaching about networked and embedded control
systems (NECS) as well as in implementing such systems. Although NECS—
along with the technologies that enable them—have become ubiquitous, there
are few, if any, sources where a student, researcher, or developer can gain a
sufficiently broad view of the subject. Oftentimes, the needed information is
scattered in articles, websites, and specification sheets. Such difficulties are
perhaps to be expected, given the relative newness of the subject and the
diversity of its constitutive disciplines. From control theory and communica-
tions, to computer science and electronics, the variety of approaches, tools,
and language used by experts in each field often acts as a barrier to under-
standing how ideas fit within the broader context of networked and embedded
control.

With the above in mind, we have gathered a collection of articles that
provide at least an introduction to the important results, tools, software, and
technologies that shape the area of NECS. Our goal was to present the most
important knowledge about NECS in a book that would be useful to anyone
who wants to learn about any aspect of the subject. We hope that we have
succeeded and that every reader will find valuable information in the book.

We thank the authors of each of the chapters. They are all busy people and
we are extremely grateful to them for their outstanding work. We also thank
Tom Grasso, Editor, Computational Sciences and Engineering at Birkhäuser
Boston, for all his help in developing the handbook, and Regina Gorenshteyn,
Assistant Editor, for guiding the editorial and production aspects of the vol-
ume. Lastly, we thank Torrey Adams whose copyediting greatly improved the
book.

We gratefully acknowledge the support of our wives, Maria K. Hristu and
Shirley Johannesen Levine, and our families.

College Park, MD Dimitrios Hristu-Varsakelis
April 2005 William S. Levine
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Fundamentals of Dynamical Systems

William S. Levine

Department of ECE, University of Maryland, College Park, MD, 20742, U.S.A.
wsl@eng.umd.edu

1 Introduction

For the purposes of control system design, analysis, test, and repair, the most
important part of the very broad subject known as system theory is the theory
of dynamical systems. It is difficult to give a precise and sufficiently general
definition of a dynamical system for reasons that will become evident from
the detailed discussion to follow. All systems that can be described by or-
dinary differential or difference equations with real coefficients (ODEs) are
indubitably dynamical systems. A very important example of a dynamical
system that cannot be described by a continuous-time ODE is a pure delay.
Most of this chapter will deal with different ways to describe and analyze
dynamical systems. We will precisely specify the subclass of such systems for
which each description is valid.

The idea of a system involves an approximation to reality. Specifically, a
system is a device that accepts an input signal and produces an output signal.
It is assumed to do this regardless of the energy or power in the input signal
and independent of any other system connected to it. Physical devices do not
normally behave this way. The response of a real system, as opposed to that
of its mathematical approximation, depends on both the input power and
whatever load the output is expected to drive.

Fortunately, the engineers who design real systems generally design them
to behave as closely to an abstract system as possible. For electronic devices
this amounts to creating subsystems with high input impedance and low out-
put impedance. Such devices require minimal power in their inputs and will
deliver the needed power to a broad range of loads without changing their
outputs. Where this is not the case it is usually possible to purchase buffer
circuits which will drive the load without altering the signal out of the original
device. Good examples of this are the circuits used to connect the transistor-
transistor logic (TTL) output of a typical microprocessor to a servomotor.

This means that, in both theory and practice, systems can be intercon-
nected without worrying about either the input or output power. It also means
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that a system can be completely described by the relation between its inputs
and outputs without regard to the ways in which it is interconnected.

2 Continuous-Time Systems

We will limit our attention in this section to systems that can be described
with sufficient accuracy by ordinary differential equations (ODEs). There are
two different ways to describe such systems, in state space form or as an ODE
relating the input and the output. In general the state space form is

ẋ(t) = f(x(t), u(t)) (1)

y(t) = g(x(t), u(t)), (2)

where ẋ(t) denotes the first derivative of the state n-vector x(t), u(t) is the
m-vector input signal, and y(t) is the p-vector output signal; n,m, and p are
integers; f(·, ·) is some nonlinear function, as is g(·, ·). The state vector is
a complete set of initial conditions for the first-order vector ODE (1). One
could be more general and allow both f and g to depend explicitly on time,
but we will mostly ignore time-varying systems because of space limitations.
We omit precise conditions on f and g needed to insure that there exists a
unique solution to (1) for the same reason.

The state space form for a linear time-invariant (LTI) multi-input multi-
output (MIMO) system is easily written. It is

ẋ(t) = Ax(t) +Bu(t) (3)
y(t) = Cx(t) +Du(t), (4)

where the vectors x, y, and u are column n-, p-, and m-vectors respectively
and all the matrices A, B, C, and D have the appropriate dimensions. The
solution of this exists and is unique for any initial condition x(0) = x0 and
any input signal u(t), for all 0 ≤ t < tf .

It is worthwhile to be more precise about the meaning of “signal.”

Definition 1. A scalar continuous-time signal, denoted by {u(t)for all t, t0 ≤
t < tf} is a measurable mapping from an interval of the real numbers into the
real numbers.

The requirement that the mapping be measurable is a mathematical techni-
cality that insures, among some more technical properties, that a signal can
be integrated. We will generally be more casual and denote a signal simply
by u(t). An n-vector-valued signal is just an n-vector of scalar signals. More
importantly, we assume that signals over the same time interval can be mul-
tiplied by a real scalar and added. That is, if u(t) and v(t) are both signals
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defined on the same interval t0 ≤ t < tf and α and β are real numbers, then
w(t) = αu(t) + βv(t) is also a signal defined on t0 ≤ t < tf . Note that this
assumption is true in regard to real signals. Physical devices that will multiply
a signal by a real number (amplifiers) and add them (summers) exist. Because
of this, it is natural to think of a signal as an element (a vector) in a vector
space of signals.

The second ODE description (the first is the state space), in terms of only
y(t), u(t), and their derivatives, is difficult to write in a general form. Instead,
we show the general LTI single-input single-output (SISO) special case

n∑
0

ai
di

dti
y(t) =

n∑
0

bi
di

dti
u(t), (5)

where ai, bi ∈ R. Because (5) is unchanged by division by a nonzero real
number there is no loss of generality in assuming that a0 = 1. Note that it is
impossible to have a real physical system for which the highest derivative on
the right-hand side n is greater than the highest derivative on the left-hand
side.

There are three common descriptions of systems that are only valid for
LTI systems, although there is an extension of the Fourier theory to nonlinear
systems through Volterra series [1]. We present the SISO versions for simplicity
and clarity. One is based on the Laplace transform, although the full power
of the theory is not really needed for systems describable by ODEs. There are
several versions of the Laplace transform. We use the bilateral or two-sided
Laplace transform, defined by

Y (s) def=
∫ +∞

−∞
y(t)e−stdt, (6)

because it is somewhat more convenient and useful for system theory [2].
The unilateral or single-sided Laplace transform is more useful for solving
equations such as (5), but we are more interested in system theory than in
the explicit solution of ODEs.

We regard the ODE (5) as the fundamental object because for many sys-
tems a description of the input-output behavior in terms of an ODE can be
derived from the physics. Starting with (5) you need only that the Laplace
transform of ẏ(t) = sY (s), where Y (s) denotes the Laplace transform of y(t)
and s is a complex number. Then, taking Laplace transforms of both sides of
(5) gives

n∑
0

ais
iY (s) =

n∑
0

bis
iU(s). (7)

Dividing both sides of (7) by U(s) and by
∑n

0 ais
i one obtains

Y (s)
U(s)

=
∑n

0 bis
i∑n

0 aisi

def= H(s). (8)
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Notice that H(s), the transfer function of the system, completely describes
the relation between the input U(s) and the output Y (s) of the system. It
should be obvious that it is easy to go back and forth between H(s) and the
ODE in (5) by simply changing s to d

dt and vice versa.
In fact, the Laplace transform makes it possible to write transfer functions

for LTI systems that cannot be precisely described by ODEs. The most im-
portant example in control engineering is the system that acts as a pure delay.
The transfer function for that LTI system is

H(s) = e−sT , (9)

where T is the time duration of the delay. However, the pure delay can be
approximated to sufficient accuracy by an ODE using the Padé approximation
(see “Control Issues in Systems with Loop Delays” by Mirkin and Palmor in
this handbook).

Another common description of LTI systems is based on the Fourier trans-
form. The great advantage of the Fourier transform is that, for a large class
of real systems, it can be measured directly from the physical system. No
mathematics is needed. To prove that this is so, start with either the ODE (5)
or the transfer function (8). Let the input u(t) =cos(ωt) for all −∞ < t <∞.
Using either standard ODE techniques or Laplace transforms—the transient
portion of the response is ignored—the solution is found to be

y(t) = |H(jω)|cos(ωt+ ∠H(jω)), (10)

where |H(jω)| denotes the magnitude of the complex number H(s = jω) and
∠H(jω) denotes its phase angle. H(jω) is known as the frequency response
of the system.

In the laboratory the input is zero prior to some starting time at which
the input u(t) =cos(ωt) for t0 ≤ t < tf is applied. One then waits until the
initial transients die away and then measures the magnitude and phase of
the output cosinusoid. This is repeated for a collection of values of ω and the
gaps in ω are interpolated. Note that the presence in the output signal of any
distortion or frequency content other than the input frequency indicates that
the system is not linear.

One more way to describe an LTI system is based on the system’s impulse
response. Persisting in our view that the ODE is fundamental, we develop the
impulse response by first posing two questions. What is the inverse Fourier
transform of H(jω), where H(jω) is the transfer function of some LTI sys-
tem? Furthermore, what is the physical meaning of this inverse transform?
Note that the identical questions could be asked about the inverse Laplace
transform of H(s). The answer to the first question is simply a definition:

h(t) def= F−1(H(jω)) def=
∫ ∞

−∞
H(jω)ejωtdω/2π. (11)

The answer to the second question is much more interesting. Think of the
question this way. What input u(t) will produce h(t) as defined in (11)? The
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answer is an input that is the inverse Fourier transform of U(jω) = 1 for all
ω, −∞ < ω <∞. To see this, just write

Y (jω) = H(jω)× 1. (12)

The required signal is known as the unit impulse or Dirac delta function
and is denoted by δ(t). Its precise meaning and interpretation require consid-
erable mathematics and imagination [2, 3] although this discussion shows it
must be, in some sense, the inverse Fourier transform of 1. In any case, this
is why h(t) as defined in (11) is known as the impulse response. It is a com-
plete representation of the LTI system. Knowing the impulse response and
the input signal, the output is computed from what is called a convolution
integral,

y(t) =
∫ ∞

−∞
h(t− τ)u(τ)dτ. (13)

Notice that the integral has to be computed for each value of t, −∞ < t <∞,
making the calculation of y(t) by this means somewhat tedious.

The generalization of the Laplace and Fourier transforms and the impulse
response and convolution integral to LTI MIMO systems is easy. One simply
applies them term by term to the inputs and outputs. The impulse response
can also be used on LTI systems, such as the pure delay of duration T (h(t) =
δ(t − T )), that cannot be written as ODEs as well as time-varying linear
systems. The state space description also applies to time-varying systems.

For LTI systems that can be described by an ODE of the form (5), the
ODE, transfer functionH(s), frequency responseH(jω), and impulse response
h(t) descriptions are completely equivalent. Knowing any one, you can com-
pute any of the others. Given the state space description (3), it is possible
to compute any of the other descriptions. We illustrate by computing H(s).
Taking Laplace transforms of both sides of (3),

sX(s) = AX(s) +BU(s) (14)
(sI −A)X(s) = BU(s) (15)

X(s) = (sI −A)−1
BU(s) (16)

H(s) = C(sI −A)−1
B +D. (17)

The opposite direction, computing an A, B, C, and D such that (17) holds
given H(s) or its equivalent, is slightly more complicated. Many choices of
A, B, C, and D will produce the same H(s). They need not have the same
number of states. The state space description is completely equivalent to the
other descriptions if and only if it is minimal. The concepts of controllability
and observability are needed to give the precise meaning of minimal. This will
be discussed at the end of Section 4.
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3 Discrete-Time Systems

There are exact analogs for discrete-time systems to each of the descriptions
of continuous-time systems. The standard notation ignores the actual time
completely and regards a discrete-time system as a mapping from an input
sequence u[k], k0 ≤ k ≤ kf to an output y[k], k0 ≤ k ≤ kf , where k is an
integer. The discrete-time state space description is then

x[k + 1] = f(x[k], u[k]) (18)

y[k] = g(x[k], u[k]), (19)

where x[k] is the state n-vector, u[k] is the m-vector input signal, and y[k] is
the p-vector output signal; n, m, and p are integers.

A precise definition of a discrete-time signal is the following.

Definition 2. A scalar discrete-time signal, denoted by {u[k] for all integers
k such that k0 ≤ k < kf} is a mapping from a set of consecutive integers into
the real numbers.

As for continuous-time signals, an n-vector signal is just an n-vector of scalar
signals. The same scalar multiplication and addition apply in discrete time as
in continuous time so discrete-time signals can also be viewed as vectors in a
vector space of signals.

The LTI MIMO version is obviously

x[k + 1] = Ax[k] +Bu[k] (20)
y[k] = Cx[k] +Du[k]. (21)

The discrete-time analog of the ODE description fortuitously is known as
an ordinary difference equation (ODE) or in statistics as an autoregressive
moving average (ARMA) model. It has the form, in the SISO case,

n∑
0

aiy(t− i) =
n∑
0

biu(t− i), (22)

where ai, bi ∈ R.
There is a close analog and relative of the Laplace transform that ap-

plies to discrete-time systems. It is known as the Z-transform. As with the
Laplace transform, we choose to work with the two-sided version which is, by
definition,

X(z) def=
+∞∑

m=−∞
x[m]z−m (23)

with z a complex number and x[m], −∞ < m <∞.
Similarly, there is a discrete-time Fourier transform. It is defined by the

pair of equations
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X(ejω) def=
+∞∑

k=−∞
x[k]e−jωk (24)

x[k] =
∫

2π

X(ejω)ejωkdω/2π. (25)

Notice that X(ejω) is periodic in ω of period 2π. It is not possible to measure
the discrete-time Fourier transform. It is possible to compute it very efficiently.
Suppose you have a discrete-time signal that has finite duration—obviously
something we could have measured as the output of a physical system:

x[k] =

{
xk if 0 ≤ k ≤ kf − 1;
0 otherwise.

(26)

It is then possible [2,3] to define a discrete Fourier transform of x[k] consisting
of exactly kf real numbers which we denote by Xf [m] (the subscript f for
Fourier):

Xf [m] =
1
kf

kf −1∑
k=0

x[k]e−jm(2π/kf )k. (27)

Applying the transforms to the ODE produces

H(z) =
∑n

i=0 biz
−i∑n

i=0 aiz−i
(28)

H(ejω) =
∑n

i=0 bke
−jkω∑n

i−0 ake−jkω
. (29)

Lastly, the pulse response is the discrete-time analog of the impulse re-
sponse of continuous-time systems. There are no real difficulties. The pulse
response h[k] is just the output of an LTI system when the input is the discrete-
time unit pulse, defined as

δ[k] def=

{
1 k = 0;
0 otherwise.

The generalizations and equivalences of these different descriptions of
discrete-time systems are exactly the same as those for continuous-time sys-
tems, as described at the end of Section 2.

4 Properties of Systems

Two of the most important properties of systems are causality and stability.
Loosely speaking, a system is causal if its response is completely determined
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by its past and present inputs. The present output of a causal system does not
depend on its future inputs. A similarly loose description of stability would be
that small changes in the input or the initial conditions produce small changes
in the output. Making these precise is fairly easy for LTI systems.

Definition 3. A continuous-time LTI system is said to be causal if its impulse
response h(t) = 0 for all t < 0. A discrete-time LTI system is causal if its
pulse response h[k] = 0 for all k < 0.

A more abstract and general definition of causality [4] begins by defining
a family of truncator systems, PT , defined for all real T by their action on an
arbitrary input signal as

PT (u(t)) def=

{
u(t) for t ≤ T
0 for t > T .

(30)

Definition 4. A system, denoted by S, is causal if and only if PTS = PTSPT

for all T .

It is useful to distinguish two different forms of stability, although they
are equivalent for LTI systems. The definitions are given for continuous-time;
simply replace t by k for the discrete-time versions.

Definition 5. A system is said to be stable if, with u(t) = 0 for all t ≥ 0,
given any ε > 0 there exists a δ > 0 such that ‖x(t)‖ < ε whenever ‖x0‖ < δ,
where ‖x(t)‖ denotes any norm of x(t), e.g.,

√∑n
1 xi

2. The system is asymp-
totically stable if it is stable and ‖x(t)‖ → 0 as t→ 0.

Definition 6. A system is said to be BIBO stable (BIBO stands for bounded-
input bounded-output) if ‖y(t)‖ ≤ M < ∞ whenever ‖u(t)‖ ≤ B < ∞, for
some real numbers M and B.

Notice that Definition 5 requires a state vector and depends crucially upon
it. There are many elaborations of these two relatively simple definitions of
stability. Many of these can be found in a textbook by H.K. Khalil [5].

There are several simple ways to determine if an LTI system is stable.
Given the impulse (pulse) response, the following theorem applies [4, 6, 7].

Theorem 1. A SISO continuous-time LTI system is BIBO stable if and only
if
∫ +∞

−∞ |h(t)|dt ≤M <∞ for some M .

Replace the integral by an infinite sum to obtain the SISO discrete-time
result. Replace the absolute value by a norm to generalize to the MIMO case.

Given either the ODE or the state space description of a system, causality
has to be imposed as an extra condition. Differential and difference equations
can generally be solved in either direction. For example, the ODE (5) could
be solved for y(0) from knowledge of a complete set of “initial” conditions at
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tf and u(t) for all 0 ≤ t < tf . Note that the backwards solution may not be
unique in the discrete-time case.

Given either H(z) or H(s) causality is related to stability in an interest-
ing way. A deeper understanding of the theory of transforms is needed here.
Consider the two-sided (Laplace)Z-transform of a signal y[k] (y(t)) for all
−∞ < k,t< +∞. It should be apparent from (23) ((6)) that the infinite sum
(integral) may not converge for some values of z (s). For example, let the
pulse response of an LTI system be

hc[k] =

{
0.9k, k ≥ 0
0, otherwise.

Then, using (23)

Hc(z) =
+∞∑
k=0

(0.9/z)k.

Computing the sum (using the fact that
∑∞

k=0 a
k = 1/(1− a) if |a| < 1) gives

Hc(z) =
z

z − 0.9
, provided |z| > 0.9.

Now, let the pulse response be

Hac[k] =

{
−0.9k, k < 0
0 otherwise.

Then
Hac(z) =

z

z − 0.9
, provided |z| < 0.9.

Notice that two different pulse responses have the identical Z-transform if one
ignores the region of the complex plane in which the infinite sum converges.

The key idea, as illustrated by the example, is that the region of the
complex plane in which the Z-transform of a causal LTI system converges
is the entire region outside of some circle of finite radius. The corresponding
result for the Laplace transform is the region to the right of some vertical line
in the complex plane. The next obvious question is: How is the boundary of
that region determined?

To answer this question, we first assume for simplicity that H(z) has the
form of (28). We multiply numerator and denominator by zn so we can work
directly with polynomials in z. The denominator polynomial of H(z) is then

p(z) =
n∑

i=0

aiz
n−i. (31)

As an nth-order polynomial in the complex number z with real coefficients,
p(z) has exactly n roots, i.e., values of z for which p(z) = 0. Simply replace z
by s to obtain the corresponding continuous-time result.
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Definition 7. The poles of a SISO LTI system are the roots of its denomi-
nator polynomial.

Note that this definition applies equally well to discrete- and continuous-
time systems. For systems described by a transfer function of the form (28)
or (8), the impulse, or pulse, response can be computed by first performing a
partial fraction expansion ofH(z) orH(s). For simplicity, we present the result
for the case where b0 = 0 and all the roots of the denominator polynomial are
different—i.e., there are no repeated roots. Under these conditions,

H(z) =
∑n

i=1 biz
n−i∑n

i=0 aizn−i
=

n∑
i=1

Ai/(z − pi), (32)

where pi denotes the ith pole of the system and Ai is the corresponding
residue. Note that both Ai and pi could be complex. If they are, then because
ai and bi are real, the system must also have a pole that is the complex
conjugate of pi, and the residue of this pole must be the complex conjugate
of Ai. Taking the inverse Z-transform of (32) gives

h[k] = Z−1(H(z)) =
n∑

i=1

Ai/(z − pi)
i =

{∑n
i=1Ai(pi)

k−1
k ≥ 1

0 otherwise.
(33)

Applying Theorem 1 to (33) is the basic step in proving the following theorem.

Theorem 2. A discrete-time (continuous-time) LTI system is asymptotically
and BIBO stable if and only if all its poles, pi, satisfy |pi| < 1 (Re(pi) < 0).

Similarly, the region of convergence of the Z-transform of a causal discrete-
time LTI system is the region outside a circle of radius equal to |pm|, where
pm is the pole with the largest absolute value. For Laplace transforms, it is
the region to the right of pm, the pole with the largest Re(pm).

The numerator polynomial of H(z) or H(s) usually also has roots.

Definition 8. The finite zeros of a SISO LTI system are the roots of its
numerator polynomial.

The reason for the adjective “finite” is rooted in the appropriate gener-
alization of the definitions of poles and zeros to MIMO LTI systems. It is
obvious from the definitions we have given that |H(z)| = ∞ at a pole and
that |H(z)| = 0 at a zero of the system. This can be used to give more inclusive
definitions of pole and zero. The one for a zero is particularly important.

Definition 9. A zero of a SISO LTI discrete-time system is a value of z such
that H(z) = 0. Similarly, a zero of a continuous-time SISO LTI system is a
value of s such that H(s) = 0.
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With this definition of a zero, a system with n poles and m finite zeros can
be shown to have exactly n −m zeros at ∞. The zeros of a system are par-
ticularly important in feedback control because the zeros are invariant under
feedback. That is, feedback cannot move a zero. Cancelling a zero or a pole
is possible, as will be shown in the following section. However, understanding
the ramifications of pole/zero cancellation requires at least two more concepts,
controllability and observability.

Definition 10. A time-invariant system is completely controllable if, given
any initial condition x(0) = x0 and any final condition x(T ) = xf , there exists
a bounded piecewise continuous control u(t), 0 ≤ t < T for some finite T that
makes x(T ) = xf .

Definition 11. A time-invariant system is observable if, given both y(t) and
u(t) for all 0 ≤ t < T for some finite T , it is possible to uniquely determine
x(0).

In both definitions it is assumed that the system is known. In particular,
for LTI systems, A, B, C, and D are known. There are also simple tests for
controllability and observability for LTI systems.

Theorem 3. An LTI system is controllable if and only if the n× nm matrix
C = [B AB A2B ... An−1B] has rank n.

Theorem 4. An LTI system is observable if and only if the pn× n matrix

O =

⎡⎢⎢⎢⎢⎢⎣
C
CA
CA2

...
CAn−1

⎤⎥⎥⎥⎥⎥⎦ (34)

has rank n.

As usual, there are many elaborations of the concepts of controllability
and observability, providing precise extensions of these ideas to time-varying
systems and further clarifying their meaning. Good sources for these more
advanced ideas are the books by Kailath and Rugh [6, 7].

As mentioned earlier, given H(s) or its equivalent, the problem of finding
A, B, C, and D such that

H(s) = C(s(I)−A)−1
B +D (35)

has some subtleties. It is known in control theory as the realization problem
and is covered in great detail in Kailath [6]. The SISO case is considerably
simpler than the MIMO case. For brevity, we denote a state space model by
its four matrices, viz. {A, b, c, d}.
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Definition 12. A realization of a SISO transfer function H(s) is minimal if
it has the smallest number of state variables among all realizations of H(s).

Theorem 5. A realization, {A, b, c, d}, of H(s) is minimal if and only if
{A, b} is controllable and {c, A} is observable.

All minimal realizations are equivalent, in the following sense.

Theorem 6. Any two minimal realizations are related by a unique n× n in-
vertible matrix of real numbers (i.e., a similarity transformation).

The idea behind this theorem is that two n-dimensional state vectors are
related by a similarity transformation. Specifically, if x1 and x2 are two n-
vectors, then there exists an invertible matrix P such that x2 = Px1. Define
x2(t)

def= Px1(t). Differentiating both sides and making the obvious substitu-
tion gives

ẋ2(t) = Pẋ1(t) = P (Ax1(t) + bu(t)). (36)

Because P is invertible we can rewrite this as

ẋ2(t) = PAP−1x2(t) + Pbu(t). (37)

Applying this to the output equation shows that the following two realizations
are equivalent in the sense that they have the same state dimension and
produce the same transfer function:

{A, b, c, d} ↔ {PAP−1, P b, cP−1, d}. (38)

As will be demonstrated in the following section, it is possible to combine
an LTI system with a pole at, say p0, in series with an LTI system with a zero
at the same value, p0. The resulting transfer function could, theoretically, be
reduced by cancelling the pole/zero pair, i.e., dividing out the common factor.
It is not a good idea to perform this cancellation. The following theorem
explains the difficulty.

Theorem 7. A controllable and observable state space realization of a SISO
transfer function H(s) exists if and only if H(s) has no common poles and
zeros, i.e., no possible pole/zero cancellations.

Thus, a SISO LTI system that has a pole zero cancellation must have at
least one internal pole, i.e., a pole that cannot be seen from the input/output
behavior of the system. If one attempts to cancel an unstable pole with a zero,
the resulting system will be unstable even though this instability may not be
evident from the linear input-output behavior. Generally, the instability will
be noticed because it will drive the system out of its linear region.

The idea of pole/zero cancellations is formalized in the following definition.

Definition 13. A SISO LTI system is irreducible if there are no pole/zero
cancellations in its transfer function.
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In the SISO case, any minimal realization of an irreducible LTI system is
completely equivalent to any other description of the system. Furthermore,
the poles of the system are exactly equal to the eigenvalues of the A from any
minimal realization. This allows us to write the following theorem linking all
of the properties we have described.

Theorem 8. The following statements are equivalent for causal irreducible
SISO LTI systems:

• The system is BIBO stable
• The system’s minimal realizations are controllable, observable, and asymp-

totically stable
• If the system is discrete-time, all its poles are inside the unit circle (have

real part < 0 if continuous time).

The MIMO generalizations of all of these results, including the definition
and interpretation of zeros, and the meaning of irreducibility are vastly more
complicated. See Kailath [6] for the details. There is a remarkable generaliza-
tion of the idea of the zeros of a transfer function to nonlinear systems. An
introduction can be found in an article by Isidori and Byrnes [8].

5 Interconnecting Systems

We will describe six ways to interconnect LTI systems in this section. The first
three are exactly the same for discrete-time and continuous-time systems. The
last three involve the interconnection of continuous-time and discrete-time
systems. First, we consider the series connection of two LTI systems as shown
in Fig. 1. The result is the transfer function

H(s) = H1(s)H2(s). (39)

Y(s)H1(s)U(s) H2(s)

H(s)

Fig. 1. The series interconnection of LTI systems

A proof is easy:
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Y (s) = H2(s)Y1(s) = H2(s)H1(s)U(s). (40)

As mentioned in the previous section, the series connection of an LTI system
with a zero at p0 with an LTI system with a pole at the same value p0 results
in their apparent cancellation in the transfer function, which is completely
determined by the input-output behavior of the combined system. Cancella-
tion of stable, well-behaved poles in this way is a common practice in control
system design.

Two LTI systems connected in parallel are shown in Fig. 2. Notice that
the figure introduces a new system, known variously as a summer, adder, or
comparator. It is completely described by its operation. Its output Y (s) is the
sum of its two inputs U1(s) + U2(s). Thus,

Y (s) = Y1(s)+Y2(s) = H1(s)U(s)+H2(s)U(s) = (H1(s)+H2(s))U(s). (41)

H1(s)

H2(s)

U(s)
Y(s)

H(s)

Fig. 2. The parallel interconnection of LTI systems

There is another way of combining subsystems, the feedback interconnec-
tion, illustrated in Fig. 3. Notice that the transfer function of the combined
system is

H(s) =
Y (s)
U(s)

=
H1(s)

1 +H1(s)H2(s)
. (42)

This result can be derived by recognizing that E(s) = U(s)−H2(s)Y (s) and
that Y (s) = H1(s)E(s), and doing some arithmetic.

Combining a discrete-time system in series with a continuous-time system
requires an appropriate interface. If the output of the continuous-time system
is input into the discrete-time system, then a sampler is needed. Conceptually
this is simple. If y(t) denotes the output of the continuous-time system and
u[k] denotes the input to the discrete-time system, then the sampler makes



www.manaraa.com

Fundamentals of Dynamical Systems 17

H1(s)

H2(s)

U(s) Y(s)E(s)

Fig. 3. The feedback interconnection of LTI systems

u[k] def= y(kTs), (43)

where Ts is a fixed time interval known as the sampling interval and (43) holds
for all integer k in some set of consecutive integers. Note that we are assuming
the sampling interval is constant even though in many applications, especially
involving embedded and networked computers, the sampling interval is not
constant and can even fluctuate unpredictably. The theory is much simpler
when Ts is constant. In fact Ts is often constant, and small fluctuations in the
sampling interval can often be neglected. Note also that the series combination
of a sampler and an LTI system is actually time varying.

One naturally expects sampling to lose information. Remarkably, it is the-
oretically possible to sample a continuous-time signal and still be able to
reconstruct the original signal from its samples exactly, provided the sam-
pling interval Ts is short enough. The precise details can be found in “Basics
of Sampling and Quantization” by Santina and Stubberud in this handbook.

Combining a discrete-time system in series with a continuous-time system
in the opposite order requires that the interface convert a discrete-time signal
into a continuous-time one. Although there are several ways to do this, the
most common and simplest way is to hold the discrete value for the whole
sampling interval as shown below,

u(t) = y[k] for all t, kTs ≤ t < (k + 1)Ts. (44)

The last of the six interconnections combines the previous two. It is the
feedback interconnection of a discrete-time system with a continuous-time
system. The problem is to characterize the combined system in a simple,
precise, and convenient way. An exact discrete-time version of the continuous-
time system can be obtained as follows. The solution to (3) starting from the
initial condition x(t0) = x0 at t = t0 is
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x(t) = eA(t−t0)x0 +
∫ t

t0

eA(t−τ)Bu(τ)dτ (45)

y(t) = Cx(t) +Du(t), (46)

where

eAt def=
∞∑
0

(At)n

n!
. (47)

Applying these results when the initial condition is x(kTs) = x[k] and the
input is u(t) = u[k] for kTs ≤ t < (k + 1)Ts where Ts is the sampling interval
gives

x((k + 1)Ts) = eATsx[k] +
∫ (k+1)Ts

k(Ts)
eA((k+1)Ts−τ)Bu[k]dτ. (48)

Introducing the change of variables σ = τ − kTs in the integral, replacing
x((k + 1)Ts) by x[k + 1], and factoring out the constant Bu[k] gives

x[k + 1] = eATsx[k] +
∫ (Ts

0
eA(Ts−σ)dσBu[k]. (49)

Define

Ad
def= eATs (50)

Bd
def=

∫ Ts

0
eA(Ts−σ)dσB (51)

Cd
def= C (52)

Dd
def= D. (53)

Then, we have the discrete-time system in state space form

x[k + 1] = Adx[k] +Bdu[k] (54)
y[k] = Cdx[k] +Ddu[k]. (55)

Taking the Z-transform gives

H(z) = Cd(zI −Ad)
−1
Bd +Dd. (56)

Note that this basic approach will give a discrete-time system that is exactly
equivalent to the sampled and held continuous-time system at the output
sampling instants even if the sampling interval is not constant and is differ-
ent at the input and the output. Systems of this type are often referred to
as “sampled-data systems.” See “Control of Single-Input Single-Output Sys-
tems” by Hristu and Levine in this handbook for another way to obtain an
exact Z-transform for such a system.

There are many approximations to the exact result in (56) in the literature.
This is partly for historical reasons. Many continuous-time control systems
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were developed before cheap digital controllers became available. A quick and
easy way to convert them to digital controllers was by means of a simple
approximation to (56). Control and digital signal processing system designers
also often use these approximations. The most commonly used and most useful
of these is known variously as the trapezoidal method, Tustin’s method, or
the bilateral transformation. It is given by the following formula:

H(z) = H(s = (
2
Ts

z − 1
z + 1

)), (57)

where Ts is the sampling interval, H(s) is the continuous-time transfer func-
tion, and H(z) is its discrete-time equivalent. More details can be found in
many places, two of which are the chapter by Santina, Stubberud, and Hostet-
ter [9] and a book by Franklin, Powell, and Workman [10].

6 Conclusion

This chapter is a very brief introduction to a very large subject. To learn more,
it would be reasonable to begin with [2,3], which are undergraduate textbooks.
The books by Kailath [6], Rugh [7], and Antsaklis and Michel [4] are graduate
textbooks on linear systems. The book by Khalil [5] is a graduate text book
on nonlinear systems. The Control Handbook [11] contains approximately 80
articles, each of which is a good starting point for learning about some aspect
of dynamical systems and their control.

References

1. F. Lamnabhi-Lagarrique. Volterra and Fliess series expansions for nonlinear
systems, in The Control Handbook , pp. 879–888, CRC Press, Boca Raton, FL,
1995.

2. A. V. Oppenheim and A. S. Willsky with S. Hamid Nawab. Signals and Systems,
Prentice-Hall, Upper Saddle River, NJ, 2nd edition, 1997.

3. B. P. Lathi. Linear Systems and Signals, Oxford Unversity Press, New York, 2nd
edition, 2005.

4. P. J. Antsaklis and A. N. Michel. Linear Systems, The McGraw-Hill Companies,
New York, 1997.

5. H. K. Khalil. Nonlinear Systems, Prentice-Hall, Upper Saddle River, NJ, 3rd
edition, 2002.

6. T. Kailath. Linear Systems, Prentice-Hall, Upper Saddle River, NJ, 1980.
7. W. J. Rugh. Linear System Theory, Prentice-Hall, Upper Saddle River, NJ, 2nd

edition, 1995.
8. A. Isidori and C. J. Byrnes. Nonlinear zero dynamics, in The Control Handbook ,

pp. 917–923, CRC Press, Boca Raton, FL, 1995.
9. M. S. Santina, A. R. Stubberud, and G. H. Hostetter. Discrete-time equivalents

to continuous-time systems, in The Control Handbook pp. 265–279, CRC Press,
Boca Raton, FL, 1995.



www.manaraa.com

20 W. S. Levine

10. G. F. Franklin, J. D. Powell, and M. Workman. Digital Control of Dynamic
Systems, Addison-Wesley, San Diego, CA, 3rd edition, 1997.

11. W. S. Levine (Editor). The Control Handbook , CRC Press, Boca Raton, FL,
1995.



www.manaraa.com

Control of Single-Input Single-Output
Systems∗

Dimitrios Hristu-Varsakelis1 and William S. Levine2

1 Department of Applied Informatics,
University of Macedonia, Thessaloniki, 54006, Greece dcv@uom.gr

2 Electrical and Computer Engineering,
University of Maryland, College Park, MD 20742, U.S.A. wsl@umd.edu

1 Introduction

There is an extensive body of theory and practice devoted to the design of feed-
back controls for linear time-invariant systems. This chapter contains a brief
introduction to the subject with emphasis on the design of digital controllers
for continuous-time systems. Before we begin it is important to appreciate
the limitations of linearity and of feedback. There are situations where it is
best not to use feedback in the control of a system. Typically, this is true for
systems that do not undergo much perturbation and for which sensors are
either unavailable or too inaccurate. There are also limits to what feedback
can accomplish. One of the most important examples is the nonlinearity that
is present in virtually all systems due to the saturation of the actuator. Satu-
ration will limit the range of useful feedback gains even when instability does
not. It is important to keep this in mind when designing controllers for real
systems, which are only linear within a limited range of input amplitudes.

The method used to design a controller depends critically on the informa-
tion available to the designer. We will describe three distinct situations:

1. The system to be controlled is available for experiment but the designer
cannot obtain a mathematical model of the system.

2. The designer has an experimentally determined frequency response of the
system but does not have other modeling information.

3. The designer has a mathematical model of the system to be controlled.

The second case arises when the underlying physics of the system is poorly
understood or when a reasonable mathematical model would be much too
complicated to be useful. For example, a typical feedback amplifier might
contain 20 or more energy storage elements. A mathematical model for this
amplifier would be at least 20th order.

∗This work was supported in part by NSF Grant EIA-008001.



www.manaraa.com

22 D. Hristu-Varsakelis and W. S. Levine

It will be easiest to understand the different design methods if we begin
with the third case, where there is an accurate mathematical model of the
plant (the system to be controlled). When such a model is available, the
feedback control of a single-input single-output (SISO) system begins with the
following picture. The plant shown in Fig. 1 typically operates in continuous

Controller D/A Plant

A/D

r(k)

y(k)

e(k) u(k) u(t) y(t)

Fig. 1. A sampled-data feedback control system

time. It can be described by its transfer function:

Y (s) = Gc(s)U(s),

where U(s), Y (s) are the Laplace transforms of the input and output signals
respectively, and

Gc(s) =
∑n−1

0 bis
i∑n

0 aisi
=

∏n−1
1 (s− zi)∏n
1 (s− pi)

. (1)

The coefficients ai, bi are real; the roots zi, pi of the numerator and denomina-
tor are the zeros and poles (respectively) of the transfer function. We assume
that these parameters are given and that they are constant.

Note that (1) limits the class of systems to those that can be adequately
approximated by such a transfer function. For a discussion of controller design
when Gc(s) includes a pure delay, described by e−sT , see “Control Issues in
Systems with Loop Delays” by Mirkin and Palmor in this handbook. The out-
put in Fig. 1 is fed directly back to the summer (comparator). For simplicity
and clarity we restrict our discussion to unity feedback systems, as in Fig. 1.
It is fairly easy to account for dynamics or filtering associated with the sensor
if necessary.

The controller (in cascade with the plant) is to be designed so that the
closed-loop system meets a given set of specifications. The controller is as-
sumed to be linear (in a sense to be made precise shortly). Modern con-
trollers are often implemented in a digital computer. This requires the use
of analog-to-digital (A/D) and digital-to-analog (D/A) converters in order to
interface with the continuous-time plant. This makes the plant, as seen by the
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controller, a sampled-data system with input u(k) and output y(k). See the
chapter, in this handbook, entitled “Basics of Sampling and Quantization” by
Santina and Stubberud for a discussion of the effects of time discretization
and D/A and A/D conversion.

2 Description of Sampled-Data Systems

The D/A block shown in Fig. 1 converts the discrete-time signal u(k) produced
by the controller to a continuous-time piecewise constant signal via a “zero-
order hold” (ZOH). Let u(k) be the discrete-time input signal, arriving at the
D/A block at multiples of the sampling period T . In the time domain, the
ZOH can be modeled as a sum of shifted unit step functions:3

u(t) =
∞∑
0

u(k)[1(t− kT )− 1(t− (k + 1)T )].

The Laplace transform of the last expression yields

U(s) =
∞∑
0

u(k)e−kTs

︸ ︷︷ ︸
U(z)

(
1
s
− e−Ts

s

)
.

If we think of u(k) as a continuous-time impulse train, u(k)δ(t − kT ), then
the ZOH has a transfer function

GZOH(s) =
1
s
(1− e−sT ).

From the point of view of the (discrete-time) controller, the transfer func-
tion of the sampled-data system is given by the z-transform of the ZOH/plant
system

G(s) =
1− e−sT

s
Gc(s),

which is (by z = esT )

G(z) =
z − 1
z
Z{Gc(s)/s},

where Z{Gc(s)/s} is computed by first calculating the inverse Laplace trans-
form of Gc(s)/s to obtain a continuous-time signal, ĝ(t), then sampling this
signal, and finally computing the Z-transform of this discrete-time signal.

If we let C(z) denote the transfer function of the controller, then the
closed-loop transfer function is

3The unit step function 1(t) equals zero for t < 0, one for t ≥ 0.
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C(z) G(z)
R(z) Y(z)E(z) U(z)

Fig. 2. A sampled-data feedback control system

Y (z)
U(z)

= Gcl(z) =
G(z)C(z)

1 +G(z)C(z)
.

This is illustrated in Fig. 2.
An important point to remember about sampled-data systems is that the

real system evolves in continuous time, including the time between the sam-
pling instants. This inter-sample behavior must be accounted for in most
applications.

3 Control Specifications

The desired performance of the closed-loop system in Fig. 2 is usually de-
scribed by means of a collection of specifications. They can be organized into
four groups:

• Stability
• Steady-state error
• Transient response
• Robustness

These will be discussed in order below.

3.1 Stability

A system is bounded-input bounded-output (BIBO) stable if any bounded
input results in a bounded output. A system is internally stable if its state
decays to zero when the input is identically zero. If we limit ourselves to linear
time-invariant (LTI) systems, then all questions of stability can be settled
easily by examining the poles of the closed-loop system. In particular, the
closed-loop system is both BIBO and internally stable if and only if all of its
poles4 are inside the unit circle. Mathematically, if the poles of the closed-
loop system are denoted by pi, i = 1, 2, ..., n then the system is BIBO and
internally stable if |pi| < 1 for all i.

4This must include any poles that are cancelled by zeros.
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3.2 Steady-state error

In many situations the main objective of the closed-loop system is to track
a desired input signal closely. For example, a paper-making or metal-rolling
machine is expected to produce paper or metal of a specified thickness. Brief,
transient errors when the process starts, while undesirable, can often be ig-
nored. On the other hand, persistent tracking errors are a serious problem.
Typically, the specification will be that the steady-state error in response to
a unit step input must be exactly zero. It is surprisingly easy to meet this
requirement in most cases.

The difference between input and output is e(k), or in the z-domain,

E(z) =
R(z)

1 +G(z)C(z)
.

We can examine the steady-state error by using the “final value theorem”

e(∞)
�
= lim

k→∞
e(k) = lim

z→1
(1− z−1)E(z).

If the input is a unit step (Us(z) = z/(z − 1)), then the last equation yields

e(∞) = lim
z→1

1
1 +G(z)C(z)

. (2)

Equation (2) indicates that the steady-state error will be zero provided that

lim
z→1

G(z)C(z) =∞,

which will be true if G(z)C(z) has one or more poles at z = 1.
More elaborate steady-state specifications exist, but the details can easily

be derived using this example as a model or by consulting the books by Dorf
and Bishop [5] or Franklin et al. [6].

3.3 Transient response

The transient response of the closed-loop system is important in many appli-
cations. A good example is the stability and control augmentation systems
(SCASs) now common in piloted aircraft and some automobiles. These are
systems that form an inner (usually multi-input multi-output (MIMO)) con-
trol loop that improves the handling qualities of the vehicle. The pilot or driver
is the key component in an outer control loop that provides command inputs
to the SCAS. The transient characteristics of the vehicle are crucial to the
pilot’s and driver’s handling of the vehicle and to the passenger’s perception
of the ride. If you doubt this, imagine riding in or driving a car with a large
rise time or large percent overshoot (defined below).
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The transient response of an LTI system depends on the input as well as
on the initial conditions. The standard specifications assume a unit step as
the test input, and the system starts from rest, with zero initial conditions.
The resulting step response is then characterized by several of its properties,
most notably its rise time, settling time, and percent overshoot. These are
displayed in Fig. 3 and defined below.

Step Response
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Fig. 3. The step response of an LTI system and its properties

• Rise time: Usually defined to be the time required for the step response to
go from 10% of its final value to 90% of its final value.

• Settling time: Usually defined to be the time at which the step response
last crosses the lines at ±2% of its final value.

• Percent overshoot: Usually defined to be the ratio (peak amplitude minus
final value)/(final value) expressed as a percentage.

In each case there are variant definitions. For example, sometimes ±1% or
±5% is used instead of ±2% in the definition of settling time. The final value
is the steady-state value of the step response, 0.5 in Fig. 3.

3.4 Robustness

Because a system either is or is not stable, a nominally stable system may
become unstable as a result of arbitrarily small differences between the nom-
inal plant G(z) used for design and the real plant. Such differences might be
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due to inaccuracies in parameter values, variations in operating conditions,
or the deliberate omission of aspects of the nominal plant. For example, the
flexure modes of the body and wings of an aircraft are usually omitted from
the nominal plant model used for controller design. This underscores the im-
portance of knowing how “close” to instability the closed-loop system is. The
“distance to instability” is commonly quantified for SISO LTI systems in two
ways. One is the gain margin, namely the gain factor K that must be applied
to the forward path (replacing G(z)C(z) by KG(z)C(z) in Fig. 2) in order
for the system to become unstable. The other, known as the phase margin, is
the maximum amount of delay (or phase shift) e−jφM that can be introduced
in the forward path before the onset of instability.

Robustness, as a specification and property of a controlled system, has
received much attention in the research literature in recent years. This has
led to robustness tests for MIMO systems as well as a variety of tools for
designing robust control systems. See [8, 15] for more details.

4 Analysis and Design Tools

4.1 The root locus

Consider making the controller in Fig. 2 simply a gain, i.e., C(z) = K.
As K varies from 0 to ∞, the poles of Gcl(z) = KG(z)

1+KG(z) trace a set of
curves (called the “root locus”) in the complex plane. When K = 0 the poles
of the “closed-loop system” are identical to the poles of the open-loop system,
G(z). Thus, each locus starts at one of the poles of G(z). As K → ∞ it is
possible to prove that the closed-loop poles go to the open-loop zeros, including
both the finite and infinite zeros, of G(z). Given a specific value for K, it is
easy to compute the resulting closed-loop pole locations. Today, one can easily
compute the entire root locus; for example, the MATLAB command rlocus
was used to produce Fig. 4. The root locus plot is obviously useful to the
designer who plans on using a controller C(z) = K. He or she simply chooses
a desirable set of pole locations, consistent with the loci, and determines
the corresponding value of K. MATLAB has a command, rlocfind, that
facilitates this. Alternatively, one can use the sisotool graphical user interface
(GUI) in MATLAB to perform the same task. The choice of pole location is
aided by the use of a grid that displays contours of constant natural frequency
and damping ratio. We will have more to say regarding the choice of pole
locations and the use of the root locus plot in Section 5.1.

By combining the controller and the plant and multiplying by K (the
effective plant is then C(z)G(z)), the root locus can be used to determine the
gain margin. As will be explained later, the effect of various compensators
can also be analyzed and understood by appropriate use of the root locus.
Lastly, the idea of the root locus, the graphical display of the pole locations
as an implicit function of a single variable in the design, can be very useful in
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a variety of applications. Modern computers make it fairly easy to generate
such root loci.

4.2 The Bode, Nyquist, and Nichols plots

There are at least two situations where it is preferable to use the frequency
response of the plant rather than its transfer function G(z) for control system
design. First, when the plant is either stable or easily stabilized, it is often
possible to determine |G(ejΩT )| and ∠G(ejΩT ), where T is the time interval
between samples, experimentally for a range of values of Ω. This data is
sufficient for control design, completely eliminating the need for an analytical
expression for G(z). Second, a system with many poles and zeros can produce
a very complicated and confusing root locus. The frequency response plots of
such a system can make it easier for the designer to focus on the essentials of
the design. This second situation is exemplified by feedback amplifier design,
where a state space or transfer function model would be of high order, but
the frequency response is relatively simple.

The Nyquist plot of the imaginary part of G(ejΩT ) versus the real part
of G(ejΩT ) provides a definitive test for stability of the closed-loop system.
It also gives the exact gain and phase margins unambiguously. However, it is
not particularly easy to use for design. In contrast, both the Bode plots and
Nichols chart are very useful for design but can be ambiguous with regard
to stability. There are two Bode plots. The Bode magnitude plot presents
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20 log |G(ejΩT )| on the vertical axis versus logΩ on the horizontal axis. The
Bode phase plot shows ∠G(ejΩT ) on the vertical axis and uses the same hori-
zontal axis as the magnitude plot. The Nichols chart displays 20 log |G(ejΩT )|
on the vertical axis versus ∠G(ejΩT ) on the horizontal axis. An example of
both plots is shown in Fig. 5. Note that the lightly dotted curves on the Nichols
chart are contours of constant gain (in decibels) and phase (in degrees) of the
closed-loop system. Thus, any point on the Nichols plot for G(z) also identifies
a value of 20 log | G(z)

(1+G(z)) | and of ∠ G(z)
(1+G(z)) for some value of Ω.
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Fig. 5. The Bode plots and Nichols chart for G(z) = z2−z+0.5
z4−1.9z3+1.18z2−0.31z+0.03

The use of logarithmic scaling for the magnitude offers an important conve-
nience: The effect of a series compensator C(z) on the logarithmic magnitude
is additive, as is its effect on the phase.

5 Classical Design of Control Systems

In reality, the design of a control system usually includes the choosing of sen-
sors, actuators, computer hardware and software, A/D and D/A converters,
buffers, and, possibly, other components of the system. In a modern digital
controller the code implementing the controller must also be written. In addi-
tion, most control systems include a considerable amount of protection against
emergencies, overloads, and other exceptional circumstances. Lastly, it is now
common to include some collection and storage of maintenance information as
well. Although control theory often provides useful guidance to the designer
in all of the above-mentioned aspects of the design, it only provides explicit
answers for the choice of C(z) in Fig. 2. It is this aspect of control design that
is covered here.

5.1 Analytical model-based design

The theory of control design often begins with an explicitly known plant
G(z) and a set of specifications for the closed-loop system. The designer is
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expected to find a controller C(z) such that the closed-loop system satisfies
those specifications. In this case, a natural beginning is to plot the root locus
for G(z). If the root locus indicates that the specifications can be met by a
controller C(z) = K, then the theoretical design is done. However, it is not
a trivial matter to determine from the root locus if there is a value of K for
which the specifications are met. Notice that the example specifications in
Section 3 include both time domain and frequency domain requirements.

The designer typically needs to be able to visualize the closed-loop step
response from knowledge of the closed-loop pole and zero locations only. This
is easily done for second-order systems where there is a tight linkage between
the pole locations and transient response. Many SISO controlled systems can
be adequately approximated by a second-order system even though the actual
system is of higher order. For example, there are many systems in which an
electric motor controls an inertia. The mechanical time constants in such a
system are often several orders of magnitude slower than the electrical ones
and dominate the behavior. The electrical transients can be largely ignored
in the controller design.

A second-order system can be put in a standard form that only depends
on two parameters, the damping ratio ζ and the natural frequency ωn. The
continuous-time version is

Gcl(s) =
ωn

2

s2 + 2ζωns+ ωn
2 , (3)

where Gcl(s) denotes the closed-loop transfer function. Notice that the poles
of Gcl(s) are located at s = −ζωn ± jωn

√
1− ζ2 = ωne

jπ±cos−1ζ . For stable
systems with a pair of complex conjugate poles, 0 ≤ ζ < 1. The description
(3) is not used for systems with real poles. The system (3) has step response

y(t) = 1− e−ζωnt√
1− ζ2

(
sin(

√
1− ζ2ωnt+ tan−1(

√
1− ζ2

ζ
))

)
. (4)

The constants ζ and ωn completely determine the step response. With a little
experience a designer can then picture the approximate step response in his
or her mind while looking at the pole locations. For a system with additional
poles and zeros the actual step response can be quite different from that in
(4), but designers need insight and a way to start. An initial design that is
very far from meeting the specifications can often be modified and adjusted
into a good design after several iterations.

It is possible to create a second-order discrete-time system whose step
response exactly matches that of (4). The first step is to choose a time interval
between outputs of the discrete-time system, say Ts. Then, if the continuous-
time system has a pole at pi, the corresponding discrete-time system must
have a corresponding pole at pid = epiTs . The poles of the continuous-time
system (3) are at pi = −ζωn ± jωn

√
1− ζ2. Thus, the poles of the discrete-

time system are at pid = e−ζωnTse±jωn

√
1−ζ2Ts . Writing the pid in polar form
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as R · ejθ (the subscripts have been dropped because there is only one value)
gives

R = e−ζωnTs (5)

θ = ±ωn

√
1− ζ2Ts. (6)

Solving explicitly for ζ and ωn gives

ζ = ± ln(R)√
θ2 + (ln(R))2

(7)

ωn = ±
√
θ2 + (ln(R))2. (8)

This defines two curves in the z-plane, a curve of constant ζ and a curve of
constant ωn. These curves can be plotted on the root locus plot—the MAT-
LAB command is zgrid. For a second-order system in the standard form (3),
both the transient response characteristics and the phase margin are directly
related to ζ and ωn:

rise time = tr ≈
1.8
ωn

(9)

settling time = ts ≈
4.6
ζωn

(10)

percent overshoot = P.O. = 100
e−πζ/

√
1−ζ2

final value
. (11)

The final value is the constant steady-state value reached after the transients
have died out (final value = limk→∞ y(k)).

Clearly, if a designer can satisfy the specifications using only C(z) = K,
the best value of K can be chosen by plotting the root locus of G(z) and
looking at where the loci intersect the contours of constant ζ and ωn. If this
is not sufficient, there are several standard components one can try to include
in C(z) in order to alter the root locus so that its branches pass through the
desired values of ζ and ωn. The best known of these are the lead and lag
compensators defined here for discrete-time systems.

Lead compensator:

Cle(z) =
( z

zl
− 1)

( z
pl
− 1)

, 0 ≤ pl < zl ≤ 1 (12)

Lag compensator:

Cla(z) =
( z

zl
− 1)

( z
pl
− 1)

, 0 ≤ zl < pl ≤ 1. (13)
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Notice that the lead compensator has its zero to the right of its pole and the
lag compensator has its zero to the left of its pole.

The principle behind both compensators is the same. Consider the real
singularities (poles and zeros) of the open-loop system. Suppose that the
rightmost real singularity is a pole. This open-loop real pole will move to-
wards a real open-loop zero placed to its left when the loop is closed with a
positive gain K. If the open-loop system has a pole near z = 1, it is usually
possible to speed up the closed-loop transient response by adding a zero to its
left. For several reasons (the most important will be explained in Section 6
on limitations of control) one should never add just a zero. Thus, one must
add a real pole to the left of the added zero, thereby creating a lead compen-
sator. This lead compensator will generally improve the transient response.
The best value of the gain K can be determined using the root locus plot of
the combined plant and lead compensator.

The lag compensator is used to reduce the steady-state error. This is done
by adding a real pole near the point z = +1. Adding only a pole will badly
slow the closed-loop transient response. Adding a real zero to the left of the
pole at z = 1 will pull the closed-loop pole to the left for positive gain K,
thereby improving the transient response of the closed-loop system.

Another common compensator is the notch filter. It is used when the plant
has a pair of lightly damped open-loop poles. These poles can severely limit
the range of useful feedback gains, K, because their closed-loop counterparts
may become unstable for relatively small values of K. Adding a compensator
that has a pair of complex conjugate zeros close to these poles will pull the
closed-loop poles towards the zeros as K is increased. One must be careful
about the placement of the zeros. If they are placed wrongly, the root locus
from the undesirable poles to the added zeros will loop out into the unstable
region before returning inside the unit circle. If they are properly placed, this
will not happen. Again, one must also add a pair of poles, or the compensator
will cause other serious problems, as explained in Section 6.1.

The use of lead and lag compensators is illustrated in the following exam-
ple.

Design example

Consider a plant with G(s) = 600/(s + 1)(s + 6)(s + 40). This is sampled at
T = 0.0167s resulting in G(z) = 0.000386(z+3.095)(z+0.218)/(z−0.983)(z−
0.905)(z − 0.513). The root locus for this plant is shown on the left in Fig. 6
as a solid line. Closing the loop with a gain of K = 1 results in the closed-
loop step response shown at the right as a solid line. The rise time is 0.47,
the settling time is 1.35, and the steady-state value is 0.71. There are two
aspects of this design that one might want to improve. The step response is
rather slow. We would like to make the rise and settling times smaller. The
steady-state error in response to a unit step is rather large, 0.29. We would
like to make it smaller. Note that increasing the gain from 1 to a larger value
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would improve both of these aspects of the step response, but the cost would
be a more oscillatory response with a larger overshoot as well as a less robust
controller.

A lead compensator, Clead(z) = K(z − 0.905)/(z − 0.794), is added to
reduce the rise and settling times without compromising either robustness
or overshoot. The zero is placed directly on top of the middle pole of the
original plant. The pole is placed so that the largest value of u(k) in the step
response of the closed-loop system is less than 4. The resulting root locus
is shown as a dotted line in Fig. 6. Closing the loop with K = 4 results in
the dotted step response shown on the right. The new rise time is 0.267, the
settling time is 0.735, and the steady-state value is 0.821. Notice that the
lead compensator has improved every aspect of the closed-loop step response.
However, the steady-state error in response to a unit step input is still 0.179.

Finally, a lag compensator is added to further reduce the steady-state
error in response to a unit step. Adding the lag element makes the complete
controller Cleadlag(z) = K(z − 0.905)(z − 0.985)/(z − 0.794)(z − 0.999). The
pole of the lag compensator is placed close to z = 1. The zero is placed just
to the right of the pole of the original plant at z = 0.983. With these choices,
a reasonable gain pulls the added open-loop pole almost onto the added zero.
This gives a small steady-state error without significantly compromising the
transient response. The new root locus is shown as a dashed line in Fig. 6.
The closed-loop step response using this controller is shown dashed at the
right of the figure. The rise time is 0.284, the settling time is 0.668, and the
steady-state value is 0.986. Note that the steady-state error is now less than
0.02 and the other aspects of the response are nearly as good as they were
with only the lead compensator.

5.2 Frequency response-based design

There are two common reasons why one might base a control system design
only on the frequency response plots, i.e., on plots of |G(jω)| and ∠G(jω)
versus ω. First, there are systems for which the frequency response can be
determined experimentally although an analytical expression for the transfer
function is unknown. Although one could estimate a transfer function from
this data, it is arguably better not to introduce additional modelling errors
by doing this. Second, some systems that are very high order have relatively
simple frequency responses. The best example of this is an electronic au-
dio amplifier, which may have approximately 20 energy storage elements. Its
transfer function would have denominator degree around 20. Its frequency re-
sponse plots would be fairly simple, especially since its purpose is to amplify
audio signals. In fact, this was the application that drove the work of Bode and
Nyquist on feedback. It is also somewhat easier to design a lag compensator
in the frequency domain.

One can use either the Bode plots or the Nichols chart of the open-loop
system as the basis for the design. Both the gain and phase margin can be
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Fig. 6. The root loci and step responses for the design example

read directly from these graphs, making them the most important criteria for
design in the frequency domain. There is a convenient relationship between
the phase margin and the damping ratio for second-order systems such as (3).
It is

ζ ≈ (phase margin)/100. (14)

The effect of a pure gain controller, C(s) = K, on the Bode magnitude plot is
simply a vertical shift by 20 log |K|. The effect on the Nichols chart is a vertical
shift by the same amount. Using (14) and the gain and phase margins, the
designer can choose a value of the gain K that meets the specifications as in
the continuous-time case. If the specifications cannot be satisfied by a pure
gain controller, then the various compensators can be tried.

The basic idea behind lead-lag compensation in the frequency domain is
that the closed-loop transient response is dominated by the open-loop fre-
quency response near the gain and phase crossover frequencies, defined to be
the frequencies at which the gain crosses 0 dB and the phase crosses −180◦.
The steady-state behavior is determined by the low frequency characteristics
of the open-loop frequency response. Thus, the general idea is to add a lag
compensator whenever the closed-loop steady-state error is too large. The pole
and zero of the lag compensator are placed at low enough frequencies so that
they do not affect the open-loop frequency response near the crossover fre-
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quencies. On the other hand, the lead compensator is added in the vicinity of
the phase crossover frequency where it adds phase margin, thereby improving
the transient response as suggested by (14).

The notch filter is used to cancel a large peak in the open-loop frequency
response (a resonant peak). The reason it is called a notch filter is evident from
its Bode plot. The notch filter has a “notch” in the magnitude of its transfer
function. This notch is used to cancel the peak in the open-loop frequency
response. The exact placement of the notch is tricky. See [6] for the details.

The design example developed previously using the root locus is repeated
below in terms of frequency responses.

Design example revisited

The Bode and Nichols plots for the open-loop plant G(z) = 0.000386(z +
3.095)(z+0.218)/(z−0.983)(z−0.905)(z−0.513) (the same as in Section 5.1),
this time with an additional gain of 1.2, are shown in Fig. 7 as solid curves.
Closing the loop with unity gain results in a gain margin of 22 dB, a phase
margin of 83 degrees, a gain crossover frequency of 2.6 rad/s, and a phase
crossover frequency of 14.4 rad/s. Although the gain is slightly higher than it
was in our root locus-based design, the closed-loop step response is nearly the
same as before, so it is not reproduced here. There is slightly more overshoot
and the rise and settling times are slightly faster. We chose the higher gain to
emphasize the similarity among the three frequency responses.

The same lead compensator as in the root locus design example is added to
speed up the closed-loop response to a unit step. Because of the link between
phase margin and damping ratio, ζ (see (14)) we know that increasing the
phase margin will speed up the step response. The Bode and Nichols plots
of G(z)Clead(z) with a gain of K = 4, exactly as in the root locus case, are
shown dotted in Fig. 7. Note the slightly more positive phase angle in the
critical region near the gain and phase crossover frequencies. The resulting
gain margin is 19 dB; the phase margin is 78 degrees; the gain crossover is
at 4.25 rad/s; the phase crossover is at 20.4 rad/s. We already know that the
resulting closed-loop step response is considerably faster. If we did not know
the root locus, we would have placed the maximum phase lead of the lead
compensator close to the phase crossover of the original plant.

The same lag compensator as in Section 5.1 is added to reduce the
steady-state error in response to a unit step. The Bode and Nichols plots
of G(z)Cleadlag(z) with a gain of K = 4, exactly as in the root locus
case, are shown dashed in Fig. 7. The frequency response plots show that
the lag compensator greatly increases the DC gain of the open-loop system
(Cleadlag(z)G(z)) while making minimal changes to the frequency response
near the critical frequencies. The resulting gain margin is 18 dB; the phase
margin is 67 degrees; the gain crossover is at 4.31 rad/s; the phase crossover
is at 19.7 rad/s. The lag compensator is placed so that all of its effects occur
at lower frequencies than the critical ones.
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Fig. 7. The Bode and Nichols plots for the design example

5.3 PID control

There are many situations in which it would be inconvenient or impractical to
measure the frequency response of the plant and in which the transfer function
is either unknown or far too complicated to use for controller design. There
are many good examples in the process industries, such as paper-making ma-
chines. In many of these applications the specifications are not too demanding.
Again, the paper-making machine is illustrative: the transient response is not
very important, but tight steady-state control of the thickness is. This is the
paradigmatic use of PID control, although the method is also used for much
more demanding applications, including many for which a good plant model
is known.

The discrete-time (proportional + integral + derivative) (PID) controller
is derived from the original continuous-time version. A realistic, as opposed
to academic, version of the continuous-time PID controller is

CPID(s) = KP +KI
1
s

+KD
s

1 + sTf
. (15)

It is also common in practice to use (αR(s)−Y (s)) as the input to the deriva-
tive term (coefficient KD) instead of (R(s)−Y (s)). Often, α is set to zero. The
continuous-time controller can be discretized in a variety of ways, each with
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its advantages and disadvantages; see [1]. The most commonly used method
is the backwards difference method, which is known to be well behaved. The
result can be written as

u(k) = uP (k) + uI(k) + uD(k), (16)

where

uP (k) = KP (r(k)− y(k)) (17)
uI(k) = uI(k − 1) +KIT (r(k)− y(k)) (18)

uD(k) = (1 +
T

Tf
)
−1

uD(k − 1)− KD

Tf
(

1
1 + T

Tf

)(y(k)− y(k − 1)), (19)

where T is the sampling interval and Tf is a filtering coefficient.
One can purchase a PID controller as an essentially turnkey device. It

is connected to the plant and the 3–5 parameters of the controller are then
adjusted (tuned) to the particular plant. There is an extensive literature on
tuning PID controllers dating back at least to Ziegler and Nichols [1]. The basic
ideas are relatively simple if one sets the D-terms to zero. One straightforward
tuning method is to set the D- and I-terms to zero and gradually increase the
gain KP just until the closed-loop step response becomes unstable. Reducing
the gain by 50%, for example, will produce a closed-loop system with a gain
margin of 6 dB. For a proportional controller this is regarded as a fairly good
choice of gain. If this is sufficient to meet the specifications, there is no more
to be done.

If the steady-state error is too large, an I-term must be added to the
controller. Doing so adds a pole at z = +1, thereby eliminating the steady-
state error in response to a unit step. It will also add a zero at −KI/KP in the
continuous-time case. Some modest fine-tuning of the two gains will improve
the transient response without, of course, changing the steady-state error.
The well-known but overly aggressive Ziegler–Nichols rules suggest decreasing
KP to 40% of the value of KP that caused instability and then choosing
KI = KP /(0.8Tu), where Tu is the period of the oscillation that resulted
when KP was chosen to make the closed-loop system unstable.

Tuning the D-term is notoriously difficult. Its basic role is to add a zero
and a pole to the controller. If chosen properly this zero and pole will act as
a lead compensator and speed up the closed-loop transient response. See [1]
for details.

If one has a good mathematical description of the plant, then either a root
locus plot, a Bode plot, or a Nichols chart of the open-loop system can be used
to choose the parameters of the PID controller (which is basically a lead-lag
controller with the lag pole at z = 1) to achieve a desired step response.

It is now possible to buy “self-tuning” PID controllers. They are available
from several manufacturers and they use a variety of tuning methods. The
details are often proprietary. Generally, an operator commands the controller
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to enter its tuning mode. The controller then tunes itself and switches to
operate mode and stays there until it is again commanded to tune itself.

5.4 Design by emulation

In the discussion above, we have described the basics of direct digital design,
meaning that the plant is first discretized (taking into account the effects of
sampling and ZOH) and a discrete-time controller is designed.

An alternative is to initially ignore the effects of D/A and A/D conver-
sion and design a continuous compensator C(s) for the continuous time plant
G(s). The continuous-time compensator is then discretized to obtain Cd(z).
This procedure, known as design by emulation, may be used when a working
continuous-time controller already exists or when the designer has very good
intuition for continuous-time control.

The conversion of a continuous-time controller to an approximately equiv-
alent discrete-time controller can be done in a variety of ways. Two simple
and useful methods require only that s in the continuous-time controller be
replaced by the appropriate formula involving z. They are:

• Backward rule: s = (z−1)
Ts

• Tustin’s method: s = 2
Ts

(z−1)
(z+1) .

A third method is only slightly more complicated.

• Matched pole-zero (MPZ) method:

Recall that the poles of a continuous-time transfer function C(s) are re-
lated to the poles of its z-transform Cd(z) = Z{C(s)}(z) by

z = esT ,

where T is the sampling period. One can then attempt to obtain a digital
version of C(s) by applying this relationship to its zeros as well as its poles (we
stress that this represents only an approximation—the zeros are not related by
z = esT ). The resulting discrete-time transfer function Cd(z) is then obtained
with a minimum of calculations.

If C(s) is strictly proper (the degree of its denominator is greater than
that of its numerator) it is sometimes desirable to further modify the resulting
C(z) by multiplying it repeatedly by (1+ z−1) (adding zeros at z = −1) until
the resulting transfer function has denominator degree equal to that of the
numerator, or equal to that of the numerator minus one (“modified matched
pole-zero method”). Doing so has the effect of “averaging” past and present
inputs. The MPZ method requires inputs of up to e(k+1) in order to produce
u(k+ 1). This may be undesirable in applications where the time to compute
u(k+1) is significant compared with the sampling period. The modified MPZ
method does not suffer from this drawback, as it requires only “past” inputs
to produce the current output.
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The approximations obtained via the methods described here are typi-
cally useful at frequencies below 1/4 of the sampling rate. Furthermore, be-
cause design by emulation ignores the effect of the ZOH, the performance
of the resulting controllers yields reasonable results at sampling rates that
are approximately 20 times or higher than the bandwidth of the continuous-
time plant. For lower sampling rates, it is important to analyze the resulting
closed-loop system in discrete time to ensure adequate performance.

5.5 Advanced methods of control

One method of control design is only slightly more involved than those dis-
cussed so far and lends itself very well to digital implementation. It is known
as the two-degrees-of-freedom (2DOF) method. The basic idea is to divide the
controller into two nearly independent components as shown in Fig. 8. The

Cff(z) Cfb(z) G(z)
R(z) Y(z)

Fig. 8. A 2DOF controller

feedback component of the controller, Cfb(z), is designed to deal primarily
with disturbances while the feedforward component Cff (z) deals mainly with
the response to a command signal R(z). Although Cff (z) acts open loop, it
can be realized very accurately on the computer. Thus, there should be min-
imal uncertainty associated with its behavior. The feedback portion of the
controller, Cfb(z), is designed to minimize the effects of plant uncertainty and
to make the closed-loop system have a gain of one within the frequency range
of possible inputs.

There is a very large literature on controller design. There are state-space
methods for arbitrarily placing the poles of the closed-loop system assuming
only that the open-loop system is controllable and observable [3]. Because it
is not at all obvious where the closed-loop poles should be placed, there is also
a large literature on optimal control. For linear systems, the linear quadratic
regulator and the H2 and H∞ methods are particularly important [15]. There
has also been much research and some applications in the field of nonlinear
control. Introductions to all of these topics can be found in [9].

6 Limitations on Control Systems

It is very important for the control system designer to be aware of several limi-
tations on the stability and performance of real control systems. These limita-
tions are due to inaccuracies in the plant model, inevitable disturbances that
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enter the system, actuator saturation, and fundamental unavoidable trade-offs
in the design. The first step in appreciating these limitations is to examine
the more realistic picture of a SISO control loop in Fig. 9, where Gn(z) is the

Saturation

C(z) Gn(z) Gme(z)
R(z)

Di(z) Do(z)

Dm(z)

Y(z)U(z)

Fig. 9. A feedback control system with input, output, and measurement distur-
bances

nominal plant which is used in the design. The actual plant is Gme(z)Gn(z)
where Gme(z) = (1+G∆(z)) denotes modelling errors. Generally, only bounds
are known for the multiplicative modelling error, G∆(z). In particular, in a
networked and embedded control system the phase of G∆(z) is known only
to lie within limits determined by the timing accuracy of the system. The
additional inputs are Di(z) representing input disturbances, Do(z) for output
disturbances, and Dm(z) for measurement noise. Note that we have omit-
ted any sensor dynamics in order to focus on the most essential aspects of
robustness and sensitivity.

LTI control systems are also limited by the fundamental Bode gain-phase
relation. The precise theorem can be found in [14]. A simple rule of thumb
based on Bode’s result is that each −20n dB/decade of reduction in the open-
loop gain implies ≈ −90◦n of phase shift, where n is a positive integer. This
link between gain and phase is easily seen in lead and lag compensators.
A lead compensator basically adds positive phase to improve the transient
performance of the closed-loop system. The price paid for this positive phase
is an undesirable increase in high frequency gain. A lag compensator is used
to add to the DC gain of the open-loop system, thus decreasing the steady-
state error of the closed-loop system. The price paid for this improvement is
an undesirable negative phase shift.

6.1 Sensitivity to disturbances

The effect of the disturbances on the performance of the control system can
be studied by writing the transfer functions from each disturbance to Y (z)
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and U(z). The effect of the disturbances on U(z) is particularly important
because of saturation. The transfer functions are written using the nominal
plant so they are nominal sensitivities.

Y (z)
R(z)

= Gcl(z) =
Gn(z)C(z)

1 +Gn(z)C(z)

Y (z)
Di(z)

= Sio(z) =
Gn(z)

1 +Gn(z)C(z)

Y (z)
Do(z)

= So(z) =
1

1 +Gn(z)C(z)

Y (z)
Dm(z)

= −Gcl(z) = − Gn(z)C(z)
1 +Gn(z)C(z)

U(z)
Dm(z)

= Sou(z) =
C(z)

1 +Gn(z)C(z)
(20)

Notice that Sou(z) is also the transfer function from R(z) and Do(z) to U(z),
which explains why it is a bad idea to use a zero as a lead compensator without
also including a pole. Such a choice would result in C(z) = (z − zl), and this
would cause Sou(z) to amplify any high frequency components of R(z), Do(z),
and Dm(z). This would result in actuator saturation on noise. Ultimately, the
placement of the pole in a lead compensator and hence, the amount of phase
lead possible is limited by the amplitude of the disturbances.

A fundamental limit on controller performance is easily derived from the
transfer functions above:

Gcl(z) + So(z) = 1, for all z ∈ C. (21)

Another limitation follows from the fact that Gcl(z) is the transfer function
from both −Dm(z) and R(z) to Y (z). This makes it very desirable to keep
|C(z)| small at those frequencies at which R(z) is zero. A typical example
is in aircraft SCAS where pilot inputs and aircraft maneuvers are known
to be limited to relatively low frequencies, implying that any signal at high
frequency must be noise. Now consider the implications of (21) for a closed-
loop system having the property that |Gcl(z)| is small at high frequency.
Such a system will pass output disturbances at those frequencies without
attenuation.

6.2 Robustness

It is important that the closed-loop system remain stable despite the differ-
ences between the nominal plant used for the controller design and the real
plant. There has been extensive research devoted to robust stability in recent
years. There are many results available; see [9, 15]. The following is a simple
example from [8].
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Theorem 1. Consider a plant with nominal transfer function Gn(z) and ac-
tual transfer function Gn(z)(1 + G∆(z)). Assume that C(z) is a controller
that achieves internal stability for Gn(z). Assume also that Gn(z)C(z) and
Gn(z)(1 +G∆(z))C(z) both have the same number of unstable poles. Then a
sufficient condition for stability of the true feedback loop obtained by applying
the controller C(z) to the actual plant is that

|Gcl(z)||G∆(z)| =
∣∣∣∣ Gn(z)C(z)
1 +Gn(z)C(z)

∣∣∣∣ |G∆(z)| < 1. (22)

The proof is a straightforward application of the Nyquist stability theorem.
Notice that the theorem holds regardless of the uncertainties in the phase.
Thus, it is valuable in ensuring that delays due to networking and computing
cannot compromise the stability of the real closed-loop system.

The use of the theorem can be understood by dividing the frequency re-
sponse of the nominal open-loop system and compensator, Gn(z)C(z), into
three regions. In the low frequency region, it is normally true that |G∆(z)| is
small. Thus, the controller can have high gain and the nominal closed-loop
system can have a magnitude near one without compromising stability robust-
ness. At high frequencies, |G∆(z)| is usually large but |Gn(z)C(z)| is small.
Again, stability robustness is not a problem because the nominal closed-loop
system has small magnitude. The critical region is the frequency range near
the gain and phase crossover frequencies. In this region, the bounds on |G∆(z)|
are very important.

6.3 Trade-offs

The following theorem [14], due originally to Bode [4], proves that there is a
fundamental trade-off inherent in any attempt to reduce the sensitivity, So(z),
of a closed-loop system.

Theorem 2. Consider a SISO LTI discrete-time open-loop system Gn(z)C(z)
with its corresponding stable closed-loop system Gcl(z) = Gn(z)C(z)

1+Gn(z)C(z) and
sensitivity So(z) = 1

1+Gn(z)C(z) . Then∫ π

−π

ln |So(ejω)|dω = 2π
∑

i

(ln |pi| − ln |γ + 1|) (23)

where the pi are the unstable poles of the open-loop system and
γ = limz→∞Gn(z)C(z).

Notice that if the open-loop system is stable and strictly proper, then the
theorem implies that

∫ π

−π
ln |So(ejω)|dω = 0. Typically, one wants to design

the controller to keep the sensitivity small at low frequencies. The theorem
proves that the inevitable consequence is that the controller increases the
sensitivity at high frequencies.
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7 Beyond This Introduction

There are many good textbooks on classical control. Two popular examples
are [5] and [6]. A less typical and interesting alternative is the recent textbook
[8]. All three of these books have at least one chapter devoted to the basics
of digital control. Textbooks devoted to digital control are less common, but
there are some available. The best known is probably [7]. Other possibilities
are [2, 12,13] An excellent book about PID control is the one by Aström and
Hägglund [1]. Good references on the limitations of control are [10] and [11].
Bode’s book [4] is still interesting, although the emphasis is on vacuum tube
circuits.
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1 Introduction

The controller in an analog control system uses analog electronic, mechanical,
electromechanical, or hydraulic devices. In contrast, a digital control system
uses digital electronics hardware, usually in the form of a programmed dig-
ital computer, as the heart of the controller. Like analog controllers, digital
controllers normally have analog elements at their periphery to interface with
the (analog) plant; thus, it is the internal workings of the controller that dis-
tinguishes a digital control system from an analog control system. As a result
of using digital computers as control system controllers, the signals in the
system controller must be in the form of digital signals, and the control sys-
tem itself usually is treated mathematically as a discrete-time system. In this
chapter, the two operations, the sampling of continuous-time signals and the
reconstruction of a continuous-time signal from samples, are considered. The
sampling rate is an important parameter in the design of a digital control sys-
tem. The best sampling rate for a digital control system is the lowest rate that
meets all performance requirements. Selection of the sampling rate to meet
certain performance requirements is discussed. Because digital controllers are
implemented with finite word length registers and finite precision arithmetic,
their signals and coefficients can attain only discrete values. Therefore, further
analysis is needed to determine if the performance of the resulting digital con-
troller in the presence of signal and coefficient quantization is acceptable. In
the final section of the chapter, we discuss error sources that exist in the digi-
tal signal processing that takes place in digital controllers. These error sources
are generated by coefficient quantization, by quantization in analog-to-digital
conversion, and by arithmetic operations. Limit cycles and deadbands are also
discussed.



www.manaraa.com

46 M.S. Santina and A.R. Stubberud

1.1 Sampling and the sampling theorem

Sampling is the process of deriving a discrete-time sequence from a continuous-
time function. Usually, but not always, the samples are evenly spaced in time.
Reconstruction is the inverse of sampling; it is the formation of a continuous-
time function from a sequence of samples. Many different continuous-time
functions can have the same set of samples, so that, except in highly restricted
circumstances, a sampled function is not uniquely determined by its samples.
A signal g(t) and its Fourier transform G(ω) are generally related by

G(ω) =
∫ ∞

−∞
g(t)e−jωtdt (1)

g(t) =
1
2π

∫ ∞

−∞
G(ω)ejωtdω. (2)

This relationship is similar to the (one-sided) Laplace transformation with
s = jω, except that the transform integral of (1) extends over all time rather
than from t = 0− to t = ∞ and the region of convergence for the Laplace
transform might not include the line s = jω. The Fourier transform G(ω) is
termed the spectrum of g(t).

If a signal g(t) is uniformly sampled with sampling period (interval) T to
form the sequence

g(kT ) = g(t = kT ),

then the corresponding impulse train that extends from the time origin both
ways in time is

g∗(t) =
∞∑

k=−∞
g(kT )δ(t− kT ), (3)

which is a continuous-time signal, equivalent to g(kT ), and has the Fourier
transform

G∗(ω) =
1
T

∞∑
n=−∞

G(ω − nωs), (4)

where
ωs = 2πfs = 2π/T.

The proof of this result is well documented and can be found in [1]. The
function G∗(ω) in (4) is periodic in ω, and each individual term in the series
has the same form as the original G(ω), with the exception that the nth term
is centered at

ω = n(2π/T ), n = . . . ,−2,−1, 0, 1, 2, . . . .

In general, then, if G(ω) is not limited to a finite frequency range, these terms
overlap each other along the ω-axis. One important situation in which samples



www.manaraa.com

Basics of Sampling and Quantization 47

of a continuous-time signal g(t) are unique occurs when its Fourier transform
G(ω) is bandlimited . A signal is bandlimited at (hertz) frequency fB if

G(ω) = 0 for |ω| > 2πfB = ωB .

In this case, (2) can be rewritten

g(t) =
1
2π

∫ ωB

−ωB

G(ω)ejωtdω. (5)

If the sampling frequency f is more than twice the bandlimit frequency fB ,
the individual terms in (4) do not overlap with G(ω) and thus g(t) can be
determined from G∗(ω), which in turn, is determined from the samples g(k).
The smallest sampling frequency f for which the individual terms in (4) do
not overlap is exactly twice the bandlimit frequency fB . The frequency 2fB

is termed the Nyquist frequency for a bandlimited signal. If the sampling
frequency does not exceed the Nyquist frequency, the individual terms in (4)
overlap, a phenomenon called aliasing (or foldover). Note that the radian
sampling frequency is given by ωS = 2ωB and, therefore,

T = 2π/ωS = π/ωB =
1

2fB
.

which relates the sampling period to the highest frequency fB in the signal.
The above results are summarized in the statement of the sampling theorem
as:

The uniform samples of a signal g(t) that is bandlimited above
(hertz) frequency fB are unique if and only if the sampling frequency
is higher than 2fB. That is, in terms of the sampling period, aliasing will
not occur if

T <
1

2fB
. (6)

It is apparent from the above discussion that the sampling period T in a
digital control system is an important design parameter which must be chosen
appropriately for a digital control system to function properly.

1.2 Analog-to-digital conversion

Digital control system analysis and design methods are usually presented as
if the controller signals are continuous-amplitude signals, that is, they can
take on a continuum of values. However, because digital controllers are im-
plemented with finite word length registers and finite precision arithmetic,
their signals and coefficients can attain only discrete values, that is, they are
quantized . A signal consisting of quantized samples is called a digital signal.
A device which samples a signal and then quantizes the samples is called
an analog-to-digital (A/D) converter. An A/D converter produces a binary
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representation, using a finite number of bits, of the sampled signal at each
sample time. Using a finite number of bits to represent a signal sample results
in quantization errors in the A/D process. For example, the maximum quan-
tization error in a 16-bit A/D conversion is 2−16 = 0.0015%, which is very
low compared to typical errors in analog signals. This error, if taken to be
“noise,” gives a signal-to-noise ratio (SNR) of 20 log10(2−16) = 96.3 dB which
is much better than what is required of most control systems. The control
system designer must ensure that enough bits are used to give the control
system its desired accuracy. The effects of roundoff and truncation errors in
digital computation are discussed later in this chapter along with the impor-
tance of using adequate word lengths in fixed- or floating-point computations.
Although minimizing word length is not as important today as it was in the
past when digital hardware was very expensive, it is still an important design
consideration.

1.3 Reconstruction and digital-to-analog conversion

Reconstruction is the formation of a continuous-time function from a sequence
of samples. Many different continuous-time functions can have the same set
of samples, so a reconstruction is not unique. Reconstruction is performed
using digital-to-analog (D/A) converters. Electronic D/A converters typically
produce a step reconstruction from incoming signal samples by converting the
binary-coded digital input to a voltage, transferring the voltage to the output,
and holding the output voltage constant until the next sample is available.
The operation of holding each of the samples f(k) for a sampling interval T
to form a step reconstruction is called sample and hold (S/H). The resultant
continuous-time function generated by the step reconstruction is denoted by
f0(t). The step reconstruction of a continuous-time signal from samples can
be represented as a two-step process: (a) converting the sequence f(k) to its
corresponding impulse train f∗(t), where

f∗(t) =
∞∑
0

f(k)δ(t− kT ), (7)

and (b) integrating the impulse train which results in the step reconstruction
signal f0(t). This viewpoint neatly separates the two steps of reconstruction,
the conversion of the discrete sequence to a continuous-time waveform and
the details of the shaping of the reconstructed waveform. The continuous-time
transfer function that converts the impulse train with sampling interval T to a
step reconstruction is termed a zero-order hold (ZOH). Each incoming impulse
in (7) to the ZOH produces a rectangular pulse of duration T . Therefore, the
transfer function of the ZOH is given by

L0(s) =
1
s
(1− e−sT ). (8)
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The accuracy of the reconstruction can be improved by employing a hold
of higher order than the ZOH. An nth-order hold produces a piecewise nth
degree polynomial that passes through the most recent n+1 input samples. It
can be shown that, as the order of the hold is increased, a well-behaved signal
is reconstructed with increased accuracy. Higher order holds do, however,
introduce significant time lags that can have a major negative effect on the
stability of any closed loop systems in which they are embedded.

1.4 Discrete-time equivalents of continuous-time systems

When a digital controller is designed to control a continuous-time plant it is
important to have a good understanding of the plant to be controlled as well
as the controller and its interfaces with the plant. There are two fundamen-
tal approaches to designing discrete-time control systems for continuous-time
plants. The first approach is to derive a discrete-time equivalent of the plant
and then directly design a discrete-time controller to control the discretized
plant. This approach to designing a digital controller directly parallels the
classical approach to analog controller design. The other approach to design-
ing discrete-time control systems for continuous-time plants is to first design a
continuous-time controller for the plant, and then to derive a digital controller
that closely approximates the behavior of the original analog controller. The
controller design can approximate the integrations of the continuous-time con-
troller with discrete-time operations or it can be made to have step (or other)
response samples that are equal to samples of the analog controller’s step
(or other) response. Usually, however, even for small sampling periods, the
discrete-time approximation does not perform as well as the continuous-time
controller from which it was derived. Discrete-time equivalents of continuous-
time systems are discussed in great detail in [2].

2 Sample-Rate Selection

It is apparent from the above discussion that the sampling rate is a critical
design parameter in the design of digital control systems. Usually, as the sam-
pling rate is increased, the performance of a digital control system improves;
however, computer costs also increase because less time is available to pro-
cess the controller equations, and thus higher performance computers must
be used. Additionally, for systems with A/D converters, higher sample rates
require faster A/D conversion speed which may also increase system costs.
Reducing the sample rate for the sake of reducing cost, on the other hand,
may degrade system performance or even cause instability. Aside from cost,
the selection of sampling rates for digital control systems depends on many
factors. Some of these factors include smoothness of the time response, effects
of disturbances and sensor noise, parameter variations, and quantization. Se-
lection of the sampling interval also depends on the reconstruction method
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used to recover the bandlimited signal from its samples [1]. Another statement
of the sampling theorem which is related to signal reconstruction states that
when a bandlimited continuous-time signal is sampled at a rate higher than
twice the bandlimit frequency, the samples can be used to reconstruct uniquely
the original continuous-time signal. In general, the best sampling rate which
can be chosen for a digital control system is the slowest rate that meets all
performance requirements. Although the sampling theorem is not directly ap-
plicable to most discrete-time control systems because typical input signals
(e.g., steps and ramps) are not bandlimited and because good reconstruction
requires long time delays, it does provide some guidance in selecting the sam-
ple rate and also in deciding how best to filter sensor signals before sampling
them.

Åström and Wittenmark [3] suggest, by way of example, a criterion for
the selection of the sample rate that depends on the magnitude of the error
between the original signal and the reconstructed signal. The error decreases
as the sampling rate is increased considerably higher than the Nyquist rate.
Depending on the hold device used for reconstruction, the number of samples
required may be several hundreds per Nyquist sampling period.

2.1 Control system response and the sampling period

The main objective of many digital control system designs is to select a con-
troller so that the system-tracking output, as nearly as possible, tracks or
“follows” the tracking command input. Usually, the first figure of merit that
the designer selects is the closed loop bandwidth, fc (Hz), of the feedback
system because fc is related to the speed at which the feedback system can
track the command input. Also, the bandwidth fc is related to the amount
of attenuation the feedback system must provide in the face of plant distur-
bances. It is then appropriate to relate the sampling period to the bandwidth
fc as suggested by the sampling theorem because the bandwidth of the closed
loop system is related to the highest frequency of interest in the command
input. As a general rule, the sampling period should be chosen in the range

1
30fc

< T <
1

5fc
. (9)

Of course, other design requirements may require even higher sample rates,
but sampling rates less than 5 times fc are usually not desirable and should
be avoided if possible.

Another criterion for selecting the sampling period is based on the rise
time of the feedback system so as to provide smoothness in the time response.
It can be shown that the rise time (10% to 90%), Tr, of a first-order system
of the form

H(s) =
1

τs+ 1
is given by
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Tr = 2.2τ.

The sampling period, in terms of the rise time, can be selected according to

0.095Tr < T < 0.57Tr, (10)

which is derived from (9). Similarly, the rise time of the canonical second-order
system

H(s) =
ω2

n

s2 + 2ζωns+ ω2
n

is Tr = (π − β)/ωd where ωd = ωn

√
1− ζ2 and β = sin−1

(√
1− ζ2

)
. For

a damping ratio ζ = 0.707, the rise time is Tr = 3.33/ωn. Based on (9), the
sampling period is given by

0.06Tr < T < 0.4Tr. (11)

In digital control systems, a time delay of up to a full sample period is possible
before the digital controller can respond to the next input command; therefore,
Franklin et al. [4] suggest that the time delay be kept to about 10% of the
rise time, which suggests that the sampling period should satisfy

T < 0.05/fc. (12)

Another criterion for selecting the sample period, which depends on the fre-
quency response of the continuous-time system, is given by Åström and Wit-
tenmark [3]. The sampling rate is selected such that

0.15 < Tω0 < 0.5, (13)

where ω0 is the gain crossover frequency of the continuous-time system in
radians per second. A detailed discussion on sampling rate selection is found
in [5].

3 Quantization Effects

Digital controllers are implemented with finite word length registers and finite
precision arithmetic; therefore, their signals and coefficients can attain only
discrete values. Further analysis is thus needed to determine if the perfor-
mance of a resulting digital controller in the presence of signal and coefficient
quantization is acceptable [6]. In this section, three error sources that may
occur in the digital processing performed by digital controllers are discussed.
These error sources are (a) coefficient quantization, (b) quantization in A/D
conversion of signals, and (c) arithmetic operations on quantized signals and
coefficients. Limit cycles and deadbands are also discussed very briefly. Before
discussing these errors, however, a brief review of fixed- and floating-point
number arithmetic is presented.
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3.1 Fixed-point and floating-point number representations

There are many choices of arithmetic that can be used to implement digi-
tal controllers. The two most popular ones are fixed-point and floating-point
binary arithmetic. Other non-standard arithmetic such as logarithmic and
residue representations [7] are also possibilities but are not discussed here.

Fixed-Point Arithmetic

In general, an n-bit fixed-point binary number N can be expressed as

N =
n−1∑

j=−m

bj2j = bn−12n−1 + bn−22n−2 + · · ·+ b121 + b020

+ b−12−1 + b−22−2 + · · ·+ b−m2−m

= (bn−1 · · · b0 • b−1b−2 · · · b−m)2,

(14)

where bj can be either a zero or a one. The bit bn−1 is termed the most
significant bit (MSB) and b−mis termed the least significant bit (LSB). The
integer portion of the number, bnbn−1 · · · b0, is separated from the fractional
portion, b−1b−2 · · · b−m, by the binary point or radix point. For example, the
binary number 1101.101 has the decimal value

1101.101 = 1(23) + 1(22) + 0(21) + 1(20) + 1(2−1) + 0(2−2) + 1(2−3) = 13.625

In fixed-point arithmetic, numbers are always normalized to be binary
fractions (i.e., less than one) of the form

b0 • b1b2 · · · bC ,

where b0 is the sign bit. The (C + 1)-bit normalized number is stored in a
register with the sign bit separated from the C-bit number by a fictitious
binary point. The binary point is fictitious because it does not occupy any bit
location in the register. The word length, Cl, is defined as the number of bit
locations in the register to the right of the binary point.

There are three commonly used methods for representing signed numbers:
(a) signed-magnitude, (b) two’s complement, and (c) one’s complement. Con-
sider the (C + 1)-bit binary fraction b0 • b1b2 · · · bC where b0 is the sign bit.
In the signed-magnitude representation, the fractional number is positive if b0
is zero and it is negative if b0 is one. For example, the decimal number 0.75
equals 0.11 in binary signed-magnitude representation, and -0.75 equals 1.11.
In a signed-magnitude representation, binary numbers can be converted to
decimal numbers using the relationship

N = (−1)b0

C∑
i=1

bi2−i. (15)

The two’s complement representation of a positive number is the same as
the signed-magnitude representation. A two’s complement representation of a
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negative number, however, is obtained by complementing (i.e., replacing every
1 with 0 and every 0 with 1) all the bits of the positive number and adding one
to the LSB of the complemented number. For example, the two’s complement
representation of the decimal number 0.75 is 0.11 and the two’s complement
representation of -0.75 is 1.01. A decimal number can be recovered from its
two’s complement representation using the relationship

N = −b0 +
C∑

i=1

bi2−i. (16)

The one’s complement representation of fractional numbers is the same as
the two’s complement without the addition of one to the LSB. For example,
the one’s complement representation of 0.75 is 0.11 and the one’s complement
representation of -0.75 is 1.00. A decimal number can be recovered from its
one’s complement representation via the relationship

N = b0
(
2−C − 1

)
+

C∑
i=1

bi2−i. (17)

The two’s complement representation of binary numbers has several advan-
tages over the signed-magnitude and the one’s complement representations
[8], and therefore it is more popular. In general, the sum of two normalized C-
bit numbers using fixed-point arithmetic is a C-bit number while the product
of two C-bit numbers is a 2C-bit number. Hence, if the register word length
is fixed to C bits, a quantization error is introduced in multiplication but not
in addition.3 The product is quantized either by rounding or by truncation.
For example, rounding the binary number 0.010101 to four bits after the bi-
nary point gives 0.0101 but rounding it to three bits yields 0.011. When a
number is truncated, all the bits to the right of its LSB are discarded. For
example, truncating the number 0.010101 to three bits after the binary point
gives 0.010.

Floating-Point Arithmetic

A major disadvantage of fixed-point arithmetic is the limited range of numbers
that can be represented with a given word length. Another type of arithmetic
which, for the same number of bits, has a much larger range of numbers is
floating-point arithmetic. In general, a floating-point number is expressed as

N = M · 2E , (18)

where M and E, both expressed in binary form, are termed the mantissa and
the exponent of the number, respectively. In a binary floating-point represen-
tation, numbers are always normalized by scaling M to be a fraction whose

3When normalized signed numbers are added and the result is larger than one,
then overflow occurs. Overflow does not occur in multiplication because the product
of two normalized numbers is always less than one.
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decimal value lies in the range 0.5 ≤ M < 1. When storing a floating-point
number in a register, the register is divided into the mantissa and the ex-
ponent. Both the mantissa and the exponent have fictitious binary points to
separate the sign bits from the numbers. In floating-point arithmetic, negative
mantissas and negative exponents are coded the same way as in fixed-point
arithmetic using signed-magnitude, two’s complement, or one’s complement
representations. The product of two floating-point numbers is given by

(M1 · 2E1)(M2 · 2E2) = (M1 ×M2) · 2(E1+E2).

Thus, if the mantissa is limited to C bits, the product M1 × M2 must be
rounded or truncated to C bits. The sum of two floating-point numbers is
performed by shifting the bits of the mantissa of the smaller number to the
right and increasing its exponent until the two exponents are equal. The two
mantissas are then added and if necessary normalized to satisfy Equation (18).
It is possible that the shifted mantissa may exceed its limited range and thus
must be quantized. Hence, in floating-point arithmetic, quantization errors
are introduced in both addition and multiplication; therefore, roundoff or
truncation errors will be introduced in the mantissaM but not in the exponent
E. The reason is that the exponent, E, is always a positive or negative integer,
and integers have exact binary representations. Of course, if the number is too
large or too small, then overflow or underflow can occur.

3.2 Truncation and roundoff

Because of the finite word length of registers in digital computers, errors are al-
ways introduced when the numbers to be processed are quantized. These errors
depend on (a) the way the numbers are represented (fixed- or floating-point
arithmetic, signed-magnitude, two’s or one’s complement) and (b) how the
numbers are quantized. Consider the normalized binary number b0•b1b2 · · · bC
where b0 is the sign bit and b1b2 · · · bC is the binary code of a fixed-point num-
ber or the mantissa of a floating-point number. Denoting the number before
quantization by x, the error introduced by quantization is given by

eq = Q[x]− x,

where Q [x] is the quantized value of x. The range of quantization error de-
pends on the type of arithmetic and the type of quantization used. For fixed-
point arithmetic, it can be shown [9] that the error caused by truncating a
number to C bits is given by

−2−C < eT ≤ 0, x ≥ 0
0 ≤ eT < 2−C , x < 0 (19)

for the signed-magnitude and one’s complement representations. For a two’s
complement representation, the truncation error is given by
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−2−C < eT ≤ 0 (20)

for all x. On the other hand, the error caused by rounding a number to C bits
is given by

−2−C

2
≤ eR <

2−C

2
(21)

for signed-magnitude, one’s complement, and two’s complement representa-
tions. In fixed-point arithmetic, truncation or roundoff errors are independent
of the magnitude of the original unquantized numbers.

In floating-point arithmetic, roundoff and truncation errors depend on the
magnitude of the unquantized number and occur only in the mantissa. Thus,
if the mantissa is truncated to C bits, the quantized number is

xq = (1 + e)x,

where e is the relative error in x. In the case of truncation, it can be shown
that for signed-magnitude and one’s complement representations, the relative
error in the value of the floating-point word is

−2.2−C < e ≤ 0, (22)

and for two’s complement truncation, the error is

−2.2−C < e ≤ 0, x ≥ 0
0 ≤ e < 2.2−C , x < 0. (23)

On the other hand, the roundoff error in the mantissa is of the form

−2−C ≤ e ≤ 2−C (24)

for all three types of representations. The three major sources of error caused
by finite word length are: (a) coefficient quantization, (b) quantization errors
in A/D converters, and (c) quantization errors in arithmetic operations. These
three error sources are now discussed along with their effects on the behavior
of digital controllers.

3.3 Coefficient quantization

Usually, digital control system design methods result in controllers whose
coefficients have infinite precision; however, because the controllers are im-
plemented with finite word length registers, each of their coefficients must
be quantized. For example, consider the digital controller described by the
transfer function

H(z) =
z3 + 1.584z2 + 1.2769z + 0.5642

z4 + 2.689z3 + 3.3774z2 + 2.3823z + 0.6942
, (25)
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which has poles located at z1 = 0.999, z2 = 0.697, z3,4 = 0.4965± j0.8663 and
is stable. If the binary forms of the coefficients of this controller are truncated
to three bits to the right of the binary point, then the quantized controller
transfer function becomes

Hq(z) =
z3 + 1.5z2 + 1.25z + 0.5

z4 + 2.625z3 + 3.3749z2 + 2.3748z + 0.6249
, (26)

which has two poles outside the unit circle and is, therefore, unstable. Another
example is quoted in reference [10] in which a stable fifth-order controller can
become unstable even if it is realized with 18-bit arithmetic.

In general, consider the digital controller described by the transfer function

H(z) =

m∑
k=0

bkz
−k

1−
n∑

k=1
akz−k

. (27)

If the controller coefficients are quantized to C bits, then the quantized coef-
ficients are

âk=ak + δk

for fixed-point arithmetic or

âk=ak (1 + δk)

for floating-point arithmetic where the quantization error δk is bounded in
absolute value by 2−C . Similarly,

b̂k = bk + ηk

for fixed-point arithmetic or

b̂k = bk (1 + ηk)

for floating-point arithmetic. In terms of the quantized coefficients, the con-
troller transfer function becomes

Hq(z) =

m∑
k=0

b̂kz
−k

1−
n∑

k=1
âkz−k

. (28)

The most direct approach for analyzing the effects of coefficient quantiza-
tion on system performance is referred to as coefficient sensitivity analysis. In
this approach, the response of the quantized controller is compared with that
of the ideal controller before quantization. The differences in the responses
are called variations. For high order systems this is difficult to accomplish.
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To simplify the coefficient sensitivity problem, higher order controller transfer
functions can be decomposed, by factoring the numerator and the denom-
inator of the transfer function, into cascade first- or second-order transfer
functions. When all the poles and zeros of the controller transfer function are
real, the cascaded transfer functions can all be of first order. Complex con-
jugate pairs of poles and zeros are grouped into second-order subsystems to
avoid complex number arithmetic operations. Another way to simplify the co-
efficient sensitivity problem is to use a parallel form of the controller transfer
function. The parallel form is obtained by decomposing the controller trans-
fer function into first- or second-order subsystems using the method of partial
fraction expansions.

Using either the cascade or the parallel form of the controller transfer
function, each first-order subsystem has a transfer function of the form

H(z) =
A(1 + β1z

−1)
1− α1z−1 (29)

and each second-order subsystem has a transfer function of the form

H(z) =
A(1 + β1z

−1 + β2z
−2)

1− α1z−1 − α2z−2 . (30)

As a numerical example, consider again the controller transfer function given
by (25). Rewriting the transfer function in factored form yields

H(z) =
[
z + 0.862
z + 0.999

] [
1

z + 0.697

] [
z2 + 0.722z + 0.6545
z2 + 0.993z + 0.997

]
.

As in the previous example, if the binary representations of the coefficients of
each factor are truncated to three bits to the right of the binary point, then
the resulting quantized transfer function is

Hq(z) =
[
z + 0.75
z + 0.875

] [
1

z + 0.625

] [
z2 + 0.625z + 0.625
z2 + 0.875z + 0.875

]
,

which is stable and can be realized by cascading first- and second-order subsys-
tems of the form given in (29) and (30). Note that this controller is significantly
different than the quantized controller given by (26).

3.4 Quantization in A/D conversion

The second source of error to be discussed is quantization in A/D conver-
sion. A/D conversion involves two steps: sampling and quantization. In the
quantization step, each sample of the sequence which has infinite precision is
replaced by a digital code word of finite precision that is rounded or trun-
cated to fit into a finite-length register. Rounding approximates the sample
by the nearest quantization level and truncation approximates the sample by
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the highest quantization level that is smaller than or equal to the sample
value. Let the word length of the A/D converter be C bits and let the number
converted be of the form

xq = b12−1 + b22−2 + · · ·+ bC2−C ,

where b1, b2, · · · , bC is the binary code. The sign bit, however coded, will
always be present. The largest xq that can possibly be produced by the A/D
converter is

xq = 2−1 + 2−2 + 2−3 + · · ·+ 2−C = 1
2

∑C−1
i=0

( 1
2

)i

= 1− 2−C

and the smallest non-zero xq is 2−C . The dynamic range of the A/D converter
is defined to be the ratio of the largest value to the smallest value of xq, that
is,

DR = (1− 2−C)/2−C = 2C − 1.

This implies that, to satisfy a requirement for a given DR , the number of
bits must satisfy

C ≥ log2 (DR+ 1) . (31)

For roundoff, the error e is assumed to be a random variable with a probability
density function, f(x), that is uniformly distributed between −q/2 and q/2.
The expected value of e is

E[e] =
∫ ∞

−∞
xf(x)dx =

q/2∫
−q/2

xdx = 0 (32)

and the variance of e is

var(e) = E[e2] =
∫ ∞

−∞
x2f(x)dx =

∫ q/2

−q/2
(x2/q)dx = q2/12.

In terms of the number of bits, C, the variance is

var(e) = 2−2C/12. (33)

For signed-magnitude and one’s complement truncation, the error is uni-
formly distributed between −q and q; therefore, in these two cases, the ex-
pected value of e is

E[e] =
∫ ∞

−∞
xf(x)dx =

∫ q

−q

(x/2q)dx =0 (34)

and the variance of e
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var(e) = E[e2] =
∫ ∞

−∞
x2f(x)dx =

∫ q

−q

(x2/2q)dx =q2/3.

In terms of the number of bits, C,

var(e) = 2−2C/3. (35)

Comparing (35) with (33) for roundoff, quantization gives

var(e) = q2/12 = 2−2C/12 = 2−2(C+1)/3.

For two’s complement truncation, the error is uniformly distributed be-
tween −2−C and zero; therefore,

E[e] = −2−C/2 (36)

and
var(e) = 2−2C/12 = 2−2(C+1)/3. (37)

As discussed previously, the quantization error e(k) can be viewed as an ad-
ditive stationary white noise process with mean and variance given by (32),
(33), (34), (35) or (36), (37) depending on whether the quantization is due to
roundoff or truncation and what type of arithmetic is used. Using superposi-
tion and assuming that x(k) and e(k) are uncorrelated, the output of a digital
controller can be decomposed into two parts, one due to the input x(k) alone
and the other due to e(k) alone.

3.5 SNR of an A/D converter

If the input sequence x(k) is modeled as a zero-mean Gaussian random se-
quence such that 3σ = 1 (i.e., unity input level is a 3σ event), then the variance
of the signal is

σ2 = (1/3)2 = 1/9.

Defining the SNR of an A/D converter as

(SNR)dB = 10 · log10(variance(unquantized signal)/variance(quantization error))
= 10 · log10(var(x(k))/var(e(k)))

then for roundoff noise, the SNR is

(SNR)dB = 10 · log10

(
(1/9)/(2−2(C+1)/3)

)
= 10 · log10(1/3)− 10 · log10 2−2(C+1) = −4.77 + 6.02(C + 1)

(38)

or the minimum number of bits necessary for a given SNR is given by

C ≥ 0.166(S/N)dB − 0.207
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For truncation noise, (C + 1) is replaced by C in (38). Hence,

(SNR)dB = −4.77 + 6.02C (39)

or the minimum number of bits for a given SNR is given by

C ≥ 0.166(SNR)dB + 0.792

(38) and (39) show that the SNR increases 6 dB for every additional bit
added to the register. As a simple design procedure, one may choose the
number of bits of the A/D converter to be greater than or equal to the larger
of the two values necessary for (a) the required dynamic range and (b) the
required SNR. That is,

C ≥ max{log10(DR+ 1), 0.166(SNR)dB − 0.207} (40)

for roundoff noise, or

C ≥ max{log10(DR+ 1), 0.166(SNR)dB + 0.792} (41)

for truncation noise.
The quantization error of an A/D converter need not be a serious problem.

For example, in a 16-bit A/D converter, the maximum quantization error
is 2−16 = 0.0015% which is quite low compared to typical errors in analog
sensors. This error, if taken to be “noise,” gives an SNR of 20 · log10(2−16) =
96.3 dB, which is much better than that of most high fidelity audio systems.
Thus, the designer must simply ensure that enough bits are used to give the
desired system accuracy.

3.6 Stochastic analysis of quantization errors in digital processing

One approach to analyzing roundoff and truncation errors that are generated
by the arithmetic operations in digital controllers is to derive deterministic
upper bounds on the maximum errors that can possibly result from roundoff
or truncation [4]. In general, however, these bounds are pessimistic because the
errors usually add up in the worst possible way. Another approach, used here,
for analyzing these errors is to assume that they are stochastic noise sequences,
develop stochastic models for these sequences, and then determine their effects
on system performance using stochastic systems methods. In the remainder of
this chapter, unless otherwise stated, the fixed- and floating-point errors are
modeled as stationary white noise random sequences with probability density
functions uniformly distributed over the range of quantization.

3.7 Fixed-point arithmetic

It was mentioned earlier that, in fixed-point arithmetic, quantization errors
occur in multiplication and not in addition. Consider a multiplier in which two
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C-bit numbers are multiplied and let x(k) denote the product. The product
x(k) has length 2C and is quantized to form a number of length C which
is denoted by x̂(k). The output of this multiplication/quantization operation
can be written as the sum of the product x(k) and the quantization error e(k)
(the difference between x(k) and x̂(k)). The quantization error is modeled as
a stationary additive white noise sequence such that

E[e(k)] = µe

E[e(i)e(j)] =
{

0 i 
= j
var(e) + µ2

e i = j

where µe and var(e) are determined from appropriate choices taken from (32)–
(37). If the product from the multiplier/quantizer is the input to a system,
then using superposition, the output, ye(k), of a system due to the error e(k)
alone is given by the convolution sum

ye(k) =
k∑

m=0

g(m)e(k −m),

where g(m) is the unit pulse response of the system and the error source, e(k),
is the input, and ye(k) is the system output generated by the error. Assuming
that the system is stable, it can easily be shown that as k approaches infinity,
the mean and the variance of the output are given by

E [ye(k)] = µe

∞∑
m=0

g(m) (42)

and

var (ye(k)) = var(e)
∞∑

m=0

g2(m), (43)

respectively. Hence, the variance of the output equals the variance of the
quantization noise times the noise power gain, NPG, where

NPG =
∞∑

m=0

g2(m). (44)

Since digital controller transfer functions are usually realized using first- and
second-order subsystems in parallel or cascade forms, the noise power gains of
first- and second-order subsystems are now determined. The transfer function
of a first-order subsystem of the form in (29) can be rewritten as

G(z) = k0 +
k1

1− α1z−1 .

Hence
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g(0) = k0 + k1
g(m) = k1α

m
1 , m = 1, 2, 3, . . .

and ∞∑
m=0

g(m) = k0 +
k1

1− α1
.

Therefore, the mean of the output is

E[ye(k)] = µe

(
k0 +

k1

1− α1

)
. (45)

Similarly,
g2(0) = (k0 + k1)2

g2(m) = k2
1α

2m
1 , m = 1, 2, 3, . . .

therefore, the noise power gain is

NPG = k2
o + 2k0k1 +

k2
1

1− α2
1

(46)

and

var(ye(k)) = var(e)
(
k2

o + 2k0k1 +
k2
1

1− α2
1

)
. (47)

The transfer function of a second-order subsystem of the form in (30) can be
written as

G(z) = ko +
k1

1− r1z−1 +
k2

1− r2z−1 ,

therefore, the unit pulse response is

g(0) = k0 + k1 + k2
g(m) = k1r

m
1 + k2r

m
2 , m = 1, 2, 3, . . .

and ∞∑
m=0

g(m) = ko +
k1

1− r1
+

k2

1− r2
(48)

and

E[ye(k)] = µe

(
ko +

k1

1− r1
+

k2

1− r2

)
. (49)

Similarly,

g2(0) = (k0 + k1 + k2)
2

g2(m) =
(
k2
1r

2m
1 + 2k1k2r

m
1 r

m
2 + k2

2r
2m
2

)
, m = 1, 2, . . .

and the noise power gain is

NPG = k2
o + 2kok1 + 2kok2 +

k2
1

1− r21
+

2k1k2

1− r1r2
+

k2
2

1− r22
, (50)
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which is always a real number. The variance of the output due to the noise is

var(ye(k)) = var(e)
(
k2

o + 2kok1 + 2kok2 +
k2
1

1− r21
+

2k1k2

1− r1r2
+

k2
2

1− r22

)
.

(51)

3.8 Quantization noise model of first-order subsystems

Consider a first-order subsystem preceded by an A/D converter as shown in
Fig. 1(a). All of the quantization noise sources including the A/D conversion
noise and the multiplication noises are in the model. Setting all the noise
sources equal to zero, the transfer function of the ideal subsystem is

T (z) =
Y (z)
X(z)

=
A(1 + β1z

−1

1− α1z−1 .

The effect of the A/D converter on the output can be determined by setting
all the signals but e0 to zero. The transfer function G0(z) relates e0(k) to the
filter output y0(k) as

Y0(z) = G0(z)E0(z),

where
G0(z) = T (z) = k0 +

k1

1− α1z−1 .

Therefore, the mean of the output is given as, using (45),

E[y0] = µ0

(
k0 +

k1

1− α1

)
and the variance of the output is, using (47),

var(y0) = (NPG)0var(e0)
=
(
k2

o + 2k0k1 + k2
1

1−α2
1

)
var(e0).

The effect of quantization error in multiplication on the system output is
determined as follows. All signals except ea are set to zero, then

Ya(z) = Ga(z)Ea(z) = T (z)Ea(z)

and

E[ya(k)] = µa

(
k0 +

k1

1− α1

)
and

var[ya] =
(
k2
0 + 2k0k1 +

k2
1

1− α2
1

)
var(ea).

Assuming the multiplier errors e1 and e2 are uncorrelated, then
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(a) Fixed-point quantization noise model of first-order subsystem
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Fig. 1. Models of quantization noise
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var(e1 + e2) = var(e1) + var(e2).

Similarly, the second multiplier noise gain is calculated by setting all sources
but e3 to zero. The transfer function which relates e3 to the output is

Y3(z) = G3(z)E3(z),

where
G3(z) = 1.

Then
E[y3] = E[e3]

and
var(y3) = var(e3).

Also, note that
(NPG)3 = 1.

Assuming that the output noises y0, ya, and y3 are uncorrelated, then

var(y0 + ya + y3)
= (NPG)0var(e0) + (NPG)a(var(e1) + var(e2)) + (NPG)3var(e3).

3.9 Quantization noise model of second-order subsystems

The previous analysis for first-order subsystems can be easily extended to
second-order subsystems. The quantization noise model for second-order sub-
systems is shown in Fig. 1(b). Setting all the noise sources to zero, the ideal
transfer function of the second-order subsystem, which relates X(z) to Y (z),
is

T (z) =
Y (z)
X(z)

=
A(1 + β1z

−1 + β2z
−2)

1− α1z−1 − α2z−2 ,

which is that given in (30); therefore (49) and (51) can be used to determine
statistics of the output noise. Assuming the output noises y0, ya, and yb are
uncorrelated, then

var(y0 + ya + yb) = (NPG)0var(e0) + (NPG)a(var(e1) + var(e2) + var(e3))
+(NPG)b(var(e4) + var(e5)),

where
(NPG)0 = (NPG)a

is determined from T (z) and

(NPG)b = 1.
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3.10 Floating-point arithmetic

The analysis of quantization errors in digital controllers that are implemented
in floating-point arithmetic is more complicated than for those implemented
in fixed-point arithmetic [11]. It was mentioned earlier that in floating-point
arithmetic, quantization errors occur only in the mantissa and, therefore,
roundoff and truncation errors are introduced in both addition and multipli-
cation. For example, let x1 and x2 be any two numbers before quantization.
Quantizing the sum and the product of these two numbers gives

(x1 + x2)q = (x1 + x2)(1 + es) (52)

(x1 · x2)q = (x1 · x2)(1 + ep), (53)

respectively, where the relative errors es and ep satisfy, depending on the num-
ber representation, (22)–(24). Each arithmetic operation introduces quantiza-
tion errors according to (52) and (53). Detailed examples of roundoff and
truncation errors accumulated in first- and second-order subsystems using
floating-point arithmetic are given in [12].

3.11 Limit cycle and deadband effects

When digital controllers are implemented with finite word length, limit cy-
cles (sustained oscillations) may appear at the controller output even in the
absence of any applied input. Basically, there are two different kinds of limit
cycles. One is due to roundoff in multiplication, termed the deadband effect,
and the other is due to register overflow. Limit cycles exist in fixed-point
digital controllers but can be ignored in floating-point controllers [11].

To illustrate the phenomenon of a limit cycle due to roundoff, consider the
first-order controller described by the difference equation

y(k) = ay(k − 1) + x(k), (54)

where
x(k) = 0.9δ(k) a = 0.5, y(−1) = 0.

If the controller equation is implemented with infinite word length registers,
then

y(k) = 0.9(0.5)k.

Note that as k approaches infinity the steady state value of the output, y(k),
approaches zero. However, assuming that the controller equation is imple-
mented with a word length of 3 bits, then

yq(k) = Q[0.5yq(k − 1)] + 0.75δ(k).

Using a decimal representation, the output can be calculated recursively as
follows:
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yq(0) = Q[(0.5)(0)] + 0.75 = 0.75
yq(1) = Q[(0.5)(0.75)] = 0.375
yq(2) = Q[(0.5)(0.375)] = 0.25
yq(3) = Q[(0.5)(0.25)] = 0.125
yq(4) = Q[(0.5)(0.125)] = 0.125

...
yq(k) = Q[(0.5)(0.125)] = 0.125

...

Hence, as k approaches infinity the steady state value of yq(k) approaches
0.125 and not zero.

As another example, again consider the system described by (54) and let

x(k) = 0, a = −0.5, y(−1) = 0.75.

If the controller equation is implemented with infinite word length registers,
then the output

y(k) = 0.75(−0.5)k

approaches zero as k approaches infinity. Assuming that the controller equa-
tion is implemented with a 3-bit word length, then

yq(k) = Q[−0.5yq(k − 1)].

The output can be calculated recursively as follows:

yq(0) = Q[(−0.5)(0.75)] = Q[−0.375] = −0.375
yq(1) = Q[(−0.5)(−0.375)] = 0.25
yq(2) = Q[(−0.5)(0.25)] = −0.125

...
yq(k) = Q[(−0.5)(0.125)] = −0.125

...

and oscillates between 0.125 and −0.125 indefinitely.
An interesting example of limit cycle due to register overflow is given in

[13]. Limit cycles due to roundoff and overflow are usually undesirable and
should not be permitted in a control system.
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3.12 Effect of sampling rate on quantization error

In some applications, quantization errors cannot be ignored and their effect on
the system output depends on the sampling period. As an example, consider
an analog controller described by

H(s) =
104

s+ 1
. (55)

Its discrete-time equivalent, using an impulse invariant approximation, is

H(z) =
104z

z − e−T
=

104

1− e−T z−1 = k0 +
k1

1− α1z−1 ,

where
k0 = 0, k1 = 104, α1 = e−T

Assuming an A/D converter that uses roundoff and an infinite precision
controller, the variance of the controller output noise, yε(k), equals the vari-
ance of the roundoff noise times the noise power gain of the controller. For
a first-order controller, that variance is determined using (33) and (47), re-
sulting in the variance of the output noise being a function of both the word
length C and the sampling time T and given by

var(yε(k)) =
(
k2
0 + 2k0k1 +

k1

1− α2
1

)
2−2C

12
=

104 · 2−2C

12(1− e−2T )
.

Apparently, if C is fixed as the sampling period is decreased, the variance of
the output noise is increased. Note that when T = 0, the discrete-time equiv-
alent is unstable. Note also that, if T is fixed, increasing the word length C
decreases the variance of the output noise. Other methods of forming discrete-
time equivalents of the analog controller can lead to better results than those
obtained in this example.

It is through computer simulation of the plant and the controller that the
best sample rates are achieved. It is good practice to investigate carefully the
behavior of the controlled system for various sample rates when the arith-
metic precision of the controller is reduced, when disturbances and noises are
injected into the system at likely points, and when the plant model is changed
in ways that might occur in practice.
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1 Introduction

The term “discrete-event system (DES)” was introduced in the early 1980s
to identify an increasingly important class of dynamic systems in terms of
their most critical feature: the fact that their behavior is governed by dis-
crete events occurring asynchronously over time and solely responsible for
generating state transitions. In between event occurrences, the state of such
systems is unaffected. Examples of such behavior abound in technological en-
vironments such as computer and communication networks, automated man-
ufacturing systems, air traffic control systems, Command, Control, Commu-
nication, Computers, and Intelligence (C4I) systems, advanced monitoring
and control systems in automobiles or large buildings, intelligent transporta-
tion systems, distributed software systems, and so forth. The operation of
such environments is largely regulated by human-made rules for initiating or
terminating activities and scheduling the use of resources through controlled
events, such as hitting a keyboard key, turning a piece of equipment “on,”or
sending a message packet. In addition, there are numerous uncontrolled ran-
domly occurring events, such as a spontaneous equipment failure or a packet
loss, which may or may not be observable through sensors. We should point
out that the acronym DEDS, for “discrete-event dynamic system,”is also com-
monly used to emphasize that it is the dynamics of such systems that render
them particularly interesting [1],[2].

The conceptual and practical challenges in the study of DES may be sum-
marized as follows:

1. The types of variables involved in the description of a DES are both con-
tinuous and discrete, sometimes purely symbolic, i.e., non-numeric (as in
describing the state of a piece of equipment as “on” or ”off”). This ren-
ders traditional mathematical models based on differential (or difference)
equations inadequate, and methods relying on the power of calculus are,
consequently, of limited use.
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2. Because of the asynchronous nature of events that cause state transitions
in DES, it is neither natural nor efficient to use time as a synchronizing
element driving the system dynamics. It is for this reason that DES are
often referred to as event-driven, to contrast them to classical time-driven
systems based on the laws of physics; in the latter, as time evolves state
variables such as position, velocity, temperature, pressure, current, volt-
age, etc., also continuously evolve. In order to capture event-driven state
dynamics, however, different mathematical models are necessary.

3. Uncertainties are inherent in the technological environments where DES
are encountered. Therefore, the mathematical models used for DES and
all associated methods for analysis and control must incorporate this el-
ement of uncertainty, sometimes by explicitly modeling nondeterministic
behavior and often through the inclusion of appropriate stochastic model
components.

4. Complexity is also inherent in DES of practical interest, usually mani-
festing itself in the form of combinatorially explosive state spaces. Purely
analytical methods for DES design, analysis, and control have proved to
be limited. A large part of the progress made in this field has relied on the
development of new paradigms characterized by a combination of mathe-
matical techniques and effective processing of experimental data.

2 Event-Driven and Time-Driven Systems

There are two features that characterize DES. First, they usually involve at
least some discrete quantities, typically measured by integer numbers (how
many parts are in an inventory, how many planes are in a runway, how many
telephone calls are active). Second, what drives these systems is a variety of
instantaneous “events” such as the pushing of a button, hitting a keyboard
key, or a traffic light turning green. In this section, we will explain how these
features amount to fundamental differences between dynamic systems mod-
eled through differential (or difference) equations and the class of DES.

Let us begin with the concept of “event.”We do not attempt to formally
define it, since it is a primitive concept with a good intuitive basis. We only
wish to emphasize that an event should be thought of as occurring instanta-
neously and causing transitions from one system state value to another. An
event may be identified with a specific action taken (e.g., pressing a button).
It may be viewed as a spontaneous occurrence dictated by nature (e.g., a ran-
dom computer failure) or it may be the result of several conditions which are
suddenly all met (e.g., the fluid level in a tank exceeds a given value). For the
purpose of developing a model for a DES, we will use the symbol e to denote
an event. When considering a system affected by different types of events, we
will assume that we can define an event set E whose elements are all these
events. Clearly, E is a discrete set.



www.manaraa.com

Discrete-Event Systems 73

Let us next concentrate on the nature of the state space of a system. In
continuous-state systems the state generally changes as time changes. This
is particularly evident in discrete-time models: the “clock” is what drives a
typical sample path. With every “clock tick” the state is expected to change,
since continuous state variables continuously change with time. It is because
of this property that we refer to such systems as time-driven. In this case,
time is a natural independent variable which appears as the argument of all
input, state, and output functions involved in modeling a system.

In DES, at least some of the state variables are discrete and their values
change only at certain points in time through instantaneous transitions which
we associate with “events.” What is important is to specify the timing mech-
anism based on which events take place. Let us assume that there exists a
clock through which we will measure time, and consider two possibilities: (i)
At every clock tick an event e is selected from the event set E (if no event
takes place, we can think of a “null event” as being a member of E, whose
property is that it causes no state change), and (ii) At various time instants
(not necessarily known in advance and not necessarily coinciding with clock
ticks), some event e “announces” that it is occurring. There is a fundamental
difference between (i) and (ii) above. In (i), state transitions are synchronized
by the clock: there is a clock tick, an event (or no event) is selected, the state
changes, and the process repeats. Thus, the clock alone is responsible for any
possible state transition. In (ii ), every event e ∈ E defines a distinct process
through which the time instants when e occurs are determined. State tran-
sitions are the result of combining these asynchronous concurrent event pro-
cesses. Moreover, these processes need not be independent of each other. The
distinction between (i) and (ii) gives rise to the terms time-driven and event-
driven systems, respectively. Continuous-state systems are, by their nature,
time-driven. However, in discrete-state systems this depends on whether state
transitions are synchronized by a clock or occur asynchronously as in scheme
(ii) above. Clearly, event-driven systems are more complicated to model and
analyze, since there are several asynchronous event-timing mechanisms to be
specified as part of our understanding of the system.

In view of this discussion, let us now turn our attention to mathematical
models one can use for time-driven and event-driven systems. In the former
case, the field of systems and control has based much of its success on the use
of well-known differential-equation-based models, such as

ẋ(t) = f(x(t),u(t), t), x(t0) = x0 (1)
y(t) = g(x(t),u(t), t), (2)

where (1) is a (vector) state equation with initial conditions specified, and (2)
is a (vector) output equation. As is common in system theory, x(t) denotes
the state of the system, y(t) is the output, and u(t) represents the input,
often associated with controllable variables used to manipulate the state so
as to attain a desired output. In these models, it is normally assumed that
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e

Fig. 1. Comparison of time-driven and event-driven sample paths

the state space is continuous and that the state transition mechanism is time-
driven. Common physical quantities such as position, velocity, acceleration,
temperature, pressure, flow, etc., fall in this category. Since we can naturally
define time derivatives for these continuous variables, differential equation
models like (1) can be used. The state generally changes as time changes and,
as a result, the time variable t (or some integer k = 0, 1, 2, . . . in discrete time)
is a natural independent variable for modeling such systems.

In contrast to a time-driven system, in a DES, where the state transition
mechanism is event-driven, time no longer serves the purpose of driving such a
system and may no longer be an appropriate independent variable. Comparing
state trajectories (sample paths) of time-driven and event-driven systems is
useful in understanding the differences between the two and setting the stage
for DES modeling frameworks. Thus, comparing typical sample paths from
each of these system classes, as in Fig. 1, we observe the following: (i) For
the time-driven system shown, the state space X is the set of real numbers R,
and x(t) can take any value from this set. The function x(t) is the solution of
a differential equation of the general form ẋ(t) = f(x(t), u(t), t), where u(t) is
the input. (ii) For the event-driven system, the state space is some discrete
set X = {s1, s2, s3, s4}. The sample path can only jump from one state to
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another whenever an event occurs. Note that an event may take place, but
not cause a state transition, as in the case of e4. There is no immediately
obvious analog to ẋ(t) = f(x(t), u(t), t), i.e., no mechanism to specify how
events might interact over time or how their time of occurrence might be
determined. Thus, a large part of the early developments in the DES field
has been devoted to the specification of an appropriate mathematical model
containing the same expressive power as (1),(2) [2],[3],[4].

We should point out that discrete-event systems should not be confused
with discrete-time systems. The class of discrete time systems contains both
time-driven and event-driven systems.

3 Timed and Untimed Viewpoints of Discrete Event
Systems

Let us return to the DES sample path shown in Fig. 1. Instead of plotting
the piecewise constant function x(t) as shown, it is often convenient to simply
write the timed sequence of events

(e1, t1), (e2, t2), (e3, t3), (e4, t4), (e5, t5), (3)

which contains the same information as the sample path depicted in Fig. 1.
The first event is e1 and it occurs at time t = t1; the second event is e2 and it
occurs at time t = t2, and so forth. When this notation is used, it is implicitly
assumed that the initial state of the system, s2 in this case, is known and
that the system is “deterministic” in the sense that the next state after the
occurrence of an event is unique. Thus, from the sequence of events in (3), we
can recover the state of the system at any point in time and reconstruct the
DES sample path in Fig. 1.

Consider the set of all possible timed sequences of events that a given
system can ever execute. We call this set the timed language model of the
system. The word “language” comes from the fact that we can think of the
event E as an “alphabet” and of (finite) sequences of events as “words” [5].
We can further refine our model of the system if some statistical information
is available about the set of sample paths of the system. Let us assume that
probability distribution functions are available about the “lifetime” of each
event type e ∈ E, that is, the elapsed time between successive occurrences
of this particular e. We call a stochastic timed language a timed language
together with associated probability distribution functions for the events. The
stochastic timed language is then a model of the system that lists all possible
sample paths together with relevant statistical information about them.

Stochastic timed language modeling is the most detailed in the sense that
it contains event information in the form of event occurrences and their or-
derings, information about the exact times at which the events occur (and
not only their relative ordering), and statistical information about successive
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occurrences of events. If we omit the statistical information, then the corre-
sponding timed language enumerates all the possible sample paths of the DES,
with timing information. Finally, if we delete the timing information from a
timed language we obtain an untimed language, or simply language, which
is the set of all possible orderings of events that could happen in the given
system. Deleting the timing information from a timed language means delet-
ing the time of occurrence of each event in each timed sequence in the timed
language. For example, the untimed sequence corresponding to the timed se-
quence of events in (3) is

{e1, e2, e3, e4, e5}.

Untimed and timed languages represent different levels of abstraction at
which DESs are modeled and studied. The choice of the appropriate level
of abstraction clearly depends on the objectives of the analysis. In many in-
stances, we are interested in the “logical behavior” of the system, that is, in
ensuring that a precise ordering of events takes place which satisfies a given
set of specifications (e.g., first-come first-served in a job processing system).
Or we may be interested in finding if a particular state (or set of states) of
the system can be reached or not. In this context, the actual timing of events
is not required, and it is sufficient to model only the untimed behavior of the
system, that is, to consider the language model of the system. Supervisory con-
trol is the term established for describing the systematic means (i.e., enabling
or disabling events which are controllable) by which the logical behavior of a
DES is regulated to achieve a given specification [6],[2].

Next, we may become interested in event timing in order to answer ques-
tions such as: “How much time does the system spend at a particular state?”
or “How soon can a particular state be reached?” or “Can this sequence of
events be completed by a particular deadline?” These and related questions
are often crucial parts of the design specifications. More generally, event timing
is important in assessing the performance of a DES often measured through
quantities such as throughput or response time. In these instances, we need to
consider the timed language model of the system. The fact that different event
processes are concurrent and often interdependent in complex ways presents
great challenges both for modeling and analysis of timed DESs. Moreover,
since we cannot ignore the fact that DESs frequently operate in a stochastic
setting (e.g., the time when some equipment fails is unpredictable), an ad-
ditional level of complexity is introduced, necessitating the development of
probabilistic models and related analytical methodologies for design and per-
formance analysis based on stochastic timed language models. Sample path
analysis refers to the study of sample paths of DESs, focusing on the ex-
traction of information for the purpose of efficiently estimating performance
sensitivities of the system and, ultimately, achieving on-line control and opti-
mization [7],[2].

These different levels of abstraction are complementary, as they address
different issues about the behavior of a DES. Indeed, the literature on DESs is
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quite broad and varied as extensive research has been done on modeling, anal-
ysis, control, optimization, and simulation at all levels. Although the language-
based approach to discrete event modeling is attractive in presenting modeling
issues and discussing system-theoretic properties of DESs, it is by itself not
convenient to address verification, controller synthesis, or performance issues.
What is also needed is a convenient way of representing languages, timed
languages, and stochastic timed languages. If a language (or timed language
or stochastic timed language) is finite, we could always list all its elements,
that is, all the possible sample paths that the system can execute. Unfortu-
nately, this is rarely practical. Preferably, we would like to use discrete event
modeling formalisms that would allow us to represent languages in a manner
that highlights structural information about the system behavior and that is
convenient to manipulate when addressing analysis and controller synthesis
issues. In the next section, we provide a brief introduction to one of the major
modeling formalisms, based on automata, which also forms the foundation for
supervisory control and sample path analysis. We will use automata to illus-
trate the construction of models for a common class of DES and contrast it
to two other modeling frameworks.

4 Modeling Overview

The introduction to DESs in the previous sections has served to point out the
main characteristics of these systems. Two elements which have emerged as
essential in defining a DES are (1) a discrete state space, which we denote by
X, and (2) a discrete event set, which we denote by E. We can now build on
this basic understanding in order to develop some formal models for DESs.

4.1 Automata

We already mentioned that the term “language” refers to the set of all possible
event sequences that a given DES can execute. An automaton is a device that
is capable of representing a language according to well-defined rules. We shall
begin with the case of deterministic automata, and subsequently describe
extensions to this concept.

Definition 1. A deterministic automaton, denoted by G, is a six-tuple

G = (X,E, f, Γ, x0, Xm),

where X is the set of states, E is the finite set of events associated with the
transitions in G, and f : X × E → X is the transition function; specifically,
f(x, e) = y means that there is a transition labeled by event e from state x
to state y and, in general, f is a partial function on its domain. Γ : X → 2E

is the active event function (or feasible event function); Γ (x) is the set of all
events e for which f(x, e) is defined and it is called the active event set (or
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feasible event set) of G at x. The notation 2E means the power set of E, i.e.,
the set of all subsets of E. Finally, x0 is the initial state and Xm ⊆ X is the
set of marked states.

The words state machine and generator (which explains the notation G)
are also often used to describe the above object. Moreover, if X is a finite set
(which we do not require in the definition above), we call G a deterministic
finite-state automaton, often abbreviated as DFA. The automaton is said to
be deterministic because f is a function over X×E. In contrast, the transition
structure of a nondeterministic automaton is defined by means of a relation
over X ×E×X or, equivalently, a function from X ×E to 2X . Normally, the
word “automaton” refers to a “deterministic automaton.”

Regarding the inclusion of Γ in the definition of G, one of the reasons
is so that we can distinguish between events e that are feasible at x but
cause no state transition, that is, f(x, e) = x, and events e′ that are not
feasible at x, that is, f(x, e′) is undefined. Finally, regarding the set Xm, its
selection depends on the problem of interest; for instance, this set is chosen to
designate states which, when entered, indicate that the system has completed
some operation or task.

The automaton G operates as follows. It starts in the initial state x0 and
upon the occurrence of an event e ∈ Γ (x0) ⊆ E it will make a transition to
state f(x0, e) ∈ X. This process then continues based on the transitions for
which f is defined. Note that an event may occur without changing the state,
i.e., it is possible that f(x, e) = x. It is also possible that two distinct events
occur at a given state causing the exact same transition, i.e., for a, b ∈ E,
f(x, a) = f(x, b) = y. What is interesting about the latter fact is that we
may not be able to distinguish between events a and b by simply observing a
transition from state x to state y.

For the sake of convenience, f is always extended from domain X × E
to domain X × E∗, where E∗ is the set of all finite strings of elements of E,
including the empty string (denoted by ε); the * operation is called the Kleene
closure. This is accomplished in the following recursive manner: f(x, ε) := x
and f(x, se) := f(f(x, s), e) for s ∈ E∗ and e ∈ E. The automaton model
above is also referred to as a generalized semi-Markov scheme (abbreviated
as GSMS) in the literature of stochastic processes. A GSMS is viewed as the
basis for extending automata to incorporate an event timing structure and
ultimately leads to stochastic timed automata, discussed next.

Let us start by considering an automaton G as defined above with a few
minor changes: we allow for generally countable sets X and E, and we leave
out of the definition any consideration for marked states. Thus, we begin with
an automaton model (X,E, f, Γ, x0). As it stands, this model is based on the
premise that a given event sequence {e1, e2, . . .} is provided, so that, starting
at state x0, we can generate a state sequence {x0, f(x0, e1), f(f(x0, e1), e2), . . .}.
Note that if Γ (x0) includes several events, the fact that e1 ∈ Γ (x0) is the par-
ticular event that occurs first is part of the input information necessary to
operate the automaton. We extend our modeling setting to timed automata
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by incorporating a clock structure associated with the event set E which now
becomes the input from which a specific event sequence can be deduced.

Definition 2. The clock structure (or timing structure) associated with
an event set E is a set V = {vi : i ∈ E} of clock (or lifetime) sequences

vi = {vi,1, vi,2, . . .}, i ∈ E, vi,k ∈ R+, k = 1, 2, . . .

We can then provide the following definition.
Definition 3. A timed automaton is a six-tuple

(X,E, f, Γ, x0,V),

where V = {vi : i ∈ E} is a clock structure and (X,E, f, Γ, x0) is an automa-
ton. The automaton generates a state sequence

x′ = f(x, e′) (4)

driven by an event sequence {e1, e2, . . .} generated through

e′ = arg max
i∈Γ (x)

{yi} (5)

with the clock values yi, i ∈ E, defined by

y′
i =

{
yi − y∗ if i 
= e′ and i ∈ Γ (x)
vi,Ni+1 if i = e′ or i /∈ Γ (x) i ∈ Γ (x′), (6)

where the interevent time y∗ is defined as

y∗ = min
i∈Γ (x)

{yi} (7)

and the event scores Ni, i ∈ E, are defined by

N ′
i =

{
Ni + 1 if i = e′ and i /∈ Γ (x)
Ni otherwise i ∈ Γ (x′). (8)

In addition, initial conditions are: yi = vi,1 and Ni = 1 for all i ∈ Γ (x0). If
i /∈ Γ (x0), then yi is undefined and Ni = 0.

Comparing (4) to the state equation (1) for time-driven systems, we see
that the former can be viewed as the event-driven analog of the latter. How-
ever, the simplicity of (4) is deceptive: unless an event sequence is given (as in
the case of Definition 1), determining the triggering event e′ which is required
to obtain the next state x′ involves the combination of (5)–(8). Therefore,
the analog of (1) as a “canonical” state equation for a DES requires all the
equations (5)–(8).

In Definition 3, the clock structure V is assumed to be fully specified
in a deterministic sense. Let us now assume that the clock sequences vi,
i ∈ E, are specified only as stochastic sequences. This means that we no
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longer have at our disposal real numbers {vi,1, vi,2, . . .} for each event i, but
rather a distribution function, denoted by Fi, which describes the random
clock sequence {Vi,k} = {Vi,1, Vi,2, . . .}.

Definition 4. The stochastic clock structure (or stochastic timing struc-
ture) associated with an event set E is a set of distribution functions F =
{Fi : i ∈ E} characterizing the stochastic clock sequences

{Vi,k} = {Vi,1, Vi,2, . . .}, i ∈ E, Vi,k ∈ R+, k = 1, 2, . . .

Most of the DES analysis based on stochastic clock structures assumes
that each clock sequence consists of random variables which are independent
and identically distributed (iid) and that all clock sequences are mutually
independent. Thus, each {Vi,k} is completely characterized by a distribution
function Fi(t) = P [Vi ≤ t]. There are, however, several ways in which a clock
structure can be extended to include situations where elements of a sequence
{Vi,k} are correlated or two clock sequences are dependent on each other.

We can extend the definition of a timed automaton by viewing the state,
event, and all event scores and clock values as random variables denoted re-
spectively by X, E, Ni, and Yi, i ∈ E , where we use E to denote the event set
and distinguish it from some event E which takes values i ∈ E . Similarly, we
use X to denote the state space and distinguish it from some state X which
takes values x ∈ X .

Definition 5. A stochastic timed automaton is a six-tuple

(X , E , Γ, p, p0, F ),

where X is a countable state space; E is a countable event set ; Γ (x) is the active
event set (or feasible event set); p(x′; x, e′) is a state transition probability
defined for all x, x′ ∈ X , e′ ∈ E and such that p(x′; x, e′) = 0 for all e′ /∈
Γ (x); p0 is the probability mass function P [X0 = x], x ∈ X , of the initial
state X0; and F is a stochastic clock structure. The automaton generates a
stochastic state sequence {X0, X1, . . .} through a transition mechanism (based
on observations X = x, E′ = e′):

X ′ = x′ with probability p(x′; x, e′) (9)

and it is driven by a stochastic event sequence {E1, E2, . . .} generated through

E′ = arg max
i∈Γ (X)

{Yi} (10)

with the stochastic clock values Yi, i ∈ E , defined by

Y ′
i =

{
Yi − Y ∗ if i 
= E′ and i ∈ Γ (X)
Vi,Ni+1 if i = E′ or i /∈ Γ (X) i ∈ Γ (X ′), (11)

where the interevent time Y ∗ is defined as
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Y ∗ = min
i∈Γ (X)

{Yi} (12)

and the event scores Ni, i ∈ E , are defined by

N ′
i =

{
Ni + 1 if i = E′ and i /∈ Γ (X)
Ni otherwise i ∈ Γ (X ′) (13)

and {Vi,k} ∼ Fi (the notation ∼ denotes “with distribution”). In addition,
initial conditions are: X0 ∼ p0(x), Yi = Vi,1 and Ni = 1 if i ∈ Γ (X0). If
i /∈ Γ (X0), then Yi is undefined and Ni = 0.

A simple interpretation of this elaborate definition is as follows. Given
that the system is at some state X, the next event E′ is the one with the
smallest clock value among all feasible events i ∈ Γ (X). The corresponding
clock value, Y ∗, is the interevent time between the occurrence of E and E′,
and it provides the amount by which the time, T , moves forward:

T ′ = T + Y ∗.

Clock values for all events that remain active in state X ′ are decremented by
Y ∗, except for the triggering event E′ and all newly activated events, which
are assigned a new lifetime Vi,Ni+1. Event scores are incremented whenever
a new lifetime is assigned to them. It is important to note that the “system
clock” T is fully controlled by the occurrence of events, which cause it to move
forward; if no event occurs, the system remains at the last state observed.

It is conceivable for two events to occur at the same time, in which case
we need a priority scheme in order to overcome a possible ambiguity in the
selection of the triggering event in (10). This is usually accomplished through
a priority scheme over all events in E . In practice, it is common to expect that
every Fi in the clock structure is absolutely continuous over [0,∞) (so that its
density function exists) and has a finite mean. This implies that two events
can occur at exactly the same time only with probability 0.

A stochastic process {X(t)} with state space X which is generated by a
stochastic timed automaton (X , E , Γ, p, p0, F ) is referred to as a generalized
semi-Markov process (GSMP). This process is used as the basis of much of
the sample path analysis methods for DESs (for details see [2],[8], [9]).

4.2 Petri nets

An alternative modeling formalism for the DES is provided by Petri nets ,
originating in the work of C. A. Petri in the early 1960s. Like an automaton, a
Petri net is a device that manipulates events according to certain rules. One of
its features is that it includes explicit conditions under which an event can be
enabled. This representation is conveniently described graphically, at least for
small systems, resulting in Petri net graphs. Petri net graphs are intuitive and
capture a lot of structural information about the system. An automaton can
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always be represented as a Petri net; on the other hand, not all Petri nets can
be represented as finite-state automata. Another motivation for considering
Petri net models of a DES is the body of analysis techniques that have been
developed for studying them [10],[11].

The process of defining a Petri net involves two steps. First, we define
the Petri net graph, also called the Petri net structure. Then we adjoin to
this graph an initial state, a set of marked states, and a transition labeling
function, resulting in the complete Petri net model, its associated dynamics,
and the languages that it generates and marks.

Petri net graph. A Petri net is a bipartite graph with two types of nodes,
places and transitions, and arcs connecting them. Events are associated with
transition nodes. In order for a transition to occur, several conditions may
have to be satisfied. Information related to these conditions is contained in
place nodes. Some such places are viewed as the “input” to a transition;
they are associated with the conditions required for this transition to occur.
Other places are viewed as the output of a transition; they are associated with
conditions that are affected by the occurrence of this transition. The precise
definition of a Petri net graph is as follows.

Definition 6. A Petri net graph is a weighted bipartite graph (P, T,A,w)
where P is the finite set of places (one type of node in the graph), T is the finite
set of transitions (the other type of node in the graph), A ⊆ (P ×T )∪(T ×P )
is the set of arcs from places to transitions and from transitions to places in
the graph, and w : A→ {1, 2, 3, . . .} is the weight function on the arcs.

We assume that (P, T,A,w) has no isolated places or transitions. When
drawing Petri net graphs, we need to differentiate between the two types of
nodes, places and transitions. The convention is to use circles to represent
places and bars to represent transitions. Let the set of places be represented
by P = {p1, p2, . . . , pn}, and the set of transitions be represented by T =
{t1, t2, . . . , tm}. A typical arc is of the form (pi, tj) or (tj , pi), and the weight
related to an arc is a positive integer. In describing a Petri net graph, it is
convenient to use I(tj) to represent the set of input places to transition tj .
Similarly, O(tj) represents the set of output places from transition tj . Thus,
we have

I(tj) = {pi ∈ P : (pi, tj) ∈ A}, O(tj) = {pi ∈ P : (tj , pi) ∈ A} .

Similar notation can be used to describe input and output transitions for a
given place pi: I(pi) and O(pi). An example of a Petri net graph for a simple
DES is shown in Fig. 2 and discussed later in this section.

Petri net dynamics. Tokens are assigned to places in a Petri net graph in
order to indicate the fact that the condition described by that place is satisfied.
The way in which tokens are assigned to a Petri net graph defines a marking.
Formally, a marking x of a Petri net graph (P, T,A,w) is a function x : P →
N = {0, 1, 2, . . .}. Marking x defines row vector x = [x(p1), x(p2), . . . , x(pn)],
where n is the number of places in the Petri net. The ith entry of this vector
indicates the (non-negative integer) number of tokens in place pi, x(pi) ∈ N.
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In Petri net graphs, a token is indicated by a dark dot positioned in the
appropriate place.

The state of a Petri net is defined to be its marking row vector x =
[x(p1), x(p2), . . . , x(pn)]. Note that the number of tokens assigned to a place is
an arbitrary non-negative integer, not necessarily bounded. It follows that the
number of states we can have is, in general, infinite. Thus, the state space X of
a Petri net with n places is defined by all n-dimensional vectors whose entries
are non-negative integers, i.e., X = Nn. While the term “marking” is more
common than “state” in the Petri net literature, the term state is consistent
with the role of state in system dynamics. Moreover, the term state avoids
the potential confusion between marking in Petri net graphs and marking in
the sense of marked states in automata. The state transition mechanism of a
Petri net is captured by the structure of its graph and by “moving” tokens
from one place to another. A transition tj ∈ T in a Petri net is said to be
enabled if

x(pi) ≥ w(pi, tj) for all pi ∈ I(tj) .

In words, transition tj in the Petri net is enabled when the number of tokens
in pi is at least as large as the weight of the arc connecting pi to tj , for all
places pi that are input to transition tj .

When a transition is enabled, it can occur or fire (the term “firing” is
standard in the Petri net literature). The state transition function of a Petri
net is defined through the change in the state of the Petri net due to the firing
of an enabled transition. The state transition function, f : Nn × T → Nn, of
Petri net (P, T,A,w, x) is defined for transition tj ∈ T if and only if

x(pi) ≥ w(pi, tj) for all pi ∈ I(tj) . (14)

If f(x, tj) is defined, then we set x′ = f(x, tj) where

x′(pi) = x(pi)− w(pi, tj) + w(tj , pi), i = 1, . . . , n . (15)

Condition (14) ensures that the state transition function is defined only for
transitions that are enabled; an “enabled transition” is therefore equivalent
to a “feasible event” in an automaton. But whereas in automata the state
transition function was quite arbitrary, here the state transition function is
based on the structure of the Petri net. Thus, the next state defined by (15)
explicitly depends on the input and output places of a transition and on the
weights of the arcs connecting these places to the transition. According to (15),
if pi is an input place of tj , it loses as many tokens as the weight of the arc
from pi to tj ; if it is an output place of tj , it gains as many tokens as the
weight of the arc from tj to pi. Clearly, it is possible that pi is both an input
and output place of tj , in which case (15) removes w(pi, tj) tokens from pi,
and then immediately places w(tj , pi) new tokens back in it.

In general, it is entirely possible that after several transition firings, the
resulting state is x = [0, . . . , 0], or that the number of tokens in one or more
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Fig. 2. A Petri Net example

places grows arbitrarily large after an arbitrarily large number of transition
firings. The latter phenomenon is a key difference with automata, where finite-
state automata have only a finite number of states, by definition. In contrast,
a finite Petri net graph may result in a Petri net with an unbounded number
of states.

In order to illustrate the use of Petri nets in modeling DESs, let us consider
a simple queueing system, i.e., a system where “customers” indexed by i =
1, 2, . . . arrive at times ai and are placed in a queueing area (the “queue”) to
await access to a “server” if that server is busy processing a prior customer
at that time. We begin by considering three events (transitions) driving the
system: a represents a customer arrival, s represents the start of customer
service, and c represents service completion and departure from the system.
Thus, we define the transition set T = {a, s, c}. Transition a is spontaneous
and requires no conditions (input places). On the other hand, transition s
depends on two conditions: the presence of customers in the queue, and the
server being idle. We represent these conditions through two input places for
this transition, place Q (queue) and place I (idle server). Finally, transition
c requires that the server be busy, so we introduce an input place B (busy
server) for it. Thus, our place set is P = {Q, I,B}. The complete Petri net
graph for this system is shown in Fig. 2. On the left side, no tokens are
placed in Q, indicating that the queue is empty, and a token is placed in I,
indicating that the server is idle. This defines the initial state x0 = [0, 1, 0].
Since transition a is always enabled, we can generate several possible sample
paths. As an example, on the right side of Fig. 2 we show state [2, 0, 1] resulting
from the transition firing sequence {a, s, a, a, c, s, a}. This state corresponds
to two customers waiting in queue, while a third is in service (the first arrival
in the sequence has already departed after transition c).

Similar to timed automata, we can define timed Petri nets by introducing
a clock structure, except that now a clock sequence vj is associated with a
transition tj . A positive real number, vj,k, assigned to tj has the following
meaning: when transition tj is enabled for the kth time, it does not fire im-
mediately, but incurs a firing delay given by vj,k; during this delay, tokens are
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kept in the input places of tj . Not all transitions are required to have firing
delays. Some transitions may always fire as soon as they are enabled. Thus,
we partition T into subsets T0 and TD, such that T = T0∪TD. T0 is the set of
transitions always incurring zero firing delay, and TD is the set of transitions
that generally incur some firing delay. The latter are called timed transitions.

Definition 7. The clock structure (or timing structure) associated with a
set of timed transitions TD ⊆ T of a marked Petri net (P, T,A,w, x) is a set
V = {vj : tj ∈ TD} of clock (or lifetime) sequences

vj = {vj,1, vj,2, . . .}, tj ∈ TD, vj,k ∈ R+, k = 1, 2, . . .

Graphically, transitions with no firing delay are still represented by bars,
whereas timed transitions are represented by rectangles. The clock sequence
associated with a timed transition is normally written next to the rectangle.

Definition 8. A timed Petri net is a six-tuple

(P, T,A,w, x,V),

where (P, T,A,w, x) is a marked Petri net and V = {vj : tj ∈ TD} is a clock
structure.

4.3 Dioid algebras

Another modeling framework we will briefly describe in what follows is based
on developing an algebra using two operations: min{a, b} (or max{a, b}) for
any real numbers a and b, and addition (a+b). The motivation comes from the
observation that the operations “min” and “+” are the only ones required to
develop the timed automaton model in Definition 3. Similarly, the operations
“max” and “+” are the only ones used in developing the timed Petri net
models described in the previous section. The term “dioid” (meaning “two”)
refers to the fact that this algebra is based on two operations . The operations
are formally named addition and multiplication and denoted by ⊕ and ⊗
respectively. However, their actual meaning (in terms of regular algebra) is
different. For any two real numbers a and b, we define

Addition : a⊕ b ≡ max{a, b} (16)
Multiplication : a⊗ b ≡ a+ b. (17)

This dioid algebra is also called a (max,+) algebra [12],[3]. The motivation
for pursuing this modeling approach goes beyond the observation that “max”
and “+” are the only operations of apparent importance in the study of DES.
If we consider a standard linear discrete-time system, its state equation is of
the form

x(k + 1) = Ax(k) + Bu(k),

which involves (regular) multiplication (×) and addition (+). It turns out
that we can use a (max,+) algebra with DES, replacing the (+,×) algebra of
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conventional time-driven systems, and come up with a representation similar
to the one above, thus paralleling to a considerable extent the analysis of
classical time-driven linear systems.

We will illustrate the point above by considering a common class of DESs
encountered in resource contention management where a queueing model de-
scribes the process of tasks waiting to gain access to a particular resource
(e.g., packets waiting for transmission at a network switch). Such systems
have an event set E = {a, d}, where a denotes an “arrival” event, and d de-
notes a “departure” event. A natural state variable is the number of tasks
in the queue, which we shall call the queue length. By convention, the queue
length at time t is allowed to include a task in process at time t. Thus, the
state space is the set of non-negative integers, X = {0, 1, 2, . . .}. Let us define
ak to be the kth arrival time and dk to be the kth departure time. The clock
structure for this model (see Definition 2) consists of va = {va,1, va,2, . . .} and
vd = {vd,1, vd,2, . . .}. It can then be shown that for k = 1, 2, . . .

ak = ak−1 + va,k, a0 = 0 (18)
dk = max{ak−1 + va,k, dk−1}+ vd,k, d0 = 0. (19)

For simplicity, we assume that va,k = Ca, vd,k = Cd for all k = 1, 2, . . ., where
Ca and Cd are given constants. Note that Ca represents a constant interarrival
time, and Cd represents a constant processing time. We will also assume that
Ca > Cd, which is reasonable to ensure stability of the queueing system. We
now rewrite the equations above as follows:

ak+1 = ak + Ca, a1 = Ca

dk = max{ak, dk−1}+ Cd, d0 = 0.

Using the (max,+) algebra, these relationships can also be expressed as

ak+1 = (ak ⊗ Ca)⊕ (dk−1 ⊗−L)
dk = (ak ⊗ Cd)⊕ (dk−1 ⊗ Cd),

where −L is any sufficiently small negative number so that max{ak +
Ca, dk−1 − L} = ak + Ca. In matrix notation, we have[

ak+1
dk

]
=
[
Ca −L
Cd Cd

] [
ak

dk−1

]
. (20)

Defining

xk =
[
ak+1
dk

]
, A =

[
Ca −L
Cd Cd

]
we get

xk+1 = Axk, x0 =
[
Ca

0

]
, (21)
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which in fact looks like a standard linear system model, except that the ad-
dition and multiplication operations are in the (max,+) algebra. We should
emphasize, however, that while conceptually this offers an attractive represen-
tation of the queueing system’s event timing dynamics, from a computational
standpoint one still has to confront the complexity of performing the “max”
operation when numerical information is ultimately needed to analyze the
system or to design controllers for its proper operation.

5 Control and Optimization of Discrete Event Systems

The various control and optimization methodologies developed to date for
DESs depend on the modeling level appropriate for the problem of interest.

Logical behavior. Issues such as ordering events according to some spec-
ification or ensuring the reachability of a particular state are normally ad-
dressed through the use of automata (see Definition 1) and Petri nets (see
Definition 6). Supervisory control theory provides a systematic framework for
formulating and solving problems of this type. In its simplest form, a su-
pervisor is responsible for enabling or disabling a subset of events that are
controllable, so as to achieve a desired behavior. The supervisor’s actions
follow the occurrence of those events that are in fact observable (generally,
a subset of the event set of the DES). In this manner, a supervisor may be
viewed as a feedback controller. Similar to classical control theory, two central
concepts here are those of controllability and observability. The synthesis of
supervisors is a particularly challenging problem, largely due to the inherent
computational complexity resulting from the combinatorial growth of typical
state spaces of DESs. Some special classes of supervisor synthesis problems
and solution approaches for them are discussed in [6],[13], and a comprehen-
sive coverage of supervisory control can be found in [2].

Event timing. When timing issues are introduced, timed automata (see
Definition 3) and timed Petri nets (see Definition 8) are invoked for modeling
purposes. Supervisory control in this case becomes significantly more compli-
cated. An important class of problems, however, does not involve the ordering
of individual events, but rather the requirement that selected events occur
within a given “time window” or with some desired periodic characteristics.
Models based on the algebraic structure of timed Petri nets or the (max,+)
algebra provide convenient settings for formulating and solving such problems
[11],[3].

Performance analysis. As in classical control theory, one can define a
performance (or cost) function intended to measure how “close” one can get to
a desired behavior or simply as a convenient means for quantifying system be-
havior. This approach is particularly crucial in the study of stochastic DESs,
where the design of a system is often based on meeting specifications defined
through appropriate performance metrics, such as the expected response time
of tasks in a computer system or the throughput of a manufacturing process.
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Because of the complexity of DES dynamics, analytical expressions for such
performance metrics in terms of controllable variables are seldom available.
This has motivated the use of simulation and, more generally, the study of
DES sample paths; these have proven to contain a surprising wealth of infor-
mation for control purposes. The theory of perturbation analysis has provided
a systematic way of estimating performance sensitivities with respect to sys-
tem parameters for important classes of DES. What is noteworthy in this
approach is that these sensitivity estimates can be extracted from a single
sample path of a DES, resulting in a variety of efficient algorithms which can
often be implemented on line. Perturbation analysis and related approaches
are covered in [8],[9],[14],[2].

Simulation. Because of the aforementioned complexity of DES dynam-
ics, simulation becomes an essential part of DES performance analysis [15].
Discrete event simulation can be defined as a systematic way of generating
sample paths of a DES by means of the timed automaton in Definition 3
or its stochastic counterpart in Definition 5. In the latter case, a computer
pseudo-random number generator is responsible for the task of providing the
elements of the clock sequences in the model. It should also be clear that the
same process can be carried out using a Petri net model or one based on the
dioid algebra setting.

Optimization. Optimization problems can be formulated in the context
of both untimed and timed models of DESs. Moreover, such problems can
be formulated in both a deterministic and a stochastic setting. In the lat-
ter case, the ability to efficiently estimate performance sensitivities with re-
spect to controllable system parameters provides a powerful tool for stochastic
gradient-based optimization (when one can define derivatives) [16] or discrete
optimization methods (in the frequent cases where the controllable parame-
ters of interest are discrete, as in turning a piece of equipment “on” or “off” or
selecting the (integer) number of resources needed to execute certain tasks).

Hybrid systems. It is worth mentioning that the combination of time-
driven and event-driven dynamics gives rise to a hybrid system [17],[18]. Con-
trol and optimization methodologies for such systems are particularly chal-
lenging as they need to capture both aspects, often through appropriate de-
composition approaches.
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Summary. Hybrid systems arise when the continuous and the discrete meet. Com-
bine continuous and discrete inputs, outputs, states, or dynamics, and you have a
hybrid system. Particularly, hybrid systems arise from the use of finite-state logic to
govern continuous physical processes (as in embedded control systems) or from topo-
logical and network constraints interacting with continuous control (as in networked
control systems). This chapter provides an introduction to hybrid systems, building
them up first from the completely continuous side and then from the completely
discrete side. It should be accessible to control theorists and computer scientists
alike.

1 Hybrid Systems All Around Us

Hybrid systems arise in embedded control when digital controllers, computers,
and subsystems modeled as finite-state machines are coupled with controllers
and plants modeled by partial or ordinary differential equations or difference
equations. Thus, such systems arise whenever one mixes logical decision mak-
ing with the generation of continuous-valued control laws. These systems are
driven on our streets, used in our factories, and flown in our skies; see Fig. 1.

Adding to the complexity is the case where sensing, control, and actua-
tion are not hardwired but connected by a shared network medium; see Fig. 2.
Such networked control systems (NCSs) are an important class of hybrid con-
trol systems [40]. The hybrid nature inherent in embedded control is further
complicated by (i) the asynchronous or event-driven nature of data transmis-
sion, due to sampling schemes, varying transmission delay, and packet loss;
and (ii) the discrete implementation of the network and its protocols, involving
packets of data, queuing, routing, scheduling, etc.

So, hybrid systems arise in embedded and networked control. More specif-
ically, real-world examples of hybrid systems include systems with relays,
switches, and hysteresis [33,37]; computer disk drives [18]; transmissions, step-
per motors, and other motion controllers [14]; constrained robotic systems [4];
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Fig. 1. Hybrid systems arising from embedded control

ProcessesProcesses
Other

Control Network

Other

Physical Plant

Actuator 1 Actuator m ...... Sensor 1

Controller
(Computer)

Sensor n

Fig. 2. Typical networked control system setup and information flows [40]

automated highway systems (AHSs) [36]; flight control and management sys-
tems [27, 35]; multi-vehicle formations and coordination [32]; analog/digital
circuit codesign and verification [26]; and biological applications [17]. Next,
we examine some of these in more detail.

Systems with switches and relays: Physical systems with switches and relays
can naturally be modeled as hybrid systems. Sometimes, the dynamics may
be considered merely discontinuous, such as in a blown fuse. In many cases
of interest, however, the switching mechanism has some hysteresis, yielding a
discrete state on which the dynamics depends. This situation is depicted by
the multi-valued function H shown in Fig. 3(left). Suppose that the function
H models the hysteretic behavior of a thermostat. Then a thermostatically
controlled room may be modeled as follows:

ẋ = f(x,H(x− x0), u), (1)

where x and x0 denote actual and desired room temperature, respectively.
The function f denotes the dynamics of temperature, which depends on the
current temperature, whether the furnace is switched On or Off, and some
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auxiliary control signal u (e.g., the fuel burn rate). Note that this system is
not just a differential equation whose right-hand side is piecewise continuous.
There is “memory” in the system, which affects the value of the vector field.
Indeed, such a system naturally has a finite automaton associated with the
hysteresis function H, as pictured in Fig. 3(right). The notation ![condition]
denotes that the transition must be taken when “enabled.” That is, the event
of x attaining a value greater than or equal to ∆ triggers the discrete or phase
transition of the underlying automaton from +1 to −1.

x

-1

1

H

Fig. 3. (left) Hysteresis function, H, (right) finite automaton associated with H

Disk drive: Once a computer disk drive is up and spinning, it receives exter-
nal commands to find data. The action of the disk drive is modeled by the
differential (or difference equations) capturing the dynamic behavior of the
disk, spindle, disk arm, and motors. The drive receives symbolic inputs of
disk sectors and locations, it waits until the head is settled on the appropriate
cylinder, begins a read operation and then transmits symbolic outputs cor-
responding to the bytes read (see Fig. 4). Again, the edge labels ![condition]
denote transitions taken as soon as the condition is true; Read and Seek(Adr)
are symbolic commands issued from another element/process in the system.
While the logic governing this cycle of operation is simple, the vast majority
of logic inside a disk drive (not shown, see [18]) is for startup, shutdown, and
error handling.

Spindle-Ready

SeekWait

ReadWait

On-Cylinder

Seek(Adr)

![HeadSettled]

![ReadDone]

Read

Fig. 4. Hybrid system associated with main disk drive functionality
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Hopping robot control: Constrained robotic systems are interesting examples
of hybrid systems. In particular, consider the hopping robots of Marc Raibert
[29]. The dynamics of these devices are governed by gravity, as well as the
forces generated by passive and active (pneumatic) springs. The dynamics
change abruptly at certain event times and fall into distinct phases: Flight,
Compression, Thrust, and Decompression; see Fig. 5(left). In fact, Raibert has
built controllers for these machines that embed a finite-state machine that
transitions according to these detected phases; see Fig. 5(right). There, the
variable h is the distance of the hopper’s base from the ground, and x is the
displacement of the spring from equilibrium; T is an auxiliary timer, and the
notation /action denotes that on transitioning, T is reset to zero; ∧ denotes
logical “and.” Therefore, the transition from Flight to Compression occurs
when touchdown is detected; that from Decompression to Flight upon liftoff.
The switch from Compression to Thrust is controller initiated: when it detects
the bottom-most point of compression, it activates the pneumatic cylinders
to open for a fixed period of time, τthrust, after which Decompression of the
pneumatic spring continues. Thus, finite automata and differential equations
naturally interact in such devices and their controllers.

Vehicle powertrains: An automobile transmission system takes the continuous
inputs of accelerator position and engine RPM and the discrete input of gear
position and translates them into the motion of the vehicle. Likewise, the
engine has discrete cylinders, which are fired at certain event times, as well
as the continuous variables of fuel/air mixture and temperature. Finally, the
whole powertrain is governed by a number of networked microprocessors to
achieve some overall goal. For example, they may be coordinated by a cruise
control system that accelerates and decelerates under different profiles. The
desired profile is chosen depending on sensor readings (e.g., continuous reading
of elevation, discrete coding of road condition, etc.). In such a case, we are to
design a control system with both continuous and discrete inputs and outputs,
whose internal components themselves are hybrid. This is typical in hybrid
control; see Fig. 6. There, I and O are discrete (i.e., countable) sets of symbols
and U and Y are continuums.

AHS: A more complicated example of a hybrid system arises in the control
structures for an automated highway system (AHS) [36]. The basic goal of one
such system is to increase highway throughput by means of a technique known
as platooning. A platoon is a group of between, say, one and twenty vehicles
traveling closely together in a highway lane at high speeds. To ensure safety—
and proper formation and dissolution of structured platoons from the “free
agents” of single vehicles—requires a bit of control effort! Protocols for basic
maneuvers such as Merge, Split, and ChangeLane have been proposed in terms
of finite-state machines. More conventional controllers govern the engines and
brakes of individual vehicles. Clearly, the system is hybrid, with each vehicle
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Flight Compression

Thrust Decompression

KF KC

KDKT

![ (h = 0) ∧ (ḣ < 0) ]

![ ẋ = 0 ] / T := 0![ (h = 0) ∧ (ḣ > 0) ]

![ T = τthrust ]

Fig. 5. Raibert’s hopping robot: (left) dynamic phases (reproduced from [4], p. 260,
Fig. 3, c© Springer-Verlag), (right) finite-state controller with transitions specified
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Fig. 6. Block diagram of prototypical hybrid control system
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having a state determined by continuous variables (such as velocity, engine
RPM, and distance to car ahead) and the finite states of its protocol-enacting
state machines.

Flight control: Flight controllers are organized around the idea of modes. For
example, one might easily imagine different control schemes for Take-Off, As-
cend, Cruise, Descend, and Land. More complex is a whole flight vehicle man-
agement system, which coordinates flight in these different regimes, while also
planning flight paths considering air traffic, weather, fuel economy, and pas-
senger comfort [27].

Preview

Now that we have given a taste of the hybrid nature of real applications,
we turn to developing mathematical models that can capture their behavior.
Instead of proceeding directly to such hybrid models, we build them up, step
by step, from well-known models of completely continuous (viz., ODEs in
Section 2) and completely discrete (viz., finite automata in Section 3) systems.
Then, in Section 4, we present an overarching model of hybrid systems that
combines ODEs and automata. Throughout, we fix ideas using examples.

2 From Continuous Toward Hybrid

In this section, we review ordinary differential equations (ODEs) as a base
continuous model,1 then show how to add various discrete phenomena to
them, as seen in the applications above.

2.1 Base continuous model: ODEs

In this chapter, the base continuous dynamical systems dealt with are defined
by the solutions of ODEs:

ẋ(t) = f(x(t)), (2)

where x(t) ∈ X ⊂ Rn. The function f : X −→ Rn is called a vector field on
Rn. We assume existence and uniqueness of solutions.2

Actually, the system of ODEs in (2) is called autonomous or time invariant
because its vector field does not depend explicitly on time. If it did depend

1One can easily use difference equations instead. See [7].
2See [22] for conditions. A well-known sufficient condition is that f is Lipschitz

continuous. That is, there exists L > 0 (called the Lipschitz constant ) such that

‖f(x) − f(y)‖ ≤ L‖x − y‖, for all x, y ∈ X.
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explicitly on time, it would be nonautonomous or time varying, which one
might explicitly note using the following notation:

ẋ(t) = f(x(t), t). (3)

An ODE with inputs and outputs [25, 31] is given by

ẋ(t) = f(x(t), u(t)),
y(t) = h(x(t), u(t)), (4)

where x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm, y ∈ Y ⊂ Rp, f : Rn ×Rm −→ Rn,
and h : Rn × Rm −→ Rp. The functions u(·) and y(·) are the inputs and
outputs, respectively. Whenever inputs are present, as in (4), we say that f(·)
is a controlled vector field.

Differential inclusions: A differential inclusion allows the derivative to belong
to a set and is written as

ẋ(t) ∈ F (x(t)),

where F (x(t)) is a set of vectors in Rn. It can be used to model nondetermin-
ism, including that arising from controls or disturbances. For example, the
controlled differential equation of (4) can be viewed as an inclusion by setting
F (x) = ∪u∈Uf(x, u).

Example 1 (Innacurate Clock). A clock that has a time-varying rate between
0.9 and 1.1 can be modeled by ẋ ∈ [0.9, 1.1]. Such an inclusion is called a
rectangular inclusion. �

2.2 Adding discrete phenomena

We have seen that hybrid systems are those that involve continuous states
and dynamics, as well as some discrete phenomena corresponding to discrete
states and dynamics. As described above, our focus in this chapter is on the
case where the continuous dynamics is given by a differential equation

ẋ(t) = ξ(t), t ≥ 0. (5)

Here, then, x(t) is considered the continuous component of the hybrid state,
taking values in some subset Rn. The vector field ξ(t) generally depends on
x(t) and the aforementioned discrete phenomena.

Hybrid control systems are those that involve continuous states, dynamics,
and controls, as well as discrete phenomena corresponding to discrete states,
dynamics, and controls. Here, ξ(t) in (5) is a controlled vector field which
generally depends on x(t), the continuous component u(t) of the control policy,
and the aforementioned discrete phenomena.

In this section, we identify the discrete phenomena alluded to above that
generally arise in hybrid systems. They are as follows:
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• autonomous switching, where the vector field changes discontinuously;
• autonomous jumps, where the state changes discontinuously;
• controlled switching, where a control switches vector fields discontinuously;
• controlled jumps, where a control changes a state discontinuously.

Next, we examine each of these discrete phenomena in turn, giving examples.

Autonomous switching

Autonomous switching is the phenomenon where the vector field ξ(·) changes
discontinuously when the continuous state x(·) hits certain “boundaries” [3,
28, 33, 37]. The simplest example of this is when it changes depending on a
“clock” which may be modeled as a supplementary state variable [14]. Another
example of autonomous switching is the hysteresis function from Section 1.

Example 2 (Furnace). Consider the problem of controlling a household fur-
nace. The temperature dynamics may be quite complicated, depending on
outside temperature, humidity, luminosity; insulation and layout; whether in-
candescent lights are on, doors are closed, vents are open, people are present;
and many other factors. Thus, let’s just say that when the furnace is On, the
dynamics are given by ẋ(t) = f1(x(t)), where x(t) is the temperature at time
t; likewise, when the furnace is Off, let’s say that the dynamics are given by
ẋ(t) = f0(x(t)). The full system dynamics are that of a switched system:

ẋ(t) = fq(t)(x(t)),

where q(t) = 0 or 1 depending on whether the furnace is Off or On, respec-
tively. �

A particular class of hybrid systems of interest is switched linear systems:

ẋ(t) = Aq(t)x(t), q ∈ {1, . . . , N},

where x(t) ∈ Rn and each Aq ∈ Rn×n. Such a system would be autonomous
if the switchings were a function of the state x(t). Sometimes the “switching
rules” might interact with the constituent dynamics to produce unexpected
results, as in the next example.

Example 3 (Unstable from Stable). Consider A1 and A2 where

A1 =
[
−0.1 1
−10 −0.1

]
, A2 =

[
−0.1 10
−1 −0.1

]
.

Then ẋ = Aix, is globally exponentially stable for i = 1, 2. But the switched
system using A1 in the second and fourth quadrants and A2 in the first and
third quadrants is unstable. Fig. 7 plots ten seconds of trajectories for each
of A1, A2 and the switched system starting from (1, 0), (0, 1), (10−6, 10−6),
respectively. In each plot, motion is clockwise. In the first two, the range shown
is [−3, 3]× [−3, 3]; in the last, it is [−2 · 105, 8 · 105]× [−5 · 104, 3.5 · 105]. �
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Fig. 7. Trajectories for (left) A1x, (center) A2x, and (right) a switched linear system

Autonomous jumps

An autonomous jump is the phenomenon where the continuous state x(·)
jumps discontinuously on hitting prescribed regions of the state space [4,5]. We
may also call these autonomous impulses. The simplest examples possessing
this phenomenon are those involving collisions.

Example 4 (Bouncing Ball). Consider the case of the vertical motion of a ball
of mass m under gravity with constant g. The dynamics are given by

ẋ = v,

v̇ = −mg.

Further, upon hitting the ground (assuming downward velocity), we instantly
set v to −ρv, where ρ ∈ [0, 1] is the coefficient of restitution. We can encode
the jump in velocity as a rule by saying

If at time t, x(t) = 0 and v(t) < 0, then v(t+) = −ρv(t).
In this case, v(·) is piecewise continuous (from the right), with discontinuities
occurring when x = 0. This “rule” notation is quite general, but cumbersome.
We have found it more desirable to use the following equational notation:

v+(t) = −ρv(t), (x(t), v(t)) ∈ {(0, v) | v < 0}

Here, we have used Sontag’s evocative discrete-time transition notation [31]
to denote the “successor” of x(t). �

A general system subject to autonomous impulses may be written as

ż(t) = f(z(t)), z(t) 
∈ A
z+(t) = G(z(t)), z(t) ∈ A. (6)

The interpretation of these equations is that the dynamics evolves according
to the differential equation while z is in the complement of the autonomous
jump set A, but that the state is immediately reset according to the map G
upon z’s hitting the set A.
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Controlled switching

Controlled switching is the phenomenon where the vector field ξ(·) changes
abruptly in response to a control command, usually with an associated cost.
This can be interpreted as switching between different vector fields [38]. Con-
trolled switching arises, for instance, when one is allowed to pick among a
number of vector fields:

ẋ = fq(x), q ∈ Q � {1, 2, . . . , N}.

Here, the q that is active at any given time is to be chosen by the controller.
If one were to make the choice an explicit function of state, then the result
would be a closed-loop system with autonomous switches.

Example 5 (Satellite Control). In satellite control, one encounters

θ̈ = τeffv,

where θ, θ̇ are the angular position and velocity, respectively, and v ∈
{−1, 0, 1}, depending on whether the reaction jets are full reverse, off, or
full on. �

Example 6 (Transmission). This example includes controlled switching and
continuous controls. Consider a simplified model of a manual transmission,
modified from one in [14]:

ẋ1 = x2,

ẋ2 = [−a(x2/v) + u]/(1 + v),

where x1 is the ground speed, x2 is the engine RPM, u ∈ [0, 1] is the throttle
position, and v ∈ {1, 2, 3, 4} is the gear shift position. The function a is positive
for a positive argument. �

Controlled jumps

A controlled jump is the phenomenon where the continuous state x(·) changes
discontinuously in response to a control command, usually with an associated
cost [6]. We also call these jumps controlled impulses.

Example 7 (Inventory Management). In a simple inventory management model
[6], there are a “discrete” set of restocking times θ1 < θ2 < · · · and associated
order amounts α1, α2, . . .. The equations governing the stock at any given
moment are

ẋ(t) = −µ(t) +
∑

i

δ(t− θi)αi,

where µ represents degradation/utilization and δ is the Dirac delta. Note: If
one makes the stocking times and amounts an explicit function of x (or t),
then these controlled jumps become autonomous jumps. �
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Example 8 (Planetary Flybys). Exploration spacecraft typically use close en-
counters with moons and planets to gain energy and change course. At the
level of the entire solar system, these maneuvers are planned by considering
the flight path to be a sequence of parabolic curves, with resets of heading
and velocity occurring at the “point” of encounter. �

3 From Discrete to Hybrid

In this section, we review finite-state machines, or finite automata, as a base
discrete model. We then successively add timing and continuous dynamics,
arriving at models that approach more general hybrid systems.

3.1 Base discrete model: Automata

The base discrete model is usually a finite-state machine, finite transition
system, or finite automaton, for which there is a very rich and beautiful the-
ory [23]. These are actually discrete dynamical systems that process inputs.
Therefore, the direct correspondent to the autonomous ODE of (2) would be
an inputless automaton, which is a dynamical system with a discrete state
space:

qk+1 = ν(qk),

where qk ∈ Q, a finite set.

Example 9 (Finite Counter). A finite counter (modulo N) is an inputless au-
tomaton with Q = {0, 1, . . . , N − 1} with ν(q) = q + 1. �

Preliminaries: Before defining automata with input, we begin with some stan-
dard material for discussing discrete inputs. A symbol is the abstract entity of
automata theory. Examples are letters and digits. An alphabet is a finite set
of symbols. For example, the English alphabet is A = {a, b, c, . . . , z} and the
binary alphabet is B = {0, 1}. A string or a word (over alphabet I) is a finite
sequence of juxtaposed symbols from I. Thus, cat and jazz and zebra are
strings over A. So are w and qqq. The empty string, denoted ε, is the string
consisting of zero symbols. The set of all strings over an alphabet I is denoted
by I∗. The set of all binary strings is

B∗ ≡ {ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .}.

A language (over alphabet I) is merely a set of strings over I. Thus, the
words in a dictionary form a language over A, namely, the English language,
E ⊂ A∗. Obviously, cat ∈ E and qqq 
∈ E. The set of all binary strings of
length two is a language over B, as is the set of all binary strings of even
length. So is B∗. Yet another is the strings of odd parity (those having an odd
number of ones):
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Bodd ≡ {1, 01, 10, 001, . . .}.
The empty set is the empty language, namely the language consisting of no
strings whatsoever. Note that it is different than the language {ε}.

DFA: We are now ready to define a (deterministic) finite automaton (DFA )
which is a four-tuple A = (Q, I, ν, q0), where

• Q is a finite set of states,
• I is an alphabet, called the input alphabet,
• ν is the transition function mapping Q× I into Q, and
• q0 ∈ Q is the initial state.

The idea is that the machine above begins in state q0 and then re-
sponds to or processes input strings over I. In one move, a DFA in state
q receives/processes symbol a ∈ I and enters state ν(q, a). On input word
w = a1a2 · · · an, the DFA in state r0 successively processes symbols and se-
quences through states r1, r2, . . . , rn, such that

rk+1 = ν(rk, ak+1); k = 0, 1, 2, . . . , n− 1. (7)

This sequence is called a run of the DFA over w.

Example 10 (Parity). Consider DFA Apar = ({q0, q1}, {0, 1}, ν, q0), with

ν(q0, 1) = q1; ν(q1, 1) = q0; ν(qi, 0) = qi, i ∈ {1, 2};

see Fig. 8(left). It keeps track of the parity of its input string by counting 1s,
modulo 2. On input 111, it has run q0, q1, q0, q1; on ε, it has run q0. �

NFA: The base definition of a DFA can be easily augmented in various ways.
For example, a nondeterministic finite automaton (NFA ) would allow a set
of start states and a set-valued transition function mapping Q × I into 2Q,
so that at any stage the automaton may be in a set of states consistent with
its transition function and the symbols seen so far. In one move, an NFA in
state q receives/processes symbol a and nondeterministically enters any one
of the states in ν(q, a). On input word w = a1a2 · · · an, an NFA in state r0
nondeterministically sequences through states r1, r2, . . . , rn such that

rk+1 ∈ ν(rk, ak+1); k = 0, 1, 2, . . . , n− 1.

Again, such a sequence is a run of the NFA over w. In general, an NFA has
many runs associated with each string; a DFA only has one.

Marked states: Actually, the traditional definitions of DFA and NFA add a
set of marked or accepting or final states, F . In computation theory, one then
defines the language of A, which is the set of strings accepted by the machine:
the set of strings that have at least one run that ends in a state in F . For
example, if F = {q1} in Example 10 above, 111 is accepted and ε is not. In
fact, the language of Apar in this case is Bodd. If F = {q0, q1}, the accepted
language would be B∗; if F = {q1}, it would be B∗ −Bodd; if F = ∅, it is ∅.
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ω-Automata: Yet another way to augment the definition above is to allow
machines that process infinite sequences of symbols. An ω-string (read “omega
string”) or ω-word over an alphabet I is an infinite-length sequence of symbols
from I. For example, the following are ω-strings over B:

0ω ≡ 0000 · · · 1ω ≡ 1111 · · · (01)ω ≡ 0101 · · ·

Likewise, ω-languages are sets of ω-words. ω-automata act in exactly the same
way as finite automata, and can be deterministic or not. Namely, on input
ω-word w = a1a2 · · · , a DFA in state r0 would successively process symbols
and sequence through states r1, r2, . . ., satisfying (7). Again, this sequence of
states is a run over w. In Example 10, the run over 1ω is q0, q1, q0, q1, . . ..

More general automata: Finally, one can add discrete outputs and allow a
countable (versus finite) number of states, resulting in a digital or symbolic
or discrete automaton, with input and output. A discrete automaton is a
machine (Q, I, ν,O, η) consisting of the state space, input alphabet, transition
function, output alphabet, and output function, respectively. We assume that
Q, I, and O are each countable. When these sets are finite, the result is a finite
automaton with output. In any case, the functions involved are ν : Q×I −→ Q
and η : Q× I −→ O. The dynamics of the automaton are specified by

qk+1 = ν(qk, ik),
ok = η(qk, ik). (8)

Such a model is easily seen to encompass finite automata and ω-automata, as
well as other models from the literature (Mealy and Moore machines, push-
down automata, Turing machines, Petri nets, etc.) [15,23].

Example 11 (Mealy Machine). Consider the discrete automaton (derived from
[23]; see Fig. 8) Asame = ({qε, q0, q1}, {0, 1}, ν, {n, y}, η), with

ν(qε, i) = qi, ν(qi, 0) = q0, ν(qi, i) = q1; η(qε, i) = n, η(qi, i) = y, η(qi, ī) = n;

each for i ∈ {0, 1}, with 0̄ = 1 and 1̄ = 0. If this machine starts in qε, it
outputs y or n depending on whether the last two symbols seen are the same
or not, respectively. Thus, on input 011, it has run qε, q0, q1, q1 and output
nny. �

q0 q1

1

1

00

Start

qε

q0

q1

0 / n

1 / n

0 / n 1 / n

1 / y

0 / y

Start

Fig. 8. (left) Finite automaton for parity, (right) Example Mealy machine
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3.2 Adding continuous phenomena

In moving toward hybrid systems, we may add a variety of more complex con-
tinuous phenomena to the finite and discrete automata above. The continuous
phenomena we will add are as follows:

• Global time, where one adds a single global clock with unity rate.
• Timed automata, where one adds a set of such clocks, and the ability to

reset them,
• Skewed-clock automata, where each clock has a different, uniform (in each

location), rational rate.
• Multi-rate automata, where each clock variable can take on different, ra-

tional rates in each location.

Next, we examine each of these in turn. For ease of discussion, note that
discrete states are also referred to as modes, phases, or locations.

Global time

Usually, digital automata are thought of as evolving in “abstract time,” where
only the ordering of symbols or “events” matters. See (8). We may add the
notion of time by associating with the kth transition the time, tk, at which it
occurs [15]:

q(tk+1) = ν(q(tk), i(tk)),
o(tk) = η(q(tk), i(tk)).

Finally, this automaton may be thought of as operating in “continuous time”
by the convention that the state, input, and output symbols are piecewise
continuous functions. We may again use Sontag’s transition notation [31] to
denote this. The result is the following system of equations, where q, o are
piecewise continuous in time:

q+(t) = ν(q(t), i(t)),
o(t) = η(q(t), i(t)). (9)

Here, the state q(t) changes only when the input symbol i(t) changes.

Timed automata

Timed automata more fully incorporate the notion of real time with automata
[1]. Whereas finite automata process words, timed automata process timed
words. A timed word (over input alphabet I) is a finite sequence of symbols
and their respective times of occurrence: (i1, t1), (i2, t2), . . . , (iN , tN ), where
each ik ∈ I, each tk ∈ R+, and times strictly increase: tk+1 > tk. A timed
ω-word is an infinite sequence (i1, t1), (i2, t2), . . ., with all as above plus the
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constraint that time progresses without bound: for all T ∈ R+, there exists a
k such that tk > T . The latter condition is necessary to avoid Zeno behavior.
For example, the sequence of times 1/2, 3/4, 7/8, 15/16, 31/32, . . . is not a valid
time sequence. A timed language is merely a set of timed words.

A timed automaton is the same as an automaton except that one adds a
finite number of real-valued clocks, plus the ability to reset clocks and test
constraints on clocks when traversing edges. A clock constraint, χ, may take
one of the forms

(x ≤ c), (c ≤ x), ¬χ0, χ1 ∧ χ2,

where x is a clock variable, c is a rational constant, ¬ denotes logical negation,
∧ denotes logical “and”, and χi are themselves valid clock constraints. Note
that these forms plus the rules of logic allow one to build up more complicated
tests, including the following:

(x = c)⇐= (x ≤ c) ∧ (c ≤ x),
(x < c)⇐= (x ≤ c) ∧ ¬(x = c),
χ1 ∨ χ2 ⇐= ¬(¬χ1 ∧ ¬χ2),

True⇐= (x ≤ c) ∨ (c ≤ x).

In drawings, the notation ?χ is used to denote the fact that the edge may be
taken only if the clock constraint χ is true; we have found it useful to let !χ
mean that the edge must be taken when χ is true.

Example 12 (Bounded Response Time). Consider the timed automaton in Fig.
9(left), which is taken from [1]. If it starts in q0, it will process strings of the
form (ad)ω such that the time between every a and its corresponding d is
less than 2. It can be used to model the fact that every “arrival” needs to be
serviced (needs to “depart”) within two seconds. �

Example 13 (Switch with Delay). This example is modified from one describ-
ing a metal oxide semiconductor (MOS) transistor [26]. It can also be used
to model relays, pneumatic valves, and other switches with delay. Specifically,
consider a switch that can be On or Off, but that takes one second to acti-
vate. Let U and D denote the symbolic inputs corresponding to commanding
the switch on or off, respectively. Then the switch can be modeled as a timed
automaton as in Fig. 9(right). Note that issuing command U resets the clock
to zero, and if a D command arrives within one time unit later, the switch
goes back to off. �

The theory of timed automata is almost as rich and beautiful as the theory
of finite automata. In fact, certain verification problems for timed automata
can be translated directly into questions about (generally much larger) finite-
state machines. See [1] for details.
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q0 q1

a / x := 0

d, ?(x < 2)

Off Delay On

U / x := 0

D

!(x = 1)

D

Fig. 9. Timed automata modeling (left) bounded response time, (right) a switch
with delay

Skewed-clock automata

To summarize, a timed automaton has a finite set, C, of clocks, xi ∈ C such
that ẋi = 1 for all clocks and all locations. In a skewed-clock automaton,
ẋi = ki where each ki is a rational number.

Remark 1. Skewed-clock automata are equivalent to timed automata. That
is, any skewed-clock automaton can be converted into an equivalent timed
automaton, and vice versa.

Proof. It is obvious that every timed automaton is a special case of a skewed-
clock automaton, wherein each ki = 1. For the converse, we have two cases to
consider:

1. ki = 0: In this case, xi(t) remains constant and any conditions involving
it are uniformly true or false (and thus may be reduced or removed using
the rules of logic).

2. ki 
= 0: In this case, we note that xi(t) = xi(0) + kit, so that xi(t)/ki =
xi(0)/ki + t. This means we can divide every constant to which xi is
compared by ki, and then use the associated clock x̃i = xi/ki, with ˙̃xi = 1.

Multi-rate automata

A multi-rate automaton has ẋi = ki,q at location q ∈ Q, where each ki,q is a
rational number; see Fig. 10.

Some notes are in order, both with respect to Fig. 10 and in general:

• Some variables might have the same rates in all states, e.g., w.
• Some variables might be stopwatches (derivative either 0 or 1), measuring

a particular time. For example, x is a stopwatch measuring the elapsed
time spent in the upper left state.

• Not all dynamics change at every transition. For example, y changes dy-
namics in transitioning along Edges 2 and 3, but not along Edge 1.

• Every skewed-clock automaton is a multi-rate automaton that simply has
ki,q = ki for all q ∈ Q.
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ẇ = 1
ẋ = 1
ẏ = 2
ż = 1

ẇ = 1
ẋ = 0
ẏ = 2
ż = 2

ẇ = 1
ẋ = 0
ẏ = 4
ż = 3

Edge 1

Edge 2Edge 3

Fig. 10. Example multi-rate automaton (edge data has been suppressed)

q1:

ẋ = 1
ẏ = −2

q2:

ẋ = −2
ẏ = 1

!(y = 0)!(x = 0)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

t

x(
t)

, y
(t

)

x(t)
y(t)

Fig. 11. (left) A multi-rate automaton with Zeno behavior. (right) Continuous-state
dynamics over time, starting in q1 at (x, y) = (0, 4); events pile up at t = 4

Multi-rate automata can exhibit what is called Zeno behavior [39], where
event times “pile up,” not allowing time to progress; see Fig. 11. In general,
the behavior of multi-rate automata is even more complicated, being compu-
tationally undecidable [21].

There is a simple constraint on multi-rate automata that yields a class that
permits analysis. An initialized multi-rate automaton adds the constraint that
a variable must be reset when traversing an edge if its dynamics change while
crossing that edge. This was not the case for the Zeno system of Fig. 11. This
would be the case for the automaton in Fig. 10 if x and z were initialized on
Edge 1, y and z were initialized on Edge 2, and x, y, and z were initialized
on Edge 3.
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Remark 2. An initialized multi-rate automaton can be converted into a timed
automaton.

Proof. The idea is to use the same trick as in Remark 1, as many times for
each variable as it has different rates. Note that the fact that the automaton
is “initialized” is crucial. See [21] for details.

3.3 Other refinements

Rectangular automata: Going from rates to rectangular inclusions, one can
define rectangular and multi-rectangular automata. Specifically, a rectangu-
lar automaton has each ẋi ∈ [li, ui], where li and ui are rational constants,
uniformly over all locations. Thus, they generalize skewed-clock automata. In-
deed, letting li = ui = ki recovers them. Analogously, multi-rate automata can
be generalized to multi-rectangular automata. That is, each variable satisfies a
(generally different) rectangular inclusion in each location. Usually, rectangu-
lar automata allow the setting of initial values and the resetting of variables to
be performed within rectangles as well. Initialized multi-rectangular automata
are constrained to perform a reset on a variable along edges that change the
rectangular inclusions governing its dynamics.

Remark 3. An initialized multi-rectangular automaton can be converted to an
initialized multi-rate automaton (and hence a timed automaton).

Proof. The idea is to replace each continuous variable, say x, with two vari-
ables, say xl and xu, that track lower and upper bounds on its value, respec-
tively. See [21] for details. Then, invoke Remark 2.

Adding control: A rich control theory for automata models can be built by
allowing the disabling of certain controllable input symbols. See [15,30].

4 Hybrid Dynamical Systems and Hybrid Automata

Briefly, a hybrid dynamical system is an indexed collection of ODEs along with
a map for “jumping” among them (switching the dynamical system and/or
resetting the state). This jumping occurs whenever the state satisfies certain
conditions, given by its membership in a specified subset of the state space.
Hence, the entire system can be thought of as a sequential patching together of
ODEs with initial and final states, the jumps performing a reset to a (generally
different) initial state of a (generally different) ODE whenever a final state is
reached. See Fig. 12.

Formally, a hybrid dynamical system (HDS )3 is a systemH = (Q,Σ,A,G),
with constituent parts as follows:

3A more general notion, GHDS (general HDS ), appears in [7]. It allows each
ODE to be replaced by a general dynamical system; most notably, one could replace
the ODEs with difference equations.
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Fig. 12. Example dynamics of an HDS

• Q is the countable set of index or discrete states.
• Σ = {Σq}q∈Q is the collection of systems of ODEs. Thus, each system Σq

has vector fields fq : Xq → Rdq , representing the continuous dynamics,
evolving on Xq ⊂ Rdq , dq ∈ Z+, which are the continuous state spaces.

• A = {Aq}q∈Q, Aq ⊂ Xq for each q ∈ Q, is the collection of autonomous
jump sets.

• G = {Gq}q∈Q, where Gq : Aq → S are the autonomous jump transition
maps, said to represent the discrete dynamics.

Thus, S =
⋃

q∈QXq ×{q} is the hybrid state space of H. For convenience,
we use the following shorthand. Sq = Xq×{q}, and A =

⋃
q∈QAq×{q} is the

autonomous jump set. G : A −→ S is the autonomous jump transition map,
constructed componentwise in the obvious way. The jump destination sets
D = {Dq}q∈Q may be defined by Dq = π1[G(A) ∩ Sq], where πi is projection
onto the ith coordinate. The switching manifolds or transition manifolds,
Mq,p ⊂ Aq, are given by Mq,p = G−1

q (Dp, p), i.e., the set of states for which
transitions from index q to index p can occur.

The dynamics of the HDS H are as follows.4 The system is assumed to
start in some hybrid state in S\A, say s0 = (x0, q0). It evolves according to
ẋ = fq0(x) until the state enters—if ever—Aq0 at the point s−

1 = (x−
1 , q0). At

4For the solutions described to be well defined, it is sufficient that for all q, Aq is
closed, Dq ∩ Aq = ∅, and fq is Lipschitz continuous. Note, however, that in general
these solutions are not continuous in the initial conditions. See [7] for details.
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this time it is instantly transferred according to transition map to Gq0(x
−
1 ) =

(x1, q1) ≡ s1, from which the process continues.
We now collect some notes about HDS:

• ODEs and automata. First, note that in the case |Q| = 1 and A = ∅
we recover all differential equations. With |Q| = N and each fq ≡ 0, we
recover finite automata.

• Outputs. It is straightforward to add continuous and discrete output maps
for each constituent system to the above model.

• Changing state space and overlaps. The state space may change. This is
useful in modeling component failures or changes in dynamical description
based on autonomous—and later, controlled—events which change it. Ex-
amples include the collision of two inelastic particles or an aircraft mode
transition that changes variables to be controlled [27]. We allow the Xq to
overlap and the inclusion of multiple copies of the same space. This may
be used, for example, to take into account overlapping local coordinate
systems on a manifold [4]. It was also used in the hysteresis example.

• Transition delays. It is possible to model the fact that autonomous jumps
may not be instantaneous by simply adding an autonomous jump delay
map, ∆a : A × V −→ R+. This map associates a (possibly zero) delay
to each autonomous jump. Thus, a jump begins at some time, τ , and is
completed at some later time Γ ≥ τ . This concept is useful as jumps may
be introduced to represent an aggregate set of relatively fast, transitory
dynamics. Also, some commands include a finite delay from issuance to
completion. An example is closing a hydraulic valve.

It is easy to see that the case of HDS with |Q| finite is a coupling of fi-
nite automata and differential equations. Indeed, an HDS can be pictured as
a hybrid automaton as in Fig. 13. There, each node is a constituent ODE,
with the index the name of the node. Each edge represents a possible tran-
sition between constituent systems, labeled by the appropriate condition for
the transition’s being “enabled” and the update of the continuous state (cf.
[20]). The notation ![condition] denotes that the transition must be taken when
enabled.

Example 14 (Bouncing Ball Revisited). We may draw a hybrid automaton
associated with the bouncing ball of Example 4. The velocity resets are au-
tonomous and must occur when the ball hits the ground. See Fig. 14. �

Example 15 (Furnace Revisited). Consider the furnace controller of Example
2, and a goal to keep the temperature around 23 degrees Celsius. To avoid
inordinate switching around the setpoint (known as chattering), we implement
the control with hysteresis as in Fig. 15(left). This controller will

1. Turn the furnace On when it is Off and the temperature falls below 21.
2. Turn the furnace Off when it is On and the temperature rises above 25.
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p : Σp q : Σq

![ x ∈ Mp,q ] / x := Gp(x)

![ x ∈ Mq,p ] / x := Gq(x)

...

...

...

...

Fig. 13. Hybrid automaton representation of an HDS

ẋ = v

v̇ = −mg

![ (x = 0) ∧ (v < 0) ] / v := −ρv

Fig. 14. Hybrid automaton for the bouncing ball of Example 4

Suppose, also, that the furnace should never be on more than 55 minutes
straight, and that it must remain Off for at least 5 minutes. The latter can
be accomplished by adding a timer variable that is reset on state transitions.
The refined hybrid controller is pictured in Fig. 15(right). �

Off

ẋ = f0(x)

On

ẋ = f1(x)

![ x ≥ 25 ]

![ x ≤ 21 ]

Off

ẋ = f0(x)

Ṫ = 1/60

On

ẋ = f1(x)

Ṫ = 1/60

![ (x ≤ 21) ∧ (T ≥ 5) ] / T:=0

![ (x ≥ 25) ∨ (T ≥ 55) ] / T:=0

Fig. 15. Hybrid controllers for furnace: (left) simple hysteresis, (right) refinement

4.1 Adding control

We now add to the above the ability to make decisions, that is, to control an
HDS by choosing among sets of possible actions at various times. Specifically,
we allow (i) the possibility of continuous controls for each ODE, (ii) the ability
to make decisions at the autonomous jump points, and (iii) to add controlled
jumps, where one may decide to jump or not and have a choice of destination
when the state satisfies certain constraints.

Formally, a controlled hybrid dynamical system (CHDS ) is a system Hc =
(Q,Σ,A,G,C,F), with constituent parts as in an HDS, except as follows:
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• Σ = {Σq}q∈Q is now a collection of controlled ODEs, with controlled
vector fields fq : Xq × Uq → Rdq representing the (controlled) continuous
dynamics, where Uq ⊂ Rmq , mq ∈ Z+, are the continuous control spaces.

• G = {Gq}q∈Q, where Gq : Aq × Vq → S are the autonomous jump transi-
tion maps, now modulated by the discrete decision sets Vq.

• C = {Cq}q∈Q, Cq ⊂ Xq, is the collection of controlled jump sets.
• F = {Fq}q∈Q, where Fq : Cq → 2S , is the collection of set-valued controlled

jump destination maps.

Again, S =
⋃

q∈QXq × {q} is the hybrid state space of Hc. As before,
we introduce some shorthand beyond that defined for the HDS above. We let
C =

⋃
q∈Q Cq × {q}; we let F : C → 2S denote the set-valued map composed

in the obvious way from the set-valued maps Fq.
The dynamics of the CHDS Hc are as follows. The system is assumed to

start in some hybrid state in S\A, say s0 = (x0, q0). It evolves according
to ẋ = fq0(x, u) until the state enters—if ever—either Aq0 or Cq0 at the
point s−

1 = (x−
1 , q0). If it enters Aq0 , then it must be transferred according to

transition map Gq0(x
−
1 , v) for some chosen v ∈ Vq0 . If it enters Cq0 , then we

may choose to jump and, if so, we may choose the destination to be any point
in Fq0(x

−
1 ). In either case, we arrive at a point s1 = (x1, q1) from which the

process continues. See Fig. 16.
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Fig. 16. Example dynamics of a CHDS
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A CHDS can also be pictured as an automaton, as in Fig. 17. There, each
node is a constituent controlled ODE, with the index the name of the node.
The notation ?[condition] denotes an enabled transition that may be taken on
command; “:∈” means reassignment to some value in the given set.

p : Σp q : Σq

![ x ∈ Mp,q ] / x := Gp(x)

![ x ∈ Mq,p ] / x := Gq(x)

...

...

...

...

?[ x ∈ Cp ] / x :∈ Fp(x)

?[ x ∈ Cq ] / x :∈ Fq(x)

Fig. 17. Hybrid automaton representation of a CHDS

Example 16 (Transmission Revisited). Some modern performance sedans offer
the driver the ability to shift gears electronically. However, there are often
rules in place that prevent certain shifts, or automatically perform certain
shifts, to maintain safe operation and reduce wear. These rules are often a
function of the engine RPM (x2 in Example 6). A portion of the hybrid
controller incorporating such logic is shown in Fig. 18. The rules pictured
only allow the driver to shift from Gear 1 to Gear 2 if the RPM exceeds 1800,
but automatically makes this switch if the RPM exceeds 3500. Similar rules
would exist for higher gears; more complicated rules might exist regarding
Neutral and Reverse. �

. . .

Gear 1

ẋ1 = x2

ẋ2 = [−a(x2) + u]/2

Gear 2

ẋ1 = x2

ẋ2 = [−a(x2/2) + u]/3

. . .

![ x2 ≥ 3500 ], ?[ x2 ≥ 1800 ]

![ x2 ≤ 1200 ], ?[ x2 ≤ 2000 ]

Fig. 18. Portion of hybrid transmission controller
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5 Going Further

A survey of the hybrid systems literature is well beyond the scope of this
chapter. For early surveys and more details on hybrid systems modeling, see
[2,7,19]. For a recent monograph on switching systems, see [24]. Analysis and
control techniques for hybrid systems have been developed. See [7] for details
and [9] for a summary. For a more complete survey of stability tools, see [8,16].
The papers [10,11,13] developed an optimal control theory and algorithms for
designing hybrid control systems. A game theoretic approach appears in [34].
For an introduction to hybrid systems simulation, see [12].
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1 Introduction

The term ‘finite automata’ describes a class of models of computation that
are characterised by having a finite number of states. The use of the word ‘au-
tomata’ harks back to the early days of the subject in the 1950’s when they
were viewed as abstract models of real circuits. However, the readers of this
chapter can also view them as being implemented by programming languages,
or as themselves constituting a special class of programming languages. Taking
this latter viewpoint, finite automata form a class of programming languages
with very restricted operation sets: roughly speaking, programs where there
is no recursion or looping. In particular, none of them is a universal program-
ming language; indeed, it is possible to prove that some quite straightforward
operations cannot be programmed even with the most general automata I
discuss. Why, then, should anyone be interested in programming with, as it
were, one hand tied behind his back? The answer is that automata turn out
to be useful — so they are not merely mathematical curiosities. In addition,
because they are restricted in what they can do, we can actually say more
about them, which in turn helps us manipulate them.

The most general model I discuss in this chapter is that of a finite trans-
ducer, in Section 3.3, but I build up to this model in Sections 2, 3.1, and 3.2
by discussing, in increasing generality: finite acceptors, finite purely sequen-
tial transducers, and finite sequential transducers. The finite acceptors form
the foundation of the whole enterprise through their intimate link with regu-
lar expressions and, in addition, they form the pattern after which the more
general theories are modeled.

What then are the advantages of the various kinds of finite transducers
considered in this chapter? There are two main ones: the speed with which
data can be processed by such a device, and the algorithms that enable one
to make the devices more efficient. The fact that finite transducers of vari-
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ous kinds have turned out to be useful in natural language processing is a
testament to both of these advantages [23]. I discuss the advantages of finite
transducers in a little more detail in Section 4.

To read this chapter, I have assumed that you have been exposed to a first
course in discrete math(s); you need to know a little about sets, functions, and
relations, but not much more. My goal has been to describe the core of the
theory in the belief that once the basic ideas have been grasped, the business
of adding various bells and whistles can easily be carried out according to
taste.

Other reading There are two classic books outlining the theory of finite
transducers: Berstel [4] and Eilenberg [12]. Of these, I find Berstel’s 1979
book the more accessible. However, the theory has moved on since 1979, and
in the course of this chapter I refer to recent papers that take the subject up
to the present day. In particular, the paper [24] contains a modern, mathemat-
ical approach to the basic theory of finite transducers. The book by Jacques
Sakarovitch [30] is a recent account of automata theory that is likely to become
a standard reference. The chapters by Berstel and Perrin [6], on algorithms on
words, and by Laporte [21], on symbolic natural language processing, both to
be found in the forthcoming book by M. Lothaire, are excellent introductions
to finite automata and their applications. The articles [25] and [35] are inter-
esting in themselves and useful for their lengthy bibliographies. My chapter
deals entirely with finite strings — for the theory of infinite strings see [26].
Finally, finite transducers are merely a part of theoretical computer science;
for the big picture, see [17].

Terminology This has not been entirely standardised so readers should be on
their guard when reading papers and books on finite automata. Throughout
this chapter I have adopted the following terminology introduced by Jacques
Sakarovitch and suggested to me by Jean-Eric Pin: a ‘purely sequential func-
tion’ is what is frequently referred to in the literature as a ‘sequential function’;
whereas a ‘sequential function’ is what is frequently referred to as a ‘subse-
quential function’. The new terminology is more logical than the old, and
signals more clearly the role of sequential functions (in the new sense).

2 Finite Acceptors

The automata in this section might initially not seem very useful: their re-
sponse to an input is to output either a ‘yes’ or a ‘no’. However, the concepts
and ideas introduced here provide the foundation for the rest of the chapter,
and a model for the sorts of things that finite automata can do.
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2.1 Alphabets, strings, and languages

Information is encoded by means of sequences of symbols. Any finite setA used
to encode information will be called an alphabet, and any finite sequence whose
components are drawn from A is called a string over A or simply a string,
and sometimes a word. We call the elements of an alphabet symbols, letters,
or tokens. The symbols in an alphabet do not have to be especially simple;
an alphabet could consist of pictures, or each element of an alphabet could
itself be a sequence of symbols. A string is formally written using brackets and
commas to separate components. Thus (now, is, the,winter, of, our,discontent)
is a string over the alphabet whose symbols are the words in an English
dictionary. The string () is the empty string. However, we shall write strings
without brackets and commas and so, for instance, we write 01110 rather
than (0, 1, 1, 1, 0). The empty string needs to be recorded in some way and we
denote it by ε. The set of all strings over the alphabet A is denoted by A∗,
read ‘A star’. If w is a string then |w | denotes the total number of symbols
appearing in w and is called the length of w. Observe that | ε | = 0. It is worth
noting that two strings u and v over an alphabet A are equal if they contain
the same symbols in the same order.

Given two strings x, y ∈ A∗, we can form a new string x · y, called the
concatenation of x and y, by simply adjoining the symbols in y to those in
x. We shall usually denote the concatenation of x and y by xy rather than
x · y. The string ε has a special property with respect to concatenation: for
each string x ∈ A∗ we clearly have that εx = x = xε. It is important to
emphasise that the order in which strings are concatenated is important: thus
xy is generally different from yx.

There are many definitions concerned with strings, but for this chapter I
just need two. Let x, y ∈ A∗. If u = xy then x is called a prefix of u, and y is
called a suffix of u.

Alphabets and strings are needed to define the key concept of this section:
that of a language. Before formally defining this term, here is a motivating
example.

Example 1. Let A be the alphabet that consists of all words in an English
dictionary; so we regard each English word as being a single symbol. The set
A∗ consists of all possible finite sequences of words. Define the subset L of A∗

to consist of all sequences of words that form grammatically correct English
sentences. Thus

to be or not to be∈ L
whereas

be be to to or not /∈ L.

Someone who wants to understand English has to learn the rules for deciding
when a string of words belongs to the set L. We can therefore think of L as
being the English language.
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For any alphabet A, any subset of A∗ is called an A-language or a language
over A or simply a language. Languages are usually infinite; the question we
shall address in Section 2.2 is to find a finite way of describing (some) infinite
languages.

There are a number of ways of combining languages to make new ones. If
L and M are languages over A so are L ∩M , L ∪M , and L′: respectively,
the intersection of L and M , the union of L and M , and the complement of
L. These are called the Boolean operations and come from set theory. Recall
that ‘x ∈ L ∪M ’ means ‘x ∈ L or x ∈ M or both.’ In automata theory, we
usually write L+M rather than L ∪M when dealing with languages. There
are two further operations on languages that are peculiar to automata theory
and extremely important: the product and the Kleene star. Let L and M be
languages. Then

L ·M = {xy : x ∈ L and y ∈M}
is called the product of L and M . We usually write LM rather than L ·M . A
string belongs to LM if it can be written as a string in L followed by a string
in M . For a language L, we define L0 = {ε}, and Ln+1 = Ln ·L. For n > 0, the
language Ln consists of all strings u of the form u = x1 . . . xn where xi ∈ L.
The Kleene star of a language L, denoted L∗, is defined to be

L∗ = L0 + L1 + L2 + . . . .

2.2 Finite acceptors

An information-processing device transforms inputs into outputs. In general,
there are two alphabets associated with such a device: an input alphabet A for
communicating with it, and an output alphabet B for receiving answers. For
example, consider a device that takes as input sentences in English and out-
puts the corresponding sentence in Russian. In later sections, I shall describe
mathematical models of such devices of increasing generality. In this section,
I shall look at a special case: there is an input alphabet A, but each input
string causes the device to output either ‘yes’ or ‘no’ once the whole input
has been processed. Those input strings from A∗ that cause the machine to
output ‘yes’ are said to be accepted by the machine, and those that cause it
to output ‘no’ are said to be rejected. In this way, A∗ is partitioned into two
subsets: the ‘yes’ subset we call the language accepted by the machine, and
the ‘no’ subset we call the language rejected by the machine. A device that
operates in this way is called an acceptor. We shall describe a mathematical
model of a special class of acceptors. Our goal is to describe potentially infinite
languages by finite means.

A finite (deterministic) acceptor A is specified by five pieces of informa-
tion:

A = (S,A, i, δ, T ) ,

where S is a finite set called the set of states, A is the finite input alphabet, i
is a fixed element of S called the initial state, δ is a function δ : S × A→ S,
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called the transition function, and T is a subset of S (possibly empty!) called
the set of terminal or final states.

There are two ways of providing the five pieces of information needed to
specify an acceptor: transition diagrams and transition tables. A transition
diagram is a special kind of directed labeled graph: the vertices are labeled
by the states S of A; there is an arrow labeled a from the vertex labeled
s to the vertex labeled t precisely when δ(s, a) = t in A. That is to say,
the input a causes the acceptor A to change from state s to state t. Finally,
the initial state and terminal states are distinguished in some way: we mark
the initial state by an inward-pointing arrow, �� i��������, and the terminal

states by double circles t��������	
����� . A transition table is just a way of describing the
transition function δ in tabular form and making clear in some way the initial
and terminal states. The table has rows labeled by the states and columns
labeled by the input letters. At the intersection of row s and column a we put
the element δ(s, a). The states labeling the rows are marked to indicate the
initial state and the terminal states.

Example 2. Here is a simple example of a transition diagram of a finite accep-
tor.

����������s
a

�� b ������������������t b��a
��

We can easily read off the five ingredients that specify an acceptor from this
diagram:

• The set of states is S = {s, t}.
• The input alphabet is A = {a, b}.
• The initial state is s.
• The set of terminal states is {t}.

The transition function δ : S ×A→ S is given by

δ(s, a) = s, δ(s, b) = t, δ(t, a) = s, and δ(t, b) = t.

Here is the transition table of our acceptor.

a b
→ s s t
← t s t

We designate the initial state by an inward-pointing arrow→ and the terminal
states by outward-pointing arrows ←. If a state is both initial and terminal,
then the inward- and outward-pointing arrows will be written as a single
double-headed arrow ↔.
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To avoid too many arrows cluttering up a transition diagram, the following
convention is used: if the letters a1, . . . , am label m transitions from the state
s to the state t, then we simply draw one arrow from s to t labeled a1, . . . , am

rather than m arrows labeled a1 to am, respectively.
Let A be a finite acceptor with input alphabet A and initial state i. For

each state q of A and for each input string x, there is a unique path in A
that begins at q and is labeled by the symbols in x in turn. This path ends
at a state we denote by q · x. We say that x is accepted by A if i · x is a
terminal state. That is, x labels a path in A that begins at the initial state
and ends at a terminal state. Define the language accepted or recognised by
A, denoted L(A), to be the set of all strings in the input alphabet that are
accepted by A. A language is said to be recognisable if it is accepted by some
finite automaton. Observe that the empty string is accepted by an automaton
if and only if the initial state is also terminal.

Example 3. We describe the language recognised by our acceptor in Exam-
ple 2. We have to find all those strings in (a+ b)∗ that label paths starting at
s and finishing at t. First, any string x ending in a ‘b’ will be accepted. To see
why, let x = x′b where x′ ∈ A∗. If x′ leads the acceptor to state s, then the b
will lead the acceptor to state t; and if x′ leads the acceptor to state t, then
the b will keep it there. Second, a string x ending in ‘a’ will not be accepted.
To see why, let x = x′a where x′ ∈ A∗. If x′ leads the acceptor to state s, then
the a will keep it there; and if x′ leads the acceptor to state t, then the a will
send it to state s. We conclude that L(A) = A∗{b}.

Here are some further examples of recognisable languages. I leave it as an
exercise to the reader to construct suitable finite acceptors.

Example 4. Let A = {a, b}.

(i) The empty set ∅ is recognisable.
(ii) The language {ε} is recognisable.
(iii) The languages {a} and {b} are recognisable.

It is worth pointing out that not all languages are recognisable. For ex-
ample, the language consisting of those strings of a’s and b’s having an equal
number of a’s and b’s is not recognisable.

One very important feature of finite (deterministic) acceptors needs to
be highlighted, since it has great practical importance. The time taken for a
finite acceptor to determine whether a string is accepted or rejected is a linear
function of the length of the string; once a string has been completely read,
we will have our answer.

The classic account of the theory of finite acceptors and their languages
is contained in the first three chapters of [16]. The first two chapters of my
book [22] describe the basics of finite acceptors at a more elementary level.
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2.3 Non-deterministic ε-acceptors

The task of constructing a finite acceptor to recognise a given language can
be a frustrating one. The chief reason for the difficulty is that finite acceptors
are quite rigid: they have one initial state, and for each input letter and each
state exactly one transition. Our first step, then, will be to relax these two
conditions.

A finite non-deterministic acceptor A is determined by five pieces of
information:

A = (S,A, I, δ, T ),

where S is a finite set of states, A is the input alphabet, I is a set of initial
states, δ : S × A → P(S) is the transition function, where P(S) is the set
of all subsets of S, and T is a set of terminal states. In addition to allowing
any number of initial states, the key feature of this definition is that δ(s, a)
is now a subset of S, possibly empty. The transition diagrams and transition
tables we defined for deterministic acceptors can easily be adapted to describe
non-deterministic ones. If q is a state and x a string, then the set of all states
q′ for which there is a path in A beginning at q, ending at q′, and labeled by
x is denoted by q · x. The language L(A) recognised by a non-deterministic
acceptor consists of all those strings in A∗ that label a path in A from at least
one of the initial states to at least one of the terminal states.

It might be thought that, because there is a degree of choice available,
non-deterministic acceptors might be able to recognise languages that deter-
ministic ones could not. In fact, this is not so.

Theorem 1. Let A be a finite non-deterministic acceptor. Then there is an
algorithm for constructing a deterministic acceptor, Ad, such that L(Ad) =
L(A).

We now introduce a further measure of flexibility in constructing acceptors.
In both deterministic and non-deterministic acceptors, transitions may only be
labeled with elements of the input alphabet; no edge may be labeled with the
empty string ε. We shall now waive this restriction. A finite non-deterministic
acceptor with ε-transitions or, more simply, a finite ε-acceptor, is a 5-tuple,

A = (S,A, I, δ, T ),

where all the symbols have the same meanings as in the non-deterministic
case except that now

δ : S × (A ∪ {ε})→ P(S).

The only difference between such acceptors and non-deterministic ones is that
we allow transitions, called ε-transitions, of the form

����������s ε ����������t
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A path in an ε-acceptor is a sequence of states each labeled by an element
of the set A∪ {ε}. The string corresponding to this path is the concatenation
of these labels in order; it is important to remember at this point that for
every string x we have that εx = x = xε. We say that a string x is accepted
by an ε-automaton if there is a path from an initial state to a terminal state
the concatenation of whose labels is x.

Example 5. Consider the following finite ε-acceptor:

���������� ε ��

a

��

��������
b

����������
ε

���
��

��
��

� ��������
ε

����������������� 
The language it recognises is {a, b}. The letter a is recognised because aε labels
a path from the initial to the terminal state, and the letter b is recognised
because εbε labels a path from the initial to the terminal state.

The existence of ε-transitions introduces a further measure of flexibility
in building acceptors but, as the following theorem shows, we can convert
such acceptors to non-deterministic automata without changing the language
recognised.

Theorem 2. Let A be a finite ε-acceptor. Then there is an algorithm that
constructs a non-deterministic acceptor without ε-transitions, As, such that
L(As) = L(A).

Example 6. We can use ε-acceptors to prove that if L and M are recognisable
languages, then so is LM . By assumption, we are given two acceptors A and
B such that L(A) = L and L(B) = M . We picture A and B schematically as
follows:

��������	
�����

���������� A

��������	
�����

and

��������	
�����

���������� B

��������	
�����
Now construct the following ε-acceptor: from each terminal state of A draw
an ε-transition to the initial state of B. Make each of the terminal states of



www.manaraa.com

Finite Automata 125

A ordinary states and make the initial state of B an ordinary state. Call the
resulting acceptor C. This can be pictured as follows:

��������
ε

���
��

��
��

�
��������	
�����

���������� A �������� B

��������
ε

���������� ��������	
�����
It is easy to see that this ε-acceptor recognises LM . By Theorem 2, we can
construct a non-deterministic acceptor recognising LM , and by Theorem 1
we can convert this non-deterministic acceptor into a deterministic acceptor
recognising LM . We have therefore proved that LM is recognisable.

Using the idea of Example 6, the following can easily be proved.

Theorem 3. Let A be an alphabet and L and M be languages over A.

(i) If L and M are recognisable then L+M is recognisable.
(ii) If L and M are recognisable then LM is recognisable.
(iii) If L is recognisable then L∗ is recognisable.

It is worth mentioning that the recognisable languages are closed under all
the Boolean operations: thus if L and M are recognisable so too are L ∩M ,
L + M , and L′. Furthermore, given finite deterministic acceptors for L and
M , it is easy to construct directly finite deterministic acceptors for L ∩M ,
L+M , and L′. The proof of this can be found in Chapter 2 of [22].

The explicit algorithms for constructing deterministic acceptors from non-
deterministic ones (‘the subset construction’), and non-deterministic acceptors
from ε-acceptors are described in most books on automata theory; see [16],
and Chapters 3 and 4 of [22], for example.

2.4 Kleene’s theorem

This is now a good opportunity to reflect on which languages we can now prove
are recognisable. I want to pick out four main results. Let A = {a1, . . . , an}.
Then from Example 4 and Theorem 3, we have the following:

• Each of the languages ∅, {ε}, and {ai} is recognisable.
• The union of two recognisable languages is recognisable.
• The product of two recognisable languages is recognisable.
• The Kleene star of a recognisable language is recognisable.
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Call a language over an alphabet basic if it is either empty, consists of the
empty string alone, or consists of a single symbol from the alphabet. Then
what we have proved is the following: a language that can be constructed from
the basic languages by using only the operations +, ·, and ∗ a finite number of
times must be recognisable. Such a language is said to be regular or rational.

Example 7. Consider the language L over the alphabet {a, b} that consists of
all strings of even length. We shall show that this is a regular language. A
string of even length is either empty, or can be written as a product of strings
of length 2. Conversely every string that can be written as a product of strings
of length 2 has even length. It follows that

L = ((({a}{a}+ {a}{b}) + {b}{a}) + {b}{b})∗.

Thus L is regular.

In the example above, we would much rather write

L = (aa+ ab+ ba+ bb)∗

for clarity. How to do this in general is formalised in the notion of a ‘regular
expression.’ Let A = {a1, . . . , an} be an alphabet. A regular expression (over
A) or rational expression (over A) is a sequence of symbols formed by repeated
application of the following rules:

(R1) ∅ is a regular expression.
(R2) ε is a regular expression.
(R3) a1, . . . , an are each regular expressions.
(R4) If s and t are regular expressions then so is (s+ t).
(R5) If s and t are regular expressions then so is (s · t).
(R6) If s is a regular expression then so is (s∗).
(R7) Every regular expression arises by a finite number of applications of the

rules (R1) through (R6).

As usual, we will write st rather than s · t. Each regular expression s describes
a regular language, denoted by L(s). This language is calculated by means of
the following rules. Simply put, they tell us how to ‘insert the curly brackets.’

(D1) L(∅) = ∅.
(D2) L(ε) = {ε}.
(D3) L(ai) = {ai}.
(D4) L(s+ t) = L(s) + L(t).
(D5) L(s · t) = L(s) · L(t).
(D6) L(s∗) = L(s)∗.

It is also possible to get rid of many of the left and right brackets that occur in a
regular expression by making conventions about the precedence of the regular
operators. When this is done, regular expressions form a useful notation for
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describing regular languages. However, if a language is described in some other
way, it may be necessary to carry out some work to find a regular expression
that describes it; Example 7 illustrates this point.

The first major result in automata theory is the following, known as
Kleene’s theorem.

Theorem 4. A language is recognisable if and only if it is regular. In par-
ticular, there are algorithms that accept as input a regular expression r, and
output a finite acceptor A such that L(A) = L(r); and there are algorithms
that accept as input a finite acceptor A, and output a regular expression r
such that L(r) = L(A).

This theorem is significant for two reasons: first, it tells us that there is
an algorithm that enables us to construct an acceptor recognising a language
from a suitable description of that language; second, it tells us that there is
an algorithm that will produce a description of the language recognised by an
acceptor.

A number of different proofs of Kleene’s theorem may be found in Chap-
ter 5 of [22]. For further references on how to convert regular expressions into
finite acceptors, see [5] and [7]. Regular expressions as I have defined them are
useful for proving Kleene’s theorem but hardly provide a convenient tool for
describing regular languages over realistic alphabets containing large numbers
of symbols. The practical side of regular expressions is described by Friedl [14]
who shows how to use regular expressions to search texts.

2.5 Minimal automata

In this section, I shall describe an important feature of finite acceptors that
makes them particularly useful in applications: the fact that they can be
minimised. I have chosen to take the simplest approach in describing this
property, but at the end of this section, I describe a more sophisticated one
needed in generalisations.

Given a recognisable language L, there will be many finite acceptors that
recognise L. All things being equal, we would usually want to pick the smallest
such acceptor: namely, one having the smallest number of states. It is conceiv-
able that there could be two different acceptors A1 and A2 both recognising
L, both having the same number of states, and sharing the additional property
that there is no acceptor with fewer states recognising L. In this section, I shall
explain why this cannot happen. This result has an important consequence:
every recognisable language is accepted by an essentially unique smallest ac-
ceptor. To show that this is true, we begin by showing how an acceptor may
be reduced in size without changing the language recognised. There are two
methods that can be applied, each dealing with a different kind of inefficiency.

The first method removes states that cannot play any role in deciding
whether a string is accepted. Let A = (S,A, i, δ, T ) be a finite acceptor. We
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say that a state s ∈ S is accessible if there is a string x ∈ A∗ such that i·x = s.
Observe that the initial state itself is always accessible because i · ε = i. A
state that is not accessible is said to be inaccessible. An acceptor is said to be
accessible if every state is accessible. It is clear that the inaccessible states of
an automaton can play no role in accepting strings; consequently, we expect
that they could be removed without the language being changed. This turns
out to be the case.

Theorem 5. Let A be a finite acceptor. Then there is an algorithm that con-
structs an accessible acceptor, Aa, such that L(Aa) = L(A).

The second method identifies states that ‘do the same job.’ Let A =
(S,A, i, δ, T ) be an acceptor. Two states s, t ∈ S are said to be distinguishable
if there exists x ∈ A∗ such that

(s · x, t · x) ∈ (T × T ′) ∪ (T ′ × T ),

where T ′ is the set of non-terminal states. In other words, for some string x,
one of the states s · x and t · x is terminal and the other non-terminal. The
states s and t are said to be indistinguishable if they are not distinguishable.
This means that for each x ∈ A∗ we have that

s · x ∈ T ⇔ t · x ∈ T.

Define the relation �A on the set of states S by

s �A t⇔ s and t are indistinguishable.

We call�A the indistinguishability relation, and it is an equivalence relation. It
can happen, of course, that each pair of states in an acceptor is distinguishable:
in other words, the relation �A is equality. We say that such an acceptor is
reduced.

Theorem 6. Let A be a finite acceptor. Then there is an algorithm that con-
structs a reduced acceptor, Ar, such that L(Ar) = L(A).

Our two methods can be applied to an acceptor A in turn yielding an
acceptor Aar = (Aa)r that is both accessible and reduced. The reader may
wonder at this point whether there are other methods for removing states.
We shall see that there are not.

We now come to a fundamental definition. Let L be a recognisable lan-
guage. A finite deterministic acceptor A is said to be minimal (for L) if
L(A) = L, and if B is any finite acceptor such that L(B) = L, then the num-
ber of states of A is less than or equal to the number of states of B. Minimal
acceptors for a language L certainly exist. The problem is to find a way of
constructing them. Our search is narrowed down by the following observation
whose simple proof is left as an exercise: if A is minimal for L, then A is both
accessible and reduced.
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In order to realise the main goal of this section, we need to have a precise
mathematical definition of when two acceptors are essentially the same: one
that we can check in a systematic way however large the automata involved.
The definition below provides the answer to this question.

Let A = (S,A, s0, δ, F ) and B = (Q,A, q0, γ,G) be two acceptors with
the same input alphabet A. An isomorphism θ from A to B is a function
θ : S → Q satisfying the following four conditions:

(IM1) The function θ is bijective.
(IM2) θ(s0) = q0.
(IM3) s ∈ F ⇔ θ(s) ∈ G.
(IM4) θ(δ(s, a)) = γ(θ(s), a) for each s ∈ S and a ∈ A.

If there is an isomorphism from A to B we say that A is isomorphic
to B. Isomorphic acceptors may differ in their state labeling and may look
different when drawn as directed graphs, but by suitable relabeling, and by
moving states and bending transitions, they can be made to look identical.
Thus isomorphic automata are ‘essentially the same’ meaning that they differ
in only trivial ways.

Theorem 7. Let L be a recognisable language. Then L has a minimal accep-
tor, and any two minimal acceptors for L are isomorphic. A reduced accessible
acceptor recognising L is a minimal acceptor for L.

Remark It is worth reflecting on the significance of this theorem, particularly
since in the generalisations considered later in this chapter, a rather more
subtle notion of ‘minimal automaton’ has to be used. Theorem 7 tells us that
if by some means we can find an acceptor for a language, then by applying
a couple of algorithms, we can convert it into the smallest possible acceptor
for that language. This should be contrasted with the situation for arbitrary
problems where, if we find a solution, there are no general methods for making
it more efficient, and where the concept of a smallest solution does not even
make sense. The above theorem is therefore one of the benefits of working
with a restricted class of operations.

The approach I have adopted to describing a minimal acceptor can be
generalised in a straightforward fashion to the Moore and Mealy machines I
describe in Section 3.1. However, when I come to the sequential transducers of
Section 3.2, this naive approach breaks down. In this case, it is indeed possible
to have two sequential transducers that do the same job, are as small as possi-
ble, but which are not isomorphic. A specific example of this phenomenon can
be found in [27]. However, it transpires that we can still pick out a ‘canonical
machine’ that also has the smallest possible number of states. The construc-
tion of this canonical machine needs slightly more sophisticated mathematics;
I shall outline how this approach can be carried out for finite acceptors.

The finite acceptors I have defined are technically speaking the ‘complete
finite acceptors.’ An incomplete finite acceptor is defined in the same way as
a complete one except that we allow the transition function to be a partial
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function. Clearly, we can convert an incomplete acceptor into a complete one
by adjoining an extra state and defining appropriate transitions. However,
there is no need to do this: incomplete acceptors bear the same relationship
to complete ones as partial functions do to (globally defined) functions, and in
computer science it is the partial functions that are the natural functions to
consider. For the rest of this paragraph, ‘acceptor’ will mean one that could be
incomplete. One way of simplifying an acceptor is to remove the inaccessible
states. Another way of simplifying an acceptor is to remove those states s for
which there is no string x such that s · x is terminal. An acceptor with the
property that for each state s there is a string x such that s · x is terminal is
said to be coaccessible. Clearly, if we prune an acceptor of those states that
are not coaccessible, the resulting acceptor is coaccessible. The reader should
observe that if this procedure is carried out on a complete acceptor, then the
resulting acceptor could well be incomplete. This is why I did not define this
notion earlier. Acceptors that are both accessible and coaccessible are said
to be trim. It is possible to define what we mean by a ‘morphism’ between
acceptors; I shall not make a formal definition here, but I will explain how
they can be used. Let L be a recognisable language, and consider all the trim
acceptors recognising L. If A and B are two such acceptors, it can be proved
that there is at most one morphism from A to B. If there is a morphism from
A to B, and from B to A, then A and B are said to be ‘isomorphic’; this
has the same significance as my earlier definition of isomorphic. The key point
now is this:

there is a distinguished trim acceptor AL recognising L characterised
by the property that for each trim acceptor A recognising L there is a,
necessarily unique, morphism from A to AL.

It turns out that AL can be obtained from A by a slight generalisation of the
reduction process I described earlier. By definition, AL is called the minimal
acceptor for L. It is a consequence of the defining property of AL that AL has
the smallest number of states amongst all the trim acceptors recognising L.
The reader may feel that this description of the minimal acceptor merely com-
plicates my earlier, more straightforward, description. However, the important
point is this: the characterisation of the minimal acceptor in the terms I have
highlighted above generalises, whereas its characterisation in terms of having
the smallest possible number of states does not. A full mathematical justifi-
cation of the claims made in this paragraph can be found in Chapter III of [12].

A simple algorithm for minimising an acceptor and an algorithm for con-
structing a minimal acceptor from a regular expression are described in Chap-
ter 7 of [22]. For an introduction to implementing finite acceptors and their
associated algorithms, see [34].
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3 Finite Transducers

In Section 2, I outlined the theory of finite acceptors. This theory tells us
about devices where the response to an input is simply a ‘yes’ or a ‘no’. In
this section, I describe devices that generalise acceptors but generate outputs
that provide more illuminating answers to questions. Section 3.1 describes
how to modify acceptors so that they generate output. It turns out that there
are two ways to do this: either to associate outputs with states, or to associate
outputs with transitions. The latter approach is the one adopted for general-
isations. Section 3.2 describes the most general way of generating output in a
sequential fashion, and Section 3.3 describes the most general model of ‘finite
state devices.’

3.1 Finite purely sequential transducers

I shall begin this section by explaining how finite acceptors can be adapted
to generate outputs.

A language L is defined to be a subset of some A∗, where A is any alphabet.
Subsets of sets can also be defined in terms of functions. To see how, let X
be a set, and let Y ⊆ X be any subset. Define a function

χY : X → 2 = {0, 1}

by

χY (x) =
{

1 if x ∈ Y
0 if x /∈ Y .

The function χY , which contains all the information about which elements
belong to the subset Y , is called the characteristic function of the subset Y .
More generally, any function

χ : X → 2

defines a subset of X: namely, the set of all x ∈ X such that χ(x) = 1. It
is not hard to see that subsets of X and characteristic functions on X are
equivalent ways of describing the same thing. It follows that languages over
A can be described by functions χ : A∗ → 2, and vice versa.

Suppose now that L is a language recognised by the acceptor A =
(Q,A, i, δ, T ). We should like to regard A as calculating the characteristic
function χL of L. To do this, we need to make some minor alterations to A.
Rather than labeling a state as terminal, we shall instead add the label ‘1’ to
the state; thus if the state q is terminal, we shall relabel it as q/1. If a state
q is not terminal, we shall relabel it as q/0. Clearly with this labeling, we can
dispense with the set T since it can be recovered as those states q labeled ‘1’.
What we have done is define a function λ : Q → 2. Our ‘automaton’ is now
described by the following information: B = (Q,A,2, q0, δ, λ). To see how this
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automaton computes the characteristic function, we need an auxiliary func-
tion ωB : A∗ → (0 + 1)∗, which is defined as follows. Let x = x1 . . . xn be a
string of length n over A, and let the states B passes through when processing
x be q0, q1, . . . , qn. Thus

q0
x1−→ q1

x2−→ . . .
xn−→ qn.

Define the string
ωB(x) = λ(q0)λ(q1) . . . λ(qn).

Thus ωB : A∗ → (0 + 1)∗ is a function such that

ωB(ε) = λ(q0) and |ωB(x)| = |x|+ 1.

The characteristic function of the language L(A) is the function ρωB : A∗ → 2,
where ρ is the function that outputs the rightmost letter of a non-empty string.

For the automaton B, I have defined two functions: ωB : A∗ → (0 +
1)∗, which I shall call the output response function of the automaton B, and
χB : A∗ → 2, which I shall call the characteristic function of the automaton
B. I shall usually just write ω and χ when the automaton in question is clear.
We have noted already that χ = ρω. On the other hand,

ω(x1 . . . xn) = χ(ε)χ(x1)χ(x1x2) . . . χ(x1 . . . xn).

Thus knowledge of either one of ω and χ is enough to determine the other;
both are legitimate output functions, and which one we use will be decided
by the applications we have in mind. To make these ideas more concrete, here
is an example.

Example 8. Consider the finite acceptor A below

�� !"#$%&'(��������q a,b �� !"#$%&'(r
a,b

��

The language L(A) consists of all those strings in (a+ b)∗ of even length. We
now convert it into the automaton B described above

�� )*+,-./0q/1
a,b �� )*+,-./0r/0
a,b

��

We can calculate the value of the output response function ω : (a + b)∗ →
(0 + 1)∗ on the string aba by observing that in processing this string we pass
through the four states: q, r, q, and r. Thus ω(aba) = 1010. By definition,
χ(aba) = 0.

There is nothing sacrosanct about the set 2 having two elements. We
could just as well replace it by any alphabet B, and so view an automaton as
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computing functions from A∗ to B. This way of generating output from an
automaton leads to the following definition.

A finite Moore machine, A = (Q,A,B, q0, δ, λ), consists of the following
ingredients: Q is a finite set of states, A is the input alphabet, B is the output
alphabet, q0 is the initial state, δ : Q× A→ Q is the transition function, and
λ : Q → B tells us the output associated with each state. As in our special
case where B = 2, we can define the output response function ωA : A∗ → B∗

and the characteristic function χA : A∗ → B; as before, knowing one of these
functions means we know the other. When drawing transition diagrams of
Moore machines the function λ is specified on the state q by labeling this
state q/λ(q). The same idea can be used if the Moore machine is specified by
a transition table.

Example 9. Here is an example of a finite Moore machine where the output
alphabet has more than two letters.

�� )*+,-./0q/0

b

		
a �� )*+,-./0r/1 b



a

����
��

��
��

�

)*+,-./0s/2

a

��

b



Here the input alphabet A = {a, b} and the output alphabet is B = {0, 1, 2}.
In the table below, I have calculated the values of ω(x) and χ(x) for various
input strings x.

x ω(x) χ(x)
ε 0 0
a 01 1
b 00 0
aa 012 2
ab 011 1
ba 001 1
bb 000 0
aaa 0120 0
aab 0122 2
aba 0112 2
abb 0111 1
baa 0012 2
bab 0011 1
bba 0001 1
bbb 0000 0
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It is natural to ask under what circumstances a function f : A∗ → B
is the characteristic function of some finite Moore machine. One answer to
this question is provided by the theorem below, which can be viewed as an
application of Kleene’s theorem. For a proof see Theorem XI.6.1 of [12].

Theorem 8. Let f : A∗ → B be an arbitrary function. Then there is a finite
Moore machine A with input alphabet A and output alphabet B such that
f = χA, the characteristic function of A, if and only if for each b ∈ B the
language f−1(b) is regular.

Moore machines are not the only way in which output can be generated. A
Mealy machine A = (Q,A,B, q0, δ, λ) consists of the following ingredients: Q
is a finite set of states, A is the input alphabet, B is the output alphabet, q0
is the initial state, δ : Q×A→ Q is the transition function, and λ : Q×A→
B associates an output symbol with each transition. The output response
function ωA : A∗ → B∗ of the Mealy machine A is defined as follows. Let
x = x1 . . . xn be a string of length n over A, and let the states A passes
through when processing x be q0, q1, . . . , qn. Thus

q0
x1−→ q1

x2−→ . . .
xn−→ qn.

Define
ωA(x) = λ(q0, x1)λ(q1, x2) . . . λ(qn−1, xn).

Thus ωA : A∗ → (0 + 1)∗ is a function such that

ωA(ε) = ε and |ωA(x)| = |x|.

Although Moore machines generate output when a state is entered, and
Mealy machines during a transition, the two formalisms have essentially the
same power. The simple proofs of the following two results can be found as
Theorems 2.6 and 2.7 of [16].

Theorem 9. Let A and B be finite alphabets.

(i) Let A be a finite Moore machine with input alphabet A and output alphabet
B. Then there is a finite Mealy machine B with the same input and output
alphabets and a symbol a ∈ A such that χA = aχB.

(ii) Let A be a finite Mealy machine with input alphabet A and output alphabet
B. Then there is a finite Moore machine B with the same input and output
alphabets and a symbol a ∈ A such that χB = aχA.

A partial function f : A∗ → B∗ is said to be prefix-preserving if for all
x, y ∈ A∗ such that f(xy) is defined, the string f(x) is a prefix of f(xy). From
Theorems 8 and 9, we may deduce the following characterisation of the output
response functions of finite Mealy machines.

Theorem 10. A function f : A∗ → B∗ is the output response function of a
finite Mealy machine if and only if the following three conditions hold:
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(i) |f(x)| = |x| for each x ∈ A∗.
(ii) f is prefix-preserving.
(iii) The set f−1(X) is a regular subset of A∗ for each regular subset X ⊆ B∗.

Both finite Moore machines and finite Mealy machines can be minimised
in a way that directly generalises the minimisation of automata described in
Section 2.5. The details can be found in Chapter 7 of [9], for example.

Mealy machines provide the most convenient starting point for the further
development of the theory of finite automata, so for the remainder of this
section I shall concentrate solely on these. There are two ways in which the
definition of a finite Mealy machine can be generalised. The first is to allow
both δ, the transition function, and λ, the output associated with a transition,
to be partial functions. This leads to what are termed incomplete finite Mealy
machines. The second is to define λ : Q× A→ B∗; in other words, we allow
an input symbol to give rise to an output string. If both these generalisations
are combined, we get the following definition.

A finite (left) purely sequential transducer A = (Q,A,B, q0, δ, λ) consists
of the following ingredients: Q is a finite set of states, A is the input alphabet,
B is the output alphabet, q0 is the initial state, δ : Q × A → Q is a partial
function, called the transition function, and λ : Q × A → B∗ is a partial
function that associates an output string with each transition. The output
response function ωA : A∗ → B∗ of the purely sequential transducer A is a
partial function defined as follows. Let x = x1 . . . xn be a string of length n
over A, and suppose that x labels a path in A that starts at the initial state;
thus

q0
x1−→ q1

x2−→ . . .
xn−→ qn.

Define the string

ωA(x) = λ(q0, x1)λ(q1, x2) . . . λ(qn−1, xn).

I have put the word ‘left’ in brackets; it refers to the fact that in the defi-
nition of δ and λ we read the input string from left to right. If instead we
read the input string from right to left, we would have what is known as a
finite right purely sequential transducer. I shall assume that a finite purely
sequential transducer is a left one unless otherwise stated. A partial function
f : A∗ → B∗ is said to be (left) purely sequential if it is the output response
function of some finite (left) purely sequential transducer. Right purely se-
quential partial functions are defined analogously. The notions of left and
right purely sequential functions are distinct, and there are partial functions
that are neither.

The following theorem generalises Theorem 10 and was first proved in [15].
A proof can be found in [4] as Theorem IV.2.8.

Theorem 11. A partial function f : A∗ → B∗ is purely sequential if and only
if the following three conditions hold:
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(i) There is a natural number n such that if x is a string in A∗, and a ∈ A,
and f(xa) is defined, then

|f(xa)| − |f(x)| ≤ n.

(ii) f is prefix-preserving.
(iii) The set f−1(X) is a regular subset of A∗ for each regular subset X ⊆ B∗.

The theory of minimising finite acceptors can be extended to finite purely
sequential transducers. See Chapter XII, Section 4 of [12].

The final result of this section is proved as Proposition IV.2.5 of [4].

Theorem 12. Let f : A∗ → B∗ and g : B∗ → C∗ be left (resp. right) purely
sequential partial functions. Then their composition g ◦ f : A∗ → C∗ is a left
(resp. right) purely sequential partial function.

3.2 Finite sequential transducers

The theories of recognisable languages and purely sequential partial functions
outlined in Sections 2 and 3.1 can be regarded as the classical theory of finite
automata. For example, the Mealy and Moore machines discussed in Sec-
tion 3.1, particularly in their incomplete incarnations, form the theoretical
basis for the design of circuits. But although purely sequential functions are
useful, they have their limitations. For example, binary addition cannot quite
be performed by means of a finite purely sequential transducer (see Exam-
ple IV.2.4 and Exercise IV.2.1 of [4]). This led Schützenberger [33] to introduce
the ‘finite sequential transducers’ and the corresponding class of ‘sequential
partial functions.’ The definition of a finite sequential transducer looks like a
cross between finite acceptors and finite purely sequential transducers.

A finite sequential transducer, A = (Q,A,B, q0, δ, λ, τ, xi), consists of the
following ingredients: Q is a finite set of states, A is the input alphabet, B
is the output alphabet, q0 is the initial state, δ : Q × A → Q is a transition
partial function, λ : Q×A→ B∗ is an output partial function, τ : T → B∗ is
the termination function, where T is a subset of Q called the set of terminal
states, and xi ∈ B∗ is the initialisation value.

To see how this works, let x = x1 . . . xn be an input string from A∗. We
say that x is successful if it labels a path from q0 to a state in T . For those
strings x ∈ A∗ that are successful, we define an output string from B∗ as
follows: the initialisation value xi is concatenated with the output response
string determined by x and the function λ, just as in a finite purely sequential
transducer, and then concatenated with the string τ(q0 ·x). In other words, the
output is computed in the same way as in a finite purely sequential transducer
except that this is prefixed by a fixed string and suffixed by a final output
string determined by the last state. Partial functions from A∗ to B∗ that
can be computed by some finite sequential transducer are called sequential
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partial functions.1 Finite sequential transducers can be represented by suitably
modified transition diagrams: the initial state is represented by an inward-
pointing arrow labeled by xi, and each terminal state t is marked by an
outward-pointing arrow labeled by τ(t).

Every purely sequential function is sequential, but there are sequential
functions that are not purely sequential. Just as with purely sequential trans-
ducers, finite sequential transducers can be minimised, although the procedure
is necessarily more complex; see [27] and [11] for details and the Remark at
the end of Section 2.5; in addition, the composition of sequential functions is
sequential. A good introduction to sequential partial functions and to some
of their applications is the work in [27].

3.3 Finite transducers

In this section, we arrive at our final class of automata, which contains all the
automata we have discussed so far as special cases.

A finite transducer, T = (Q,A,B, q0, E, F ), consists of the following ingre-
dients: a finite set of states Q, an input alphabet A, an output alphabet B, an
initial state q0,2 a set of final or terminal states F , and a set E of transitions
where

E ⊆ Q×A∗ ×B∗ ×Q.
A finite transducer can be represented by means of a transition diagram where
each transition has the form

�� !"#$%&'(p
x/y �� !"#$%&'(q

where (p, x, y, q) ∈ E. As usual, we indicate the initial state by an inward-
pointing arrow and the final states by double circles.

To describe what a finite transducer does, we need to introduce some
notation. Let

e = (q1, x1, y1, q
′
1) . . . (qn, xn, yn, q

′
n)

be any sequence of transitions. The state q1 will be called the beginning of e
and the state q′

n will be called the end of e. The label of e is the pair of strings

(x1 . . . xn, y1 . . . yn).

If e is the empty string then its label is (ε, ε). We say that a sequence of
transitions e is allowable if it describes an actual path in T; this simply means
that for each consecutive pair

(qi, xi, yi, q
′
i)(qi+1, xi+1, yi+1, q

′
i+1)

1Berstel [4] does not include in his definition the string xi (alternatively, he
assumes that xi = ε). However, the class of partial functions defined is the same.

2Sometimes a set of initial states is allowed; this does not change the theory.
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in e we have that q′
i = qi+1. An allowable sequence e is said to be successful if

it begins at the initial state and ends at a terminal state. Define the relation

R(T) = {(x, y) ∈ A∗ ×B∗ : (x, y) is the label of a successful path in T}.

We call R(T) the relation computed by T.
Observe that in determining the y ∈ B∗ such that (x, y) ∈ R(T) for a given

x, the transducer T processes the string x in the manner of an ε-acceptor.
Thus we need to search for those paths in T starting at the initial state and
ending at a terminal state such that the sequence of labels (a1, b1), . . . , (an, bn)
encountered has the property that the concatenation a1 . . . an is equal to x
where some of the ai may well be ε.

Example 10. The following is a transition diagram of a transducer T

�� !"#$%&'(p

a/a,b/b

��
ε/ε �� !"#$%&'(��������q a/ε,b/ε

��

In this case, the input and output alphabets are the same and equal {a, b}.
The relation R(T) ⊆ (a+ b)∗ × (a+ b)∗ computed by T is the set of all pairs
of strings (x, y) such that y is a prefix of x. This is a relation rather than a
function because a non-empty string has more than one prefix.

The relations in A∗ ×B∗ that can be computed by finite transducers can
be described in a way that generalises Kleene’s theorem. To see how, we need
to define what we mean by a ‘regular’ or ‘rational’ subset of A∗ × B∗. If
(x1, y1), (x2, y2) ∈ A∗ ×B∗, then we define their product by

(x1, y1)(x2, y2) = (x1x2, y1y2).

This operation is the analogue of concatenation in A∗. Observe that (ε, ε) has
the property that (ε, ε)(x, y) = (x, y) = (x, y)(ε, ε). If L,M ⊆ A∗ × B∗, then
define LM to be the set of all products of elements in L followed by elements
in M . With these preliminaries out of the way, we can define a regular or
rational subset of A∗ × B∗ in a way analogous to the definition of a regular
subset given in Section 2.4. A regular subset of A∗×B∗ is also called a regular
or rational relation from A∗ to B∗.

The following result is another application of Kleene’s Theorem; see Theo-
rem III.6.1 of [4] for a proof and [29] for the correct mathematical perspective
on finite transducers.

Theorem 13. A relation R ⊆ A∗×B∗ can be computed by a finite transducer
with input alphabet A and output alphabet B if and only if R is a regular
relation from A∗ to B∗.
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In the Introduction, I indicated that there were simple computations that
finite transducers could not do. A good example is that of reversing a string;
see Exercise III.3.2 of [4].

The theory of finite transducers is more complex than that of finite accep-
tors. In what follows, I just touch on some of the key points.

The following is proved as Theorem III.4.4 of [4].

Theorem 14. Let A,B,C be finite alphabets. Let R be a regular relation from
A∗ to B∗ and let R′ be a regular relation from B∗ to C∗. Then R′ ◦ R is a
regular relation from A∗ to C∗, where (a, c) ∈ R′ ◦ R iff there exists b ∈ B∗

such that (a, b) ∈ R′ and (b, c) ∈ R.

Let R be a regular relation from A∗ to B∗. Given a string x ∈ A∗, there
may be no strings y such that (x, y) ∈ R; there might be exactly one such
string y; or they might be many such strings y. If a relation R from A∗ to B∗

has the property that for each x ∈ A∗ there is at most one element y ∈ B∗

such that (x, y) ∈ R, then R can be regarded as a partial function from A∗ to
B∗. Such a function is called a regular or rational partial function.

It is important to remember that a regular relation that is not a regu-
lar partial function is not, in some sense, deficient; there are many situations
where it would be unrealistic to expect a partial function. For example, in nat-
ural language processing, regular relations that are not partial functions can
be used to model ambiguity of various kinds. However, regular partial func-
tions are easier to handle. For example, there is an algorithm that will deter-
mine whether two regular partial functions are equal or not (Corollary IV.1.3
[4]), whereas there is no such algorithm for arbitrary regular relations (Theo-
rem III.8.4(iii) [4]). Classes of regular relations sharing some of the advantages
of sequential partial functions are described in [1] and [23].

Theorem 15. There is an algorithm that will determine whether the relation
computed by a finite transducer is a partial function or not.

This was first proved by Schützenberger [32], and a more recent paper [3]
also discusses this question.

Both left and right purely sequential functions are examples of regular
partial functions, and there is an interesting relationship between arbitrary
regular partial functions and the left and right purely sequential ones. The
following is proved as Theorem IV.5.2 of [4].

Theorem 16. Let f : A∗ → B∗ be a partial function such that f(ε) = ε. Then
f is regular if and only if there is an alphabet C and a left purely sequential
partial function fL : A∗ → C∗ and a right purely sequential partial function
fR : C∗ → B∗ such that f = fR ◦ fL.

The idea behind the theorem is that to compute f(x) we can first process
x from left to right and then from right to left. Minimisation of machines that
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compute regular partial functions is more complex and less clear-cut than for
the sequential ones; see [28] for some work in this direction.

The sequential functions are also regular partial functions. The following
definition is needed to characterise them. Let x and y be two strings over the
same alphabet. We denote by x∧ y the longest common prefix of x and y. We
define the prefix distance between x and y by

d(x, y) = |x|+ |y| − 2|x ∧ y|.

In other words, if x = ux′ and y = uy′, where u = x ∧ y, then d(x, y) =
|x′|+ |y′|. A partial function f : A∗ → B∗ is said to have bounded variation if
for each natural number n there exists a natural number N such that, for all
strings x, y ∈ A∗,

if d(x, y) ≤ n then d(f(x), f(y)) ≤ N .

Theorem 17. Every sequential function is regular. In particular, the sequen-
tial functions are precisely the regular partial functions with bounded variation.

The proof of the second claim in the above theorem was first given by
Choffrut [10]. Both proofs can be found in [4] (respectively, Proposition IV.2.4
and Theorem IV.2.7).

Theorem 18. There is an algorithm that will determine whether a finite
transducer computes a sequential function.

This was first proved by Choffrut [10], and more recent papers that discuss
this question are [2] and [3].

Finite transducers were introduced in [13] and, as we have seen, form a
general framework containing the purely sequential and sequential transduc-
ers.

4 Final Remarks

In this section, I would like to touch on some of the practical reasons for
using finite transducers. But first, I need to deal with the obvious objection
to using them: that they cannot implement all algorithms, because they do
not constitute a universal programming language. However, it is the very lack
of ambition of finite transducers that leads to their virtues: we can say more
about them, and what we can say can be used to help us design programs
using them. The manipulation of programs written in universal programming
languages, on the other hand, is far more complex. In addition:

• Not all problems require for their solution the full weight of a universal
programming language — if we can solve them using finite transducers
then the benefits described below will follow.
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• Even if the full solution of a problem does fall outside the scope of finite
transducers, the cases of the problem that are of practical interest may
well be described by finite transducers. Failing that, partial or approximate
solutions that can be described by finite transducers may be acceptable
for certain purposes.

• It is one of the goals of science to understand the nature of problems. If a
problem can be solved by a finite transducer then we have learnt something
non-trivial about the nature of that problem.

The benefits of finite transducers are particularly striking in the case of
finite acceptors:

• Finite acceptors provide a way to describe potentially infinite languages
in finite ways.

• Determining whether a string is accepted or rejected by a deterministic
acceptor is linear in the length of the string.

• Acceptors can be both determinised and minimised.

The important point to bear in mind is that languages are interesting because
they can be used to encode structures of many kinds. An example from math-
ematics may be instructive. A relational structure is a set equipped with a
finite collection of relations of different arities. For example, a set equipped
with a single binary relation is just a graph with at most one edge joining any
two vertices. We say that a relational structure is automatic if the elements
of the set can be encoded by means of strings from a regular language, and
if each of the n-ary relations of the structure can be encoded by means of an
acceptor. Encoding n-ary relations as languages requires a way of encoding
n-tuples of strings as single strings, but this is easy and the details are not
important; see [19] for the complete definition and [8] for a technical analy-
sis of automatic structures from a logical point of view. Minimisation means
that encoded structures can be compressed with no loss of information. Now
there are many ways of compressing data, but acceptors provide an additional
advantage: they come with a built-in search capability. The benefits of using
finite acceptors generalise readily to finite sequential transducers.

There is a final point that is worth noting. Theorem 14 tells us that com-
posing a sequence of finite transducers results in another finite transducer.
This can be turned around and used as a design method; rather than try-
ing to construct a finite transducer in one go, we can try to design it as the
composition of a sequence of simpler finite transducers.

The books [18, 20, 31] although dealing with natural language processing
contain chapters that may well provide inspiration for applications of finite
transducers to other domains.
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1 Introduction

User-programmable electronic digital computers have progressed through a
series of hardware implementations. They began first as cabinets filled with
vacuum tubes requiring steel I-beams to support their weight (hence the term
“mainframe” to refer to the central processing unit), then as cabinets filled
with discrete transistor circuits on cards, then progressed to smaller imple-
mentations known as minicomputers (some capable of residing on a desktop),
and finally to microprocessors with the components of complete computers re-
siding on only a few integrated circuit chips or even a complete system on only
one chip. The term microprocessor derives from the fact that the transistors
and interconnecting wires used to implement the processor on an integrated
circuit chip are visible only under a microscope. Originally, microprocessors
were less capable than their larger brethren, but recently their capabilities
and speed exceed those of many of the large mainframes of the 1960s.

Because the memory devices and switching circuits used to build these
machines were capable of reliably storing and processing only two values,
binary numbers were and still are used to encode the machine’s instructions,
memory addresses, and data to be processed, including integers, alphabetic
and numeric characters, and approximations to real numbers using floating-
point representations. The representation of each item thus consists of an
n-tuple of binary digits called bits (with, in general, a different choice of n for
each type of encoded quantity).

In the early 1960s, International Business Machines (IBM) Corporation’s
design of the 360 series (or family) of computers, all of which were (in an
upward compatible way) to execute the same instructions on the same kinds
of data using different hardware implementations that would achieve different
price versus performance (speed) market niches, brought with it the concept
of instruction set architecture or simply computer architecture [3], [8]. Com-
puter architecture encompasses the specification of an instruction set and the
hardware units that implement the instructions. These specifications include
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the set of instructions themselves using mnemonics and symbols suitable for
a programmer to assemble programs for execution on the hardware, the en-
coding of the instructions in binary form suitable both for the hardware to
interpret and for someone or some program to translate between symbolic and
binary forms, the size of the memory space in which programs and data can
be stored, and the number of programmer visible registers and their lengths
for holding at least temporarily the n-tuples of bits being processed. In other
words, computer architecture specifies the programmer’s view of the machine
and defines the hardware/software interface. For instance, a machine lacking
hardware to directly implement floating-point arithmetic requires that pro-
grammers implement floating-point arithmetic in the software.

With the advent of the microprocessor on a chip, an entire digital com-
puter system could be built from one or a few chips that included all of the
functionality to execute machine instructions, store and retrieve data in mem-
ory devices, acquire outside world inputs, output commands and results, and
make all of the components communicate with each other and interface to the
outside world. One then has the option of building a user-programmable/re-
programmable desktop or portable personal computer or to embed the com-
puter in another device or machine controlled by the embedded computer.
The designer of the device or machine in which the computer is embedded
writes the program to control the device, and the user of the device interacts
with this program by, e.g., setting dials or pushing buttons.

In this brief introduction to computer architecture, we will specify the
instruction set for a small hypothetical computer, discuss the hardware com-
ponents needed to specify the microarchitecture on which the machine instruc-
tions will be interpreted, specify the microprogram [4], [9] for interpreting the
original machine instructions, and then specify some more highly encoded
microinstructions that can be directly interpreted by the hardware. This will
take us from the concept of a complex instruction set computer (CISC), whose
instructions are interpreted by a lower set of programs written by a micro-
programmer, to a reduced instruction set computer (RISC), whose machine
instructions are themselves (for the most part) microinstructions.

2 Functional Units

The basic functional units in a digital computer are the central processing
unit (CPU), a memory system, an input unit for obtaining data from the
outside world, and an output unit for sending data, results of computations,
and commands to the outside world. The CPU contains an arithmetic and
logic unit (ALU) and a control unit. The ALU is used to perform arithmetic
and logical operations on data. The control unit fetches program instructions
from the memory and issues control signals to interpret and execute the in-
structions using the available hardware components. The CPU also contains
at least one, but usually several, memory devices called registers that the pro-
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grammer can manipulate either directly or implicitly to hold data while it is
in the CPU. There are also some hardwired constants and hidden registers
(called the scratch-pad) that can be used only by the machine designer or mi-
croprogrammer to accomplish the task of interpreting the programmer visible
instruction set on the underlying hardware components.

When program instructions and operand data are stored in the same mem-
ory, as shown in Fig. 1, the structure is called a von Neumann architecture [3].
When program instructions are stored in a memory separate from the mem-
ory in which data operands are stored, as in Fig. 2, the structure is called a
Harvard architecture [14].

Registers
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and Logic

Control
Unit

Unit (CPU)
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Processing

Unit (ALU)

Instructions

Data

Control
Signals

I/O

Addresses

Random Access
Memory

containing
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program
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Fig. 1. Basic functional units organized in von Neumann architecture with memory-
mapped I/O
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Fig. 2. Basic functional units organized as Harvard architecture with separated I/O

Two ways of handling input/output are displayed in these two figures,
namely, memory-mapped I/O and separated I/O. These two schemes for han-
dling input and output could be exchanged in the two figures without changing
the designation of von Neumann or Harvard. In memory-mapped I/O, device
registers are part of (and therefore consume some of) the memory address
space. The I/O devices’ data, status, and command registers are manipulated
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by having the CPU fetch and execute load, store, and move instructions. In
separated I/O, the devices’ data, status, and command registers form their
own address space separate from the memory address space, and the CPU
must have input and output instructions that (when executed) cause the I/O
device ports (instead of memory locations) to respond.

2.1 Registers and memory

A register is a device for recording and remembering some encoded quantity.
The ten position wheels in a U.S. automobile’s odometer record and remem-
ber a finite length string of decimal digits that display the number of miles
the automobile has traveled, where translation to the number of miles driven
is produced by the ratios of gears that count revolutions of the transmission
output shaft. In most such automobiles, when the odometer registers 99,999.9
miles and the drive wheels turn an additional 0.1 mile, the odometer reads
00,000.0 miles. In other words, finite length registers enforce modular arith-
metic where, in this case, multiples of 100,000.0 miles are equivalent to zero
miles because there is no wheel to hold the 1 that carries out the left end of the
register. The same is true for n-bit registers used in digital computers; one n-
bit register can represent exactly 2n quantities encoded with binary numbers
in the range {0, ..., 2n − 1} independent of what those numbers represent.

Memory can be viewed as a collection of n-bit registers, each with a unique
k-bit binary address, similar to a linear array of mailboxes in an apartment
building or post office. Each mailbox is labeled with a number known as
its absolute address and each, for example, can hold in length a number 10
envelope on which n bits can be written. The contents of mailbox number i is
the n-bit number written on the envelope inside mailbox i. Postal clerks and
apartment dwellers usually write an individual’s name on some kind of tape
and paste it on the mailbox door. This is an example of binding the symbolic
address represented by the individual’s name to the absolute address known
as the mailbox number. In assembling a computer program for storage in
the memory, each symbolic (variable) name or label is a symbolic address
that must be bound to an absolute memory address. This address binding is
usually handled by a translating program called an assembler or finally by
another program called a linkage editor [12].

We shall designate CPU registers by a symbolic name (e.g., reg), and this
name written in parentheses as “(reg)” represents the contents of register reg.
We shall denote the contents of a memory location whose address corresponds
to the symbolic name z as m[z], and the contents of the memory location whose
address is in the register named reg as m[(reg)].

It is desirable to have memory constructed so that it takes the same amount
of time to access any randomly selected address location. This is called a
random access memory, as opposed to a sequentially accessed memory laid
out on a reel of magnetic tape. Obviously, it takes longer to read down the
tape to find data located near the hub end of the tape reel than it does to
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find something at the front of the tape that is read first. Sequential access
devices such as tapes, semi-random access devices such as magnetic disks and
drums, and other similarly accessed devices are treated as I/O devices rather
than memory. As long as stray magnetic fields are prevented (or diverted),
magnetic I/O devices provide a means for remembering data when power
is turned off and, thus, provide one way to achieve a non-volatile memory
capability; optically sensed compact disks (CDROMs) are another means for
doing so.

2.2 Hardware components

Registers are built from static memory devices known as latches and flip-flops
[7], and these in turn are built using logic gates. The logic gates were originally
built using vacuum tubes, but nowadays are built from transistors laid out on
an integrated circuit chip.

Boolean algebra, gates, and latches

The logic gates represent logic 1 and logic 0, each with a range of voltages
or currents. Table 1 specifies fundamental Boolean algebra [7] operations for
both the logic gates, whose symbols are shown in Fig. 3, and bitwise logical
operations on n-bit operands. For instance, given n-bit operands A = [An−1,
. . . , Ai, . . . , A0] and B = [Bn−1, . . . , Bi, . . . , B0], A ∧ B = [An−1 ∧ Bn−1, . . . ,
Ai ∧ Bi, . . . , A0 ∧ B0], and similarly for the other bitwise logical operations
found in computer instruction sets.

Table 1. Boolean logic functions

Output functions
Inputs NOT AND OR NAND NOR XOR
A B A A∧B A∨B A ∧ B A ∨ B A⊕B
0 0 1 0 0 1 1 0
0 1 1 0 1 1 0 1
1 0 0 0 1 1 0 1
1 1 0 1 1 0 0 0

A basic gated D-latch is formed by the feedback coupling of two NAND
gates, which themselves form a set/reset (S/R) latch. If the set input is as-
serted, then after some propagation delay a logic 1 is stored at the Q output
and its complement, logic 0, at the Q′ = Q output. (Values at Q and Q′ are
reversed if the reset input is asserted.) The latch retains these values so long
as power is applied to the transistors implementing these gates; however, if
power is lost, data stored in the latch evaporates and is forgotten. If the set
and reset inputs are the complements of each other as provided by the input
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Fig. 3. Symbols for Boolean logic gates: (a) NOT, (b) AND, (c) OR, (d) NAND,
(e) NOR, (f) XOR, and three-state non-inverting buffer amplifiers (g) and (h) with
enable input (EN) and high-impedance (Hi-Z) output

inverter (NOT gate) connected to the D line, then the latch would act as a
high gain combinational circuit following the D input. By placing two addi-
tional NAND gates controlled by the signal labeled “clk” as shown in Fig. 4,
then the state of the feedback coupled NAND gates can change in response
to the signal on the D input only when the clk line goes to logic 1 (we assume
that D remains at its static 1 or 0 value until after the clk signal goes back to
0. While clk is logic 0, the latch portion remembers the last D value sampled
while clk was equal to 1.
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Z
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I1
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Fig. 4. (a) D-latch and symbol and (b) 2 to 1 multiplexer (MUX) and symbol

Another component shown in Fig. 4 is a 2 to 1 multiplexer (MUX) that
acts as a two-way switch controlled by the selection input M. Input I0 appears
at the output if M = 0 and input I1 appears at the output if M = 1. A 2 to
1 multiplexer that switches two n-bit sources to a single n-bit output can be
built using n 2 to 1 multiplexers (one per output bit line), all controlled by
the same selection signal M.

Registers and buses

Fig. 5 displays an 8-bit register built from D-latches and connected to input
bus wires (the C-bus) and to two output buses (the A-bus and the B-bus).
Connections to the A and B buses are controlled by three-state buffers that
connect latch outputs to bus wires or leave connections open circuited (i.e., in
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the Hi-Z state) under control of output enable signals OE-A and OE-B (see
Fig. 3). The shorthand functional specification of a similar 16-bit register is
shown in Fig. 6. The schematic for the 8-bit register in Fig. 5 would have the
8-bit A, B, and C buses labeled with an 8 to indicate that each line consists
of 8 wires, instead of only 1 wire (unlabeled) or of 16 wires, as in Fig. 6.
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Fig. 5. Eight-bit register and bus connections
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16

16
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Fig. 6. Sixteen-bit register schematic

Arithmetic and logic unit

Fig. 7 presents the combinational logic circuitry and a shorthand schematic
for a simple ALU that processes one bit of an n-bit number (or of two n-
bit numbers) depending on which function is selected by the decoder section
in response to the code on inputs F1 and F0. Connecting 16 such modules
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together by feeding the carry out signal of one module to the carry in signal
of the next module (all controlled by the same code on F1 and F0) provides
a 16-bit ALU that can add two 16-bit numbers (F1F0 = 10), compute the
bitwise logical AND of two n-bit numbers (F1F0 = 01), produce the bitwise
logical complement (which corresponds to the arithmetic 1’s complement [7])
of the n-bit number on the A inputs (F1F0 = 11), or pass the bits on the A
inputs through unchanged (F1F0 = 00).

Position i
Bit

Module
ith ALU

10 00 0111
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A_i B_i
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Full Adder

Logic Unit

Decoder

Output
bit_i

Carry in
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F1
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bit_iOutput

C_i−1
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Fig. 7. Example ALU, ith module

Shift unit

Fig. 8 shows how a simple 1-bit logical left or right shift unit can be built
from logic gates. Only three of the possible four outputs from a 2-bit decoder
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that responds to shift code inputs S1 and S0 are implemented. The three
possibilities are left shift (S1S0 = 10), right shift (S1S0 = 01), and no shift
(S1S0 = 00), which passes the data straight through unshifted. This 4-bit shift
unit can easily be extended to shift 16-bit operands by inserting between D2
and D3 12 more repetitions of the structure for D2 (or D1).

01

10

00

S1

D3 D2 D1 D0

C3 C2 C1 C0

S0

Fig. 8. Combinational logic shifter, 1-bit left or right, or no shift

System clocking unit

Because data will be moved from one register to another or through the ALU
and shifter en route to the destination, a means of controlling when the data
are latched (to avoid race conditions) must be provided to sequence the signals
emanating from the control unit. This mechanism is usually provided by a
multi-phase clock circuit. A four-phase non-overlapping clock signal is shown
in Fig. 9.

Memory interface units

The control unit needs some buffer registers to hold bits while waiting for
a memory access to occur. It needs a memory address register (MAR) to
hold the address of the memory location being accessed so that the memory
controller can continuously view the address it is in the process of decoding.
It also needs a memory buffer register (MBR) into which to place the data to
be written to a memory location or to hold data being read out of a memory
location until the control unit is ready to copy the data to another register
or do something else with those bits. Discrete signals for loading information
into the MAR and MBR are needed, as are read (rd) and write (wr) control
signals to activate the appropriate response by the memory controller and to
turn around the 16-bit bidirectional data bus to memory. See the example
MBR control structure in Fig. 10.
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3 Example Architecture

In specifying an example 16-bit word length computer architecture we must
first specify the maximum size of the memory for which programmers can
write programs. Let us assume that size is 216 = 65, 536 memory locations,
each containing a 16-bit word so that each location is designated by a 16-bit
address. Word length typically corresponds to main memory data bus width
and to the width of registers in the CPU. One could view the left and right
halves of each 16-bit word as two 8-bit bytes and then make the memory
byte addressable, but for simplicity we shall not do so here. Our example
architecture is word addressable.

The next item to be specified is the number and types of user-visible CPU
registers. Instructions in the instruction repertoire must be provided that allow
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the programmer to manipulate the contents of these registers. We will assume
the user-visible register set to be an accumulator register (AC), an index
register (XR), a multiplier/quotient (MQ) register, a general purpose register
(GR), and two memory pointer registers, a stack pointer (SP) register that
points to the current top of the stack, and a base pointer (BP) register that
points to a fixed location in each stack frame [2] in case the SP register contents
change while a particular stack frame is being examined. The program counter
(PC) register is used to point to the next instruction to be fetched into the
CPU when execution of the current instruction is complete. The programmer
is provided instructions to save and restore the contents of the PC register
and to change the flow of control by modifying its contents. These registers
and their connections to each other and other CPU functional units on 16-bit
buses are shown in the datapath layout for the example microarchitecture in
Fig. 11.

Fig. 11 also shows hardwired constants and scratch-pad registers needed
by the control unit to accomplish its mission of fetching machine instructions
from memory, decoding, and executing them. The instruction register (IR)
holds the instruction being decoded and interpreted for execution. The 16-bit
hardwired constants in registers 0 and +1 are obvious, all zeros in one case
and 15 zeros on the left and a rightmost 1 in the second; but the contents of
the −1 register are minus 1 represented in 2’s complement, which is 16 ones.
The XMASK register contains 4 zeros on the left followed by 12 ones on the
right, and the YMASK register contains 8 zeros on the left followed by 8 ones
on the right. In addition to the MAR and MBR buffer registers there are three
scratch-pad registers (S1, S2, and S3) that can be used by the control unit.
These constants and scratch-pad registers are not visible to the machine or
assembly language programmer, but they are visible to the machine designer,
who himself may use a form of programming called microprogramming [4] to
implement the instruction set architecture. The A-latch, B-latch, and C-latch
registers are used to hold output values constant while they propagate through
combinational logic circuits and appear for latching at the input to one of the
other registers. The time at which various registers latch their values is also
indicated. The N signal emanating from the ALU and going to the micro-
sequencing logic unit is a copy of the high order bit (bit 15) coming out of the
ALU, which corresponds to the sign bit position. The Z signal is the output
of a NOR gate that takes the complement of the result of ORing together all
16 ALU output bits, and is thus used to detect when the ALU outputs are all
zeros.

Instruction set

In designing an instruction set the most basic computation one wishes to
perform is to add the contents of two memory locations and to store the
result in a third location, which can be expressed using variable names as
C = A + B. The format for such an instruction would require five fields, one
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to encode all of the desired operations including addition, three fields at the
rate of one each for the memory addresses A, B, and C, and one more for the
address of the next instruction to be fetched. This is known as a four address
format. The problem with this format is that, in our case, each instruction
would require 64 = 4 × 16 address bits. As most programmers write sequences
of machine instructions that are to be fetched and executed one after the other
until some decision is made to go to another part of the program, the easiest
way to save 16 bits would be to remove the next address field, provide the
machine with an automatically incrementing program counter register, and
give the programmer jump and branch instructions that can manipulate the
value in the program counter register using addresses from one or more of the
other three address fields. This results in a three address format, but doing
so still requires, in our case, 48 bits of address in each instruction. Making
one of the operands implicitly either one of the sources or the destination for
the result of the operation produces a two operand format in which the result
of the operation overwrites one of the operands. Up to this point all of the
instructions operate memory to memory (except for those that manipulate
the program counter register).

Giving the programmer a CPU register such as an accumulator register,
and instructions to load the accumulator from memory and store the con-
tents of the accumulator back into memory produces a one address format
wherein the accumulator is both an implicit source and destination for two
operand instructions such as addition. If there is more than one CPU reg-
ister for operands, then a register designator field, shorter than a memory
address field, in the instruction is needed to encode which register is either
the source or destination or both. This is sometimes called a one and one-half
address format. Both forms usually comprise memory-to-register (and vice
versa) formats. Register-to-register operations such as adding the contents of
two registers and leaving the result in one of them could be handled by pro-
viding operation codes that permit the memory address field to also contain
a much shorter register designator address. Some of these instructions are
illustrated in Table 2.

Table 2. Sample instruction formats; operand C is destination

Three Two One
address address address

ADD C, B, A MOVE C, A LOAD A
ADD C, B ADD B

STORE C

A minimal instruction set would include data movement instructions to
load and store CPU registers and to move data between programmer-visible
registers, a subtract instruction, and a conditional transfer of control instruc-
tion. Subtract can be used to generate the bitwise logical complement of a bit
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pattern, to effectively multiply a number by minus one by subtracting that
number from zero, and to perform addition. Left logical shift, which corre-
sponds to multiplying a number by two, can be obtained by adding a number
to itself. Left circular shift can be obtained from addition by first checking if
the leftmost bit is one or zero using the conditional transfer of control instruc-
tion, then adding the number to itself, and then adding to the logically left
shifted value the constant one (or not) depending on the result of the condi-
tional transfer of control test. Right circular shift by k bits can be obtained
for n-bit values by a left circular shift of n − k bit positions. Instructions in
addition to the minimal instruction set provide convenience to the program-
mer or capabilities that would otherwise be tedious to program with fewer
instructions.

The instructions chosen for our example instruction set architecture ISA-1
that will operate on the datapath in our example CPU and memory organi-
zation are shown in Tables 3 and 4, and their binary encodings are shown
in Table 5. A register transfer language (or notation) is used to specify their
actions in Tables 3 and 4. The colon-equal sign is similar to the notation for
an assignment statement in Algol or Pascal and acts as a back arrow that
points to the destination register to be written with the results of the action.
If more than one register transfer statement is listed separated by semicolons,
then the actions occur sequentially in left to right order.

The binary operation codes assigned to the ISA-1 instructions are speci-
fied in Table 5, which also lists the operand fields whose binary values (x, y z,
or d) are to be filled in by the programmer. Assembler programs are usually
written to permit the assembly language programmer to specify the operation
using the symbolic mnemonic shown and to specify the content of an instruc-
tion’s operand field either symbolically, or as a decimal, hexadecimal, or octal
constant. The assembler program then fills in the binary operation code and
calculates the appropriate binary value (x, y, z, or d) to fill into the operand
field when it translates the source program into binary machine language.

Addressing modes

Examining the instructions in Table 5 that refer to memory locations, we see
that their operation codes consume 4 of the 16 bits in the instruction word,
leaving only 12 remaining bits in which to specify a 16-bit memory address.
That is why these instructions’ assembly language mnemonics end in X: to
specify that the content of the 16-bit index register XR will be added to the
signed 2’s complement 11-bit offset in the instruction itself to form the final
16-bit memory address to be accessed, known as the effective address. This
mechanism is known both as indexed addressing and displacement addressing
[2], [3]. This mode also provides a register indirect mode by setting the offset
field in the instruction to zero. Because reference to any arbitrary memory
location requires that register XR first be loaded with an appropriate value,
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Table 3. Example instruction set architecture (ISA-1) instruction repertoire

ISA-1 instruction repertoire
part 1 of 2

Assembly Meaning
language Instruction or action
LXRI x Load xr immediate xr:=x (0≤x≤4095)
LACX x Load ac reg ac:=m[x+(xr)] (-2048 ≤x≤2047)
STAX x Store ac reg m[x+(xr)]:=(ac) (-2048 ≤x≤2047)
ADDX x Add to ac ac:=(ac)+m[x+(xr)] (-2048 ≤x≤2047)
SUBX x Subtract ac:=(ac)−m[x+(xr)] (-2048 ≤x≤2047)
LEAX x Load effective address ac:=x+(xr) (-2048 ≤x≤2047)
JMPX x Jump pc:=x+(xr) (-2048 ≤x≤2047)
CALX x Call procedure sp:=(sp)−1;m[(sp)]:=(pc);

pc:=x+(xr) (-2048 ≤x≤2047)
BREZ x Branch if zero if (ac)=0 then pc:=(pc)+x

(-2048 ≤x≤2047)
BRLZ x Branch if negative if (ac)<0 then pc:=(pc)+x

(-2048 ≤x≤2047)
BALX x Branch & link register xr:=(pc); pc:=(pc)+x

(-2048 ≤x≤2047)
LODL x Load local ac:=m[x+(bp)] (-2048 ≤x≤2047)
STOL x Store local m[x+(bp)]:=(ac) (-2048 ≤x≤2047)
ADDL x Add local ac:=(ac)+m[x+(bp)] (-2048 ≤x≤2047)
SUBL x Subtract local ac:=(ac)−m[x+(bp)] (-2048 ≤x≤2047)
LABI y Load byte immediate ac15−8:=0, ac7−0:= y
INXR y Increment xr reg xr:=(xr)+y (0≤y≤255)
INSP y Increment sp reg sp:=(sp)+y (0≤y≤255)
DESP y Decrement sp reg sp:=(sp)−y (0≤y≤255)
LXRU z Load xr upper xr15−12:=y (0≤z≤15)
RACR z Rotate ac z-bits right aci:=(aci⊕z mod 16), (0≤z≤15)
DROR z Rotate double register ac:mqi:=(ac:mqi+z), (0≤i≤15-z),

ac:mq z-bits right aci:=(mqi−16−z), mqi:=(aci−16−z),
(16-z≤ 1i≤15), (0≤z≤15)

(continued)

two immediate mode addressing instructions are provided for loading a con-
stant value into this register immediately, LXRI to load the low order 12 bits
and zero the high order (leftmost) 4 bits and LXRU to load the high order
4 bits without modifying the low order 12 bits. Two other instructions can
also be used to obtain 16-bit values. The LAWI d, where d represents a 16-
bit value in the word immediately following the word containing the LAWI
opcode, loads the AC register. This must be followed by a MVAX instruction
to copy the value into the XR register. The BALX instruction copies the PC
register contents into the XR register and branches (jumps) relative to the
PC contents plus the signed 11-bit offset in the low order 12 bits of the BALX
instruction. Executing BALX 0 causes the instruction in the next sequential
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Table 4. ISA-1 instruction repertoire (continued)

ISA-1 instruction repertoire
part 2 of 2

Assembly Meaning
language Instruction or action
LAWI d Load ac immediate ac:=d (0≤d≤65535)

with data word d
RETN Return pc:=m[(sp)];sp:=(sp)+1
PUSH Push ac onto stack sp:=(sp)−1;m[(sp)]:=(ac)
POP Pop ac from stack ac:=m[(sp)];sp:=(sp)+1
PSHB Push bp onto stack sp:=(sp)−1;m[(sp)]:=bp
POPB Pop bp from stack bp:=m[(sp)];sp:=(sp)+1
MVSB Copy sp to bp bp:=(sp)
MVBS Copy bp to sp sp:=(bp)
SWAS Swap ac & sp tmp:=(ac);ac:=(sp);sp:=(tmp)
SWAX Swap ac & xr tmp:=(ac);ac:=(xr);xr:=(tmp)
MVAG Copy ac to gr gr:=(ac)
MVGA Copy gr to ac ac:=(gr)
MVAM Copy ac to mq mq:=(ac)
MVMA Copy mq to ac ac:=(mq)
INVA Complement ac ac:=(ac)
ANDG AND gr with ac ac:=(ac)∧(gr)
ADDG ADD gr to ac ac:=(ac)+(gr)
HALT Halt machine stops fetching instructions

address to be fetched with the XR register pointing to it. BALX could also be
used as a procedure call instruction to a target address relative to the current
program counter contents while saving the return address in the XR register.

To support multiple and recursive calls, a procedure (subroutine or func-
tion) call instruction is provided that saves the return address in a memory
location on the top of a stack pointed at by the SP register. If more values
or addresses are passed to the called procedure than there are CPU registers
available to hold them, then PUSH and POP instructions are provided to
place these parameters on the stack prior to making the call. A stack frame
or base pointer register, BP, is provided so that parameters in the local stack
frame can be obtained or replaced using indexed addressing relative to the BP
register instead of relative to the XR register. The LEAX instruction provides
a means for loading an effective address into the AC register and passing it
as a pointer parameter to a called procedure either in the AC register itself
or by pushing its contents onto the stack.
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Table 5. ISA-1 operation code assignments

ISA-1 instruction repertoire
Opcode Assembly Opcode Assembly
binary language binary language

0000xxxxxxxxxxxx LXRI x 111110110000zzzz DROR z
0001xxxxxxxxxxxx LACX x 1111110000000000 LAWI d
0010xxxxxxxxxxxx STAX x dddddddddddddddd
0011xxxxxxxxxxxx ADDX x 1111110000100000 RETN
0100xxxxxxxxxxxx SUBX x 1111110001000000 PUSH
0101xxxxxxxxxxxx LEAX x 1111110001100000 POP
0110xxxxxxxxxxxx JMPX x 1111110010000000 PSHB
0111xxxxxxxxxxxx CALX x 1111110010100000 POPB
1000xxxxxxxxxxxx BREZ x 1111110011000000 MVSB
1001xxxxxxxxxxxx BRLZ x 1111110011100000 MVBS
1010xxxxxxxxxxxx BALX x 1111110100000000 SWAS
1011xxxxxxxxxxxx LODL x 1111110100100000 SWAX
1100xxxxxxxxxxxx STOL x 1111110101000000 MVAG
1101xxxxxxxxxxxx ADDL x 1111110101100000 MVGA
1110xxxxxxxxxxxx SUBL x 1111110110000000 MVAM
11110000yyyyyyyy LABI y 1111110110100000 MVMA
11110001yyyyyyyy INXR y 1111110111000000 INVA
11110010yyyyyyyy INSP y 1111110111100000 ANDG
11110011yyyyyyyy DESP y 1111111000000000 ADDG
111110000000zzzz LXRU z 1111111100000000 HALT
111110100000zzzz RACR z
ddddddddddddddd is a 16-bit constant; in column 4 it is called d.
xxxxxxxxxxxx is a 12-bit constant; in column 2 it is called x.
yyyyyyyy is an 8-bit constant; in column 2 it is called y.
zzzz is a 4-bit constant; in columns 2 and 4 it is called z.

Control unit architecture with microprogramming

Fig. 12 provides a control structure for the microarchitecture’s datapath in
which the designer also implements datapath control signals using a form
of programming, called microprogramming, in which microinstructions are
stored in a control memory, called the control store to distinguish it for the
time being from main memory. The control store has 256 words, and each
word is 32 bits wide. The microinstructions, expressed mnemonically using a
register transfer language, are then translated into 32-bit binary words whose
1’s and 0’s directly (or via decoders in functional units) control the data path
for one CPU cycle comprising the four clock ticks provided by the 4-phase
clock. Each rectangle in the diagram showing a dotted line labeled with one
of the clock phases is or contains a register of D-latches that are loaded by
that clock phase signal. The control store has an address register, called the
microprogram counter (MPC), whose contents are decoded by the control
store to select the next microinstruction to be latched into its buffer register,
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called the microprogram instruction register (MIR), from which control signals
emanate throughout the microarchitecture.
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Fig. 12. Example microarchitecture control structure

We assume that the main memory can respond to read or write requests
during the 4 clock ticks of one microinstruction cycle; otherwise, more reads or
writes must be inserted consecutively in the microinstruction control stream if
the memory is somewhat slower in responding. An alternate mechanism (not
illustrated here) would be to provide a control signal sent by the memory
controller to the CPU that indicates when the memory can provide the data
requested or has completed writing the data sent by the CPU. This “ready”
signal could then be sampled (if additional microoperations were available to
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do so) in each subsequent microinstruction after a read or write request is
either initiated or maintained to determine if the requested word is available
or writing is complete.

The format of each microinstruction is shown in Fig. 13. The A and B fields
are decoded to select either user-visible or other scratch-pad register contents
to be gated onto the A and B buses, respectively. The C field selects one of
the writable CPU registers as the destination into which C-bus contents are
copied if the ENC bit is 1. If ENC is 0, then no CPU register in the scratch-
pad copies the contents of the C-bus at T4, other than possibly the MAR or
the MBR. Writing into the MAR and MBR from the C-bus is controlled by
similarly named 1-bit control signals. Control bits RD and WR control read-
ing and writing between main memory and the MBR. The AMUX bit controls
the 2-way multiplexer by selecting either the contents of the A-latch (if 0) or
the contents of the MBR (if 1) as the input data to the left input (A-bus
side) of the ALU. ALU and shifter control signals are also shown and conform
to decoder input selections shown in Figs. 7 and 8. Conditional and uncondi-
tional branching or jumps within the microprogram can be specified in parallel
with ALU, shifter, and other datapath operations by the combination of the
COND and ADDR fields. The microsequencing logic selects the source passing
through the 2-way MMUX multiplexer by evaluating the Boolean expression:
Mmux = C1C0N ∨ C1C0Z ∨ C1C0 = C0N ∨ C1Z ∨ C1C0. If the Mmux selec-
tion signal is 0, the incremented MPC value is taken; if Mmux = 1, the next
ADDR field bits are taken, provided the DMUX selection input is 0.
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Fig. 13. Microinstruction control signals specification

The symbolic microoperation “decode” (not shown in Fig. 13) is translated
into binary as C1C0 = 11 for an unconditional jump and both RD and WR
equal 1 (which is meaningless to the main memory); this then sets (in Fig. 12)
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the Mmux control input to 1 and the 2-way DMUX multiplexer selection input
to 1 so as to select the output from the mapping programmable logic array
(PLA) [2] as the input to the MPC. The mapping PLA decodes input from
the B-latch, which should contain the operation code portion of the ISA-1
instruction in the IR; it forms a Boolean product term in the AND array
that then generates in the OR array the 8-bit control store address where the
first microinstruction of the execution sequence for that ISA-1 instruction is
located.

A portion of the microprogram (comprising the first 43 microinstructions
needed) to fetch, decode, and execute the ISA-1 instructions in Tables 3, 4, and
5 is shown in Table 6. 1 The execution cycle for each decoded ISA-1 instruction
begins at the control store address whose line is labeled with a comment
showing the assembly language mnemonic for the corresponding instruction
(capitalized for emphasis). The corresponding operation code shown in the
comment for each ISA-1 instruction lists the binary inputs to the mapping
PLA, and the corresponding control store address labeled “Adr:” (shown in
decimal at the left) is the corresponding output of the mapping PLA.

The instruction fetch cycle begins at control store address zero, and the
“decode” and other microoperations shown at control store address 5 could be
placed at control store address 3. Instead, we have chosen to create in scratch-
pad registers s2 and s3 a couple of mask values needed during execution of
memory reference instructions. This increases the length of the fetch cycle
by 8 clock ticks for all instructions. In contrast, by generating these mask
values in each instruction execution cycle that needs one or both of them,
we would increase execution times for these instructions and require 23 more
microinstructions, but we would shorten the fetch cycle for all instructions.
The trade-off chosen here was to save 23 microinstructions by increasing the
length of the instruction fetch cycle in the vain hope that the entire table
could be displayed here.

If one were to write a microprogram assembler ([12]) in a high level lan-
guage such as C for this register transfer language, then it would make life
easier for the microprogrammer in modifying, correcting, or expanding the
overall microprogram to be able to use symbolic addresses for ISA-1 instruc-
tion starting locations and other jump target labels. The resulting assembler
symbol table (assuming the assembler produces absolute control store ad-
dresses) could then be used to program the mapping PLA.

Table 7 gives a few examples of register transfer language (RTL) state-
ments in Table 6 (and an additional microinstruction from control store ad-
dress 82 not shown in Table 6) translated into their corresponding 32-bit
control store words whose 1-, 2-, 4-, and 8-bit fields are shown in decimal
shorthand for each field. One need only convert the decimal value in each

1The complete microprogram requiring 127 control store words in addresses 0
through 126 can be found at World Wide Web URL: www.eng.umd.edu/∼silio/ISA1.
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Table 6. Microprogram mpp-1 to fetch, decode, and execute ISA-1 instructions,
part 1 of 3

Adr: Microinstruction Comment
0: mar:=(pc); fetch instruction
1: pc:=(pc) + (+1); rd; update pc & read memory
2: ir:=(mbr); load ir
3: s2:=rshift[(xmask) + (+1)]; (s2) = 0000100000000000
4: s3:=inv[(xmask)]; (s3) = 1111000000000000
5: s1:=band[(xmask),(ir)]; decode; map control store address
6: xr:=(ir); goto 0; 0000 = LXRI
7: alu:=band[(s1),(s2)]; if z then goto 9; 0001= LACX
8: s1:=(s1)+(s3);
9: mar:=(s1)+(xr);

10: rd;
11: ac:=(mbr); goto 0;
12: alu:=band[(s1),(s2)]; if z then goto 14; 0010= STAX
13: s1:=(s1)+(s3);
14: mar:=(s1)+(xr);
15: mbr:=(ac);
16: wr; goto 0;
17: alu:=band[(s1),(s2)]; if z then goto 19; 0011= ADDX
18: s1:=(s1)+(s3);
19: mar:=(s1)+(xr);
20: rd;
21: ac:=(ac)+(mbr); goto 0;
22: alu:=band[(s1),(s2)]; if z then goto 24; 0100= SUBX
23: s1:=(s1)+(s3);
24: mar:=(s1)+(xr);
25: ac:=(ac)+(+1); rd;
26: s1:=inv[(mbr)];
27: ac:=(ac)+(s1); goto 0;
28: alu:=band[(s1),(s2)]; if z then goto 30; 0101= LEAX
29: s1:=(s1)+(s3);
30: ac:=(s1)+(xr); goto 0;
31: alu:=band[(s1),(s2)]; if z then goto 33; 0110= JMPX
32: s1:=(s1)+(s3);
33: pc:=(s1)+(xr); goto 0;
34: sp:=(sp)+(-1); 0111= CALX
35: mar:=(sp);
36: mbr:=(pc);
37: wr; goto 31;
38: alu:=(ac); if z then goto 40; 1000= BREZ
39: goto 0;
40: alu:=band[(s1),(s2)]; if z then goto 42;
41: s1:=(s1)+(s3);
42: pc:=(s1)+(pc); goto 0;
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field to its binary value right justified and zero filled on the left for the corre-
sponding number of bits in that field.

Table 7. Some RTL statements translated to 32-bit control store words

A C S A
Register transfer language M O A H M M E D
symbolic microinstruction U N L F B A R W N D

statement X D U T R R D R C C B A R
mar:=(pc); 0 0 0 0 0 1 0 0 0 0 0 3 00
pc:=(pc)+(+1);rd; 0 0 2 0 0 0 1 0 1 3 1 3 00
ir:=(mbr); 1 0 0 0 0 0 0 0 1 2 0 0 00
s2:=rshift[(xmask)+(+1)]; 0 0 2 1 0 0 0 0 1 11 1 13 00
s3:=inv[(xmask)]; 0 0 3 0 0 0 0 0 1 12 0 13 00
s1:=band[(xmask),(ir)];decode; 0 3 1 0 0 0 1 1 1 10 2 13 00
s1:=inv[(mbr)]; 1 0 3 0 0 0 0 0 1 10 0 0 00
s1:=lshift[(s1)+(s1)]; 0 0 2 2 0 0 0 0 1 10 10 10 00
alu:=(ac);if z then goto 40; 0 2 0 0 0 0 0 0 0 0 0 4 40
pc:=(s1)+(xr);goto 0; 0 3 2 0 0 0 0 0 1 3 6 10 00
sp:=(sp)+(+1);rd;goto 11; 0 3 2 0 0 0 1 0 1 8 1 8 11
s1:=(s1)+(-1);if n then goto 0; 0 1 2 0 0 0 0 0 1 10 15 10 00
ac:=rshift[inv[(ac)]]; 0 0 3 1 0 0 0 0 1 4 0 4 00

Control with reduced microinstruction word width

Now consider an alternate control unit architecture that uses reduced word
width microinstructions. The reduced word width is achieved by encoding the
nine leftmost control fields in the 32-bit wide horizontal microinstruction for-
mat in Fig. 13 into one field and by eliminating the ADDR field, resulting in a
microinstruction format (called mpp-2) that is only half as wide (16 bits). The
consequence of encoding the microoperations in the microinstructions into 4-
bit operation codes is that only one microoperation or register transfer at a
time can be issued, thus reducing the parallelism provided by the microarchi-
tecture’s datapath. This occurs because the operation codes must be decoded
into a 1-out-of-16 selection, as shown in Fig. 14. Two condition code latches
for N and Z must also be supplied because now it is necessary to set the latches
during one microinstruction (such as during an ADD, Boolean AND, or shift
microinstruction) and then conditionally jump by testing them in a follow-
ing microinstruction. Disposing of the ADDR field requires the introduction
of a microprogram counter (already present) and both conditional and un-
conditional jump (micro)instructions whose target address can be formed by
combining the R2 and R3 4-bit address fields into one 8-bit field.

Table 8 shows the reduced word width microinstruction encodings, their
assembly language mnemonics, and their register transfer language specifi-
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Fig. 14. Reduced word width microinstructions control structure

cations. Note that r is the 8-bit concatenation [r2r3] of the two 4-bit fields
specified by r2 and r3 in the left-to-right order r2 followed by r3.

Table 9 specifies the control signals generated by the opcode decoder for
each mpp-2 microinstruction opcode. A plus sign means the signal is asserted
(i.e., set equal to 1); a blank means it is negated (i.e., set equal to 0). The
“Latch NZ” control signal generated by the opcode decoder and the addition of
the N and Z latches are the main differences between the mpp-2 and the mpp-
1 microarchitectures; the remaining 12 control signals generated by mpp-2’s
opcode decoder are the same as those used to control the mpp-1 data path and,
thus, perform the same functions as those specified in the microinstruction
format mpp-1 (32-bit word). Each output column in Table 9 represents one
control signal bit generated by an OR-gate whose input is the output of those
decoder AND-gates showing a plus sign in that column.
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Table 8. MPP-2 microinstructions, encodings, and meaning

MPP-2 opcodes
Opcode Mnemonic Meaning
binary & operands Instruction or action
0000 MOVE r1,r3 Move register r1:= (r3)
0001 AND r1,r2,r3 Boolean AND r1:= (r2)∧(r3) = band[(r2),(r3)]
0010 ADD r1,r2,r3 Addition r1:= (r2)+(r3)
0011 COMPL r1,r3 Complement r1:= inv[(r3)]
0100 LSHIFT r1,r3 Left shift r1:= lshift[(r3)]
0101 RSHIFT r1,r3 Right shift r1:= rshift[(r3)]
0110 GETMBR r1 Store MBR in register r1:= (mbr)
0111 TEST r3 Test register if (r3)<0 then N:=1;

if (r3)=0 then Z:=1
1000 LDMAR r3 Load MAR mar:= (r3)
1001 LDMBR r3 Load MBR mbr:= (r3)
1010 READ Memory read rd
1011 WRITE Memory write wr
1100 NJUMP r Jump if N=1 if n then go to r
1101 ZJUMP r Jump if Z=1 if z then go to r
1110 UJUMP r Unconditional jump go to r
1111 DECODE Decode IR operation go to map PLA address

Table 9. MPP-2 decoding and control signals

MPP-2 control signals
A
M E M M

Opcode ALU SHFT Latch U N A B R W COND
decimal Mnemonic F1 F0 S1 S0 NZ X C R R D R C1 C0

0 MOVE + +
1 AND + + +
2 ADD + + +
3 COMPL + + + +
4 LSHIFT + + +
5 RSHIFT + + +
6 GETMBR + + +
7 TEST +
8 LDMAR +
9 LDMBR +
10 READ +
11 WRITE +
12 NJUMP +
13 ZJUMP +
14 UJUMP + +
15 DECODE + + + +
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On the road to RISC

In the 1960s IBM included both a read-only memory (ROM) control store with
wide horizontal microinstructions and some writable control storage (static
random access memory) for microdiagnostics in high end IBM 360 series ma-
chines. In low end machines, both the ISA instructions and the microinstruc-
tions were stored in the read/write magnetic core main memory. In later series
machines, metal oxide semiconductor memory was used that held both ISA in-
structions and the control microprogram. The microprogram was loaded into
memory from a magnetic floppy disk from the console by pressing a “load
control store” button. Designers of some minicomputers (most of which had
microprogrammed CPUs) began including some writable control store so that
users could implement their own microprogrammed machine instruction, such
as one instruction that might perform a fast Fourier transform. This led to
the idea that the middle level microprogramming to interpret ISA machine
instructions could be eliminated if only high level language compilers could
compile all the way down to microinstructions. The first successful attempts
to do this required microinstructions that could perform only one thing at a
time, like the mpp-2 reduced word width microinstructions. So by designing
an instruction fetch unit that would carry out the first three microinstruction
words in Table 6 plus the instruction decode as a hardware component, the
microprogram could be formatted in mpp-2 format and placed directly into
main memory. In this way the PC becomes the MPC register used by the
instruction fetch unit, the IR register takes the place of the MIR register, and
the op decoder decodes the opcode field in the IR. The datapath, op decoder,
and control signal gating are then all hardwired, and the mpp-2 microinstruc-
tions become the instruction set architecture with the entire register set visible
to the programmer. This is basically what reduced instruction set computers
(RISC) are: user-microprogrammed engines.

The problem with the reduced word width microinstructions in the mpp-2
format is that, because of the loss of parallelism, more of them are needed
to accomplish the same tasks performed by horizontal mpp-1 microinstruc-
tions. For instance, the mpp-1 microinstruction “sp:=(sp)+(+1);rd;goto 11;”
specified in execution of the POP instruction would need to be replaced by a
sequence of three mpp-2 microinstructions; namely, “ADD sp,+1,sp; READ;
UJUMP 11.” Transforming to mpp-2 format the 127 words in the mpp-1 mi-
croprogram to interpret ISA-1 instructions (whose first 43 words are given in
Table 6) would require 3 additional microinstructions in the fetch cycle and 71
additional microinstructions in the ISA-1 execution cycles. Thus, although in
the mpp-2 format the microinstructions have become narrower, more of them
are needed to do the same work, resulting in longer (taller?) microprograms;
hence, the term “vertical microprogramming” for the mpp-2 format versus
the term “horizontal microprogramming” for the mpp-1 format. At four clock
ticks per additional microinstruction the same task would take longer on a ver-
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tically microprogrammed machine than on a horizontally microprogrammed
machine.

To recover some of the lost parallelism, a production line scheme, called
a “pipeline,” is used in all reduced instruction set architectures, but this too
introduces problems. If four clock ticks are used to process one microinstruc-
tion, then a four stage production line could be used with one stage per clock
tick. The instruction fetch unit is somehow operated to obtain a new microin-
struction at each clock tick and feed it into the pipeline. Once the pipeline
is filled, four separate microinstructions would be in various stages of execu-
tion simultaneously, thus regaining lost parallelism. The instruction fetch unit
must predict from what location the next microinstruction will come (usually
pointed at by the incremented program counter). Problems arise when con-
ditional branch instructions that cannot be resolved until the last stage of
production enter the pipeline. If the instruction fetch unit has guessed the
branch target incorrectly, then the other three stages of production must be
discarded and the correct instruction stream brought into the pipeline, causing
delayed production of results. Much design effort has gone into ways of making
better branch outcome guesses (i.e., predictions) to keep the ever-lengthening
pipelined production lines busy producing good results. More recently, this
work has been backed off onto compiler optimizers to reorganize the instruc-
tion sequence (without, hopefully, violating the programmer’s intent) so as to
schedule the instructions going into the pipeline in a way that will keep the
production line busy ([3], [8], [11]).

If one increases mpp-2 format word length and main memory word length
from 16 bits to 32 bits, then some more possibilities present themselves. The
r1, r2, and r3 fields can be increased to 5 bits each and 32 addressable and user-
visible registers can be included in the CPU. The width of the opcode field can
also be increased from 4 bits to 6 or 8 bits. This allows more opcode possibili-
ties and an instruction format that includes some bits in which to also specify
immediate mode constants to provide addressing modes similar to those in the
ISA-1 instruction set directly without the user writing sequences of mpp-2 like
microinstructions. Main memory load and store instructions are also usually
provided (along with opcodes for full and partial word transfers) so that users
need not directly manipulate the MAR and MBR registers and issue read
and write microoperations. These tasks are carried out and sequenced by the
hardware decoder for load and store instructions. Instructions such as add,
subtract, and other bitwise logical operations are restricted to manipulation
of CPU registers. Instructions that specify floating-point operations may also
be included in the instruction set, but these complex instructions are usually
passed to an associated floating-point co-processor for execution.

Because main memory access time has not been able to keep up with im-
provements in CPU instruction cycle times, higher speed hidden buffer mem-
ory (actually static random access register memory called “cache memory”)
is usually placed between the CPU and main memory to provide on-average
higher effective access time to memory words by keeping the more frequently
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accessed words in the high speed buffer memory. If the desired word cannot
be found in the cache memory, then some additional overhead time is incurred
to obtain that word from main memory, place it in the cache, and hand it to
the CPU.

The material in the references provides both additional information and
more detailed discussions of concepts presented here. However, whichever in-
struction set is provided by designers, it is the task of the programmer to
use those instructions to enable the computer to produce the desired results.
More complex instructions may result in a sequence of fewer instructions to
accomplish a given task. A simpler “reduced instruction set” format may re-
quire a longer sequence of instructions to do the same task, but hardware
organization components such as pipelining and branch prediction to support
on-average faster execution are also usually provided.
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1 Introduction

A real-time system is one with explicit deterministic or probabilistic timing
requirements. Historically, real-time systems were scheduled by cyclic exec-
utives, constructed in a rather ad hoc manner. During the 1970s and 1980s,
there was a growing realization that this static approach to scheduling pro-
duced systems that were inflexible and difficult to maintain. Building upon
the seminal work of Liu and Layland [27], a successful effort was made to
develop a practical theory of dynamic real-time scheduling, which led to the
main body of fixed priority scheduling results reported here. In addition, there
were notable and timely successes in the application of this theory to national
high technology projects including a global positioning satellite software up-
grade [17] and the International Space Station.

The successes in practice provided the momentum to revise the open sys-
tems standards and create a coherent set of hardware and software standards
to support fixed-priority, theory-based real-time computing. Before these re-
visions, real-time computing standards were ad hoc. They also suffered from
priority inversion problems, and had an inadequate number of priority levels
to support real-time applications of fixed-priority scheduling. A standards-
driven transformation of the real-time computing infrastructure started with
solving the priority inversion problem in Ada [32], and in providing sufficient
priority levels in Futurebus+. Today, all major open standards on real-time
computing support fixed-priority scheduling.

Since the launch of a Real Time Systems Initiative by the United States
Office of Naval Research in the 1980s, there has been an explosion of interest
in real-time systems, and a growing amount of research and publications on
the analysis of real-time scheduling. This chapter is based on the 25th year
anniversary paper [31] for the IEEE Real Time Systems Symposium written
by Sha et al. where the authors reviewed the key results in real-time scheduling



www.manaraa.com

174 M. Caccamo, T. Baker, A. Burns, G. Buttazzo, and L. Sha

theory and the historical events that led to the establishment of the current
real-time computing infrastructure. In the following sections, we briefly review
the two most important areas of real-time scheduling theory: 1) fixed-priority
scheduling, and 2) dynamic-priority scheduling. Finally, we examine some of
the new challenges ahead.

2 Fixed-Priority Scheduling

The notion of priority is commonly used to order access to the processor and
other shared resources such as communication channels. In real-time schedul-
ing theory, priorities are principally applied to the scheduling of jobs. Each
job has a release time, a computation time, and a deadline. The deadline can
be expressed relative to the release time or as an absolute time. In priority
scheduling, each job is assigned a priority via some policy. Contention for re-
sources is resolved in favor of the job with the higher priority that is ready to
run.

The phrase “fixed-priority scheduling” is generally applied to tasks. A task,
sometimes also called a process or thread, is a potentially infinite sequence
of jobs. A task is periodic if it is time triggered, with a regular release. The
length of time between releases of successive jobs of task τi is a constant, Ti,
which is called the period of the task. The deadline of each job is Di time units
after the release time. A task may also have an offset, from system start-up,
for the first release of the task. A task is aperiodic if it is not periodic. An
aperiodic task is sporadic if there is a bound on the load it may impose on the
system. For a sporadic task there are constants Ci and Ti such that the sum
of the compute times of all the jobs of τi released in any interval of length Ti is
bounded by Ci. In one important case Ci is an upper bound on the compute
time of each job and Ti is the minimum time between releases.

In fixed-priority task scheduling, all the jobs of a task have the same prior-
ity. Usually, the tasks are numbered so that τi has priority i, where the value
one denotes the highest priority and larger integers denote lower priorities.
Task-level priority assignments are known as “generalized rate-monotonic”
scheduling because of historical reasons. The priority of each task is assumed
to be fixed, but a system may still be analyzed under the assumption of fixed
task priorities if the changes in priority only occur at major epochs, such as
system “mode changes,” or if the changes only apply to short time intervals,
such as critical sections.

2.1 The Liu and Layland analysis

In 1973, Liu and Layland published a paper on the scheduling of periodic tasks
that is generally regarded as the foundational and most influential work in
fixed-priority real-time scheduling theory [27]. They started with the following
assumptions:
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(i) all tasks are periodic;
(ii) all tasks are released at the beginning of a period and have a deadline

equal to their period;
(iii) all tasks are independent, i.e., have no resource or precedence relation-

ships;
(iv) all tasks have a fixed computation time, or at least a fixed upper bound

on their computation times, which is less than or equal to their period;
(v) no task may voluntarily suspend itself;
(vi) all tasks are fully preemptible;
(vii) all overheads are assumed to be 0;
(viii) there is just one processor.

Under this model, a periodic task is time triggered, with a regular release
time. The length of time between releases of successive jobs of task τi is a
constant, Ti, which is called the period of the task. Each job has a deadline
Di time units after the release time. A task is said to have hard deadline if
every job must meet its deadline. A task may also have an offset, from system
start-up, for the first release of the task.

Feasibility analysis is used to predict temporal behavior via tests which
determine whether the temporal constraints of tasks will be met at run time.
Such an analysis can be characterized by a number of factors including the
constraints of the computational model (e.g., uniprocessor and task indepen-
dence) and the coverage of the feasibility tests. Sufficient and necessary tests
are ideal, but for many computational models such tests are intractable. In-
deed, the complexity of such tests is non-deterministic polynomial (NP)-hard
for non-trivial computational models. Sufficient but not necessary tests are
generally less complex, but are pessimistic. Feasibility analysis is most suc-
cessful in systems where the relative priorities of tasks (as in fixed-priority
scheduling), or at least jobs (as with Earliest Deadline First scheduling), does
not vary.

Liu and Layland’s fundamental insight regarding the feasibility of fixed-
priority task sets is known as the critical instant theorem [27]. A critical instant
for a task is a release time for which the response time is maximized (or
exceeds the deadline, in the case where the system is overloaded enough that
response times grow without bound). The theorem says that, for a set of
periodic tasks with fixed priorities, a critical instant for a task occurs when
it is invoked simultaneously with all higher priority tasks. The interval from
0 to Di is then one over which the demand of higher priority tasks τ1...τi−1
is at a maximum, creating the hardest situation for τi to meet its deadline.
This theorem has been proven to be robust. It remains true when many of
the restrictive assumptions about periodic tasks listed above are relaxed.

Though further research would find more efficient techniques, the critical
instant theorem provided an immediately obvious necessary and sufficient test
for feasibility, i.e., to simulate the execution of the set of tasks, assuming they
are all initially released together, up to the point that the lowest priority task
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either completes execution or misses its first deadline. The task set is feasible
if and only if all tasks have completed within their deadlines. The simulation
only need consider points in time that correspond to task deadlines and release
times. Since there are only �Dn/Ti� such points for each task τi, the complexity
of this simulation is O(

∑n
i=1Dn/Ti).

Based on the concept of critical instant, [27] proved a sufficient utilization-
based condition for feasibility of when a set of tasks assigned priorities accord-
ing to a rate-monotonic (RM) policy, that is, when the task with the shortest
period is given the highest priority, the task with the next shortest period
the second highest priority, etc. Liu and Layland proved that RM policy is
the optimal static task priority assignment, in the sense that if a task set can
be scheduled with any priority assignment, it is feasible with the RM assign-
ment. Liu and Layland also showed that with this policy scheduling a set of
n periodic tasks is feasible if

n∑
i=1

Ci

Ti
≤ n(2

1
n − 1). (1)

For example, a pair of tasks is feasible if their combined utilization is no greater
than 82.84%. As n approaches infinity, the value of n(21/n − 1) approaches
ln(2) (approximately 69.31%).

A common misconception is that with fixed-priority scheduling, and RM
scheduling in particular, it is not possible to guarantee the feasibility for any
periodic task set with a processor utilization greater than ln 2. This bound is
tight in the sense that there exist some infeasible task sets with utilization
arbitrarily close to n(21/n − 1), but it is only a sufficient condition. That is,
many task sets with utilization higher than (1) are still schedulable. Lehoczky,
Sha, and Ding [23] showed that the average real feasible utilization, for large
randomly chosen tasks sets, is approximately 88%. The remaining cycles can
be used by non-real-time tasks executing with background priorities. The de-
sire for more precise fixed-priority schedulability tests, i.e., conditions that are
necessary as well as sufficient, led to the feasibility analysis which is described
later in this section.

It is also important to note that high utilization can be guaranteed by an
appropriate choice of task periods. In particular, if task periods are harmonic
(that is, each task period is an exact integer multiple of the next shorter
period), then schedulability is guaranteed up to 100% utilization. This is often
the case in practice in a number of application domains. Sha and Goodenough
showed that by transforming periods to be nearly harmonic (with zero or small
residues in the division of periods), the schedulability can be significantly
improved [32]. For example, for two tasks with periods 10 and 15, the task with
period 10 can be mapped into a new task with period 5 and half of the original
execution time. The schedulability now becomes 100% because the residue in
period division is now zero. This technique, called period transformation, can
be done without changing the source code by means of one of the fixed-priority
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aperiodic server scheduling techniques, such as the sporadic server. There is,
however, some increase in system overhead when servers are used.

2.2 Further developments

The success of fixed-priority scheduling has come through the work of a large
group of researchers, who extended the original analysis of [27] in a number
of ways. The full story spans a very large number of publications. However,
taking a historical point of view [3, 32], one can recognize within all this
research a few principal threads:

(i) exact feasibility analysis—necessary and sufficient feasibility tests (based
upon calculation of the worst-case response time of a task) permitted
higher utilization levels to be guaranteed and led to further extensions
of the theory, such as overrun sensitivity analysis and the analysis of tasks
with start-time offsets;

(ii) analysis of task interaction—the introduction of the family of priority in-
heritance protocols enabled potential blocking to be bounded and ana-
lyzed;

(iii) inclusion of aperiodic tasks—the introduction of aperiodic servers permit-
ted aperiodic tasks to be accommodated within the strictly periodic task
model;

(iv) overload management—techniques for handling variations in task execu-
tion times made it possible to relax the requirement of known worst-case
execution times and still ensure that a critical subset of the tasks will
complete on time;

(v) implementation simplifications—the demonstration that only a small num-
ber of implementation priority levels is needed made it practical to apply
fixed-priority scheduling more widely, including in hardware buses;

(vi)multiprocessors and distributed systems—analysis techniques were adapted
to systems with multiple processors.

In the following sections we discuss these key results, together with the
subsequent threads of research stemming from them.

2.3 Feasibility analysis

The utilization bound feasibility test described above is simple, both in con-
cept and computational complexity. Consequently, it is widely recognized and
is frequently cited. However, it has some limitations:

(i) the feasibility condition is sufficient but not necessary (i.e., pessimistic);
(ii) it imposes unrealistic constraints upon the timing characteristics of tasks

(i.e., Di = Ti);
(iii) task priorities have to be assigned according to the RM policy (if priorities

are not assigned in this way, then the test is insufficient).
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During the mid 1980s, more complex feasibility tests were developed to address
the above limitations.

Lehoczky, Sha, and Ding [23] abstracted the idea behind the feasibility test
(based on the critical instant theorem) for RM scheduling by observing that if
a set of tasks is released together at time zero, the i highest priority task will
complete its first execution within its deadline if there is a time 0 < t ≤ Ti

such that the demand on the processor, Wi(t), of the i highest priority tasks
is less than or equal to t; that is,

Wi(t) =
i∑

j=1

⌈
t

Tj

⌉
Cj ≤ t. (2)

Since t
Tj

is strictly increasing except at the points where tasks are released,
the only values of t that must be tested are the multiples of the task periods
between zero and Ti. This test is also applicable to task sets with arbitrary
fixed-priority orderings.

Concurrently, another group of researchers looked at the more general
problem of determining the worst-case response time of a task, that is, the
longest time between the arrival of a task and its subsequent completion. Once
the worst-case response time of a task is known, the feasibility of the task can
be checked by comparing its worst-case response time to its deadline.

A fixed-priority response-time analysis was developed in [21]. The algo-
rithm of Joseph and Pandya computes the worst-case response time Ri of
task τi as the least fixed-point solution of the following recursive equation:

Ri = Ci +
i−1∑
j=1

⌈
Ri

Tj

⌉
Cj . (3)

Joseph observed that only a subset of the task release times in the interval
between zero and Ti need to be examined for feasibility. That is, the preceding
equation can be solved iteratively.

In 1982, the paper [24] considered fixed-priority scheduling of sets of tasks
that may have deadlines that are less than their periods, i.e., Ci ≤ Di ≤ Ti.
Leung and Whitehead showed that the optimal policy for such systems, called
deadline monotonic (DM) scheduling, is to assign tasks with shorter deadlines
higher priorities than tasks with longer deadlines. RM and DM scheduling are
the same when deadline equals period, and the proof of optimality follows the
same reasoning. Since the response-time tests described above do not depend
on any particular priority assignment, they can be applied to DM scheduling
as well as RM scheduling.

2.4 Task interaction

The Liu and Layland model assumes that tasks are independent. In real sys-
tems that is not the case. There are resources, such as buffers and hardware
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devices, that tasks must access in a mutually exclusive manner. The mech-
anisms that enforce mutual exclusion necessarily sometimes cause a task to
block until another task releases a resource. For a task system to be feasible,
the duration of such blocking must be bounded. Given such a bound, the fea-
sibility analysis can be refined to take the worst-case effect of blocking into
account.

In a fixed-priority preemptive scheduling system, blocking is called prior-
ity inversion because it results in a violation of the priority scheduling rule:
if the highest priority task is blocked, a lower priority task will execute. Sha
observed that the duration of priority inversion due to blocking may be ar-
bitrarily long. For example, a high priority task may preempt a low priority
task, the high priority task may then be blocked when it attempts to lock a
resource already locked by the low priority task, and then the low priority
task may be repeatedly preempted by intermediate priority tasks, so that it
is not able to release the resource and unblock the high-priority task. Sha,
Rajkumar, and Lehoczky introduced the family of priority inheritance proto-
cols as a solution approach to the priority inversion problem [34]. The priority
inheritance protocol (PIP) prescribes that if a higher priority task becomes
blocked by a low priority task, the task that is causing the blocking should
execute with a priority which is the maximum of its own nominal priority and
the highest priority of the jobs that it is currently blocking.

However, the PIP does not prevent deadlocks. In addition, a job can be
blocked multiple times. A solution is to add a new rule to the PIP: associate
with each resource a priority, called the priority ceiling of the resource. The
priority ceiling is an upper bound on the priority of any task that may lock
the resource. A job may not enter its critical section unless its priority is
higher than all the priority ceilings currently locked by other jobs. Under this
ceiling rule, a job that may share resources currently locked by other tasks
cannot enter its critical section. This prevents deadlocks. In addition, under
the priority ceiling protocol a job can be blocked at most once. This notion of
priority ceilings is the basis of several locking protocols, including the priority
ceiling protocol (PCP) [30, 34], the stack resource protocol (SRP) [4], and the
Ada 95 programming language ceiling locking protocol [5].

The feasibility analyses given in the previous section have been extended
to account for the blocking that tasks may be subject to at run time. In
the calculation of the feasibility of a task, its computation time is viewed as
consisting of its worst-case execution time, the worst-case interference it can
get from higher priority tasks, and the worst-case time for which it may be
blocked.

Permitting tasks to communicate and synchronize via shared resources
is only one form of task interaction that is not allowed within the Liu and
Layland model. Another is precedence constraints or relations between tasks.
When two tasks have a precedence relationship between them, the successor
task cannot commence execution before the predecessor task has completed.
While the choice of task offsets and periods can enforce precedence relations
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implicitly, little work has appeared in the literature regarding the explicit
analysis of precedence-related tasks within fixed-priority systems. In 1991,
Harbour, Klein, and Lehoczky [19] considered tasks that are subdivided into
precedence constrained parts, each with a separate priority.

2.5 Aperiodic tasks

In previous sections, we have discussed the scheduling of tasks with periodic
releases and predictable execution times. However, many real-time systems
also contain tasks whose processor demands do not fit that model. We use
the term non-periodic for such tasks, whether they have significantly varying
inter-release times, significantly varying execution times, no hard deadline, or
some combination of these characteristics.

If the periodic task model is relaxed slightly, letting Ci be just the max-
imum execution time and letting Ti be the minimum inter-release time, Liu
and Layland’s analysis and most of the refinements that followed it remain
valid [28]. However, for non-periodic tasks with large variations in inter-release
times and/or execution times, reserving enough processor capacity to guaran-
tee feasibility under this model is impractical.

One simple way to handle non-periodic tasks is to assign them priority
levels below those of tasks with hard deadlines, i.e, relegate them to back-
ground processing. However, if there is more than one such task and they
have quality-of-service requirements, average response-time requirements, or
average throughput requirements, background processing is likely to be un-
satisfactory.

Non-periodic tasks with quality-of-service requirements may be run at a
higher priority level, under the control of a pseudo hard real-time server task
such as a polling server [33]. A polling server is a periodic task with a fixed pri-
ority level (possibly the highest) and a fixed execution capacity. The capacity
of the server is calculated off line and is normally set to the highest level that
permits the feasibility of the hard-deadline periodic task set to be guaranteed.
At run time, the polling server is released periodically. Its capacity is used to
service non-periodic tasks. Once this capacity has been exhausted, execution
of the polling server is suspended until the server’s next (periodic) release.
Since the polling server behaves like a periodic task, the feasibility analysis
techniques developed for periodic tasks can be applied.

A polling server can guarantee hard deadlines for sporadic tasks, by ap-
propriate choices of period and server budget, and can guarantee a minimum
rate of progress for long-running tasks. It also is a significant improvement
over background processing for aperiodic tasks. However, if aperiodic jobs ar-
rive in a large enough burst to exceed the capacity of the server, then some
of them must wait until its next release, leading to potentially long response
times. Conversely, if no jobs are ready when the server is released, the high
priority capacity reserved for it is wasted.
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The Deferrable Server [41] and Sporadic Server algorithms [37] are based
on principles similar to those underlying the polling server. However, they
reduce wasted processor capacity by preserving it if there are no jobs pending
when the server is released. Due to this property, they are termed bandwidth
preserving algorithms. The two algorithms differ in the ways in which the ca-
pacity of the server is preserved and replenished and in the feasibility analysis
needed to determine their maximum capacity. In general, both offer improved
responsiveness over the polling approach. Even these more complex server al-
gorithms are unable to make full use of the slack time that may be present
due to the often favorable (i.e., not worst-case) phasing of periodic tasks.
The Deferrable and Sporadic Server algorithms are also unable to reclaim
spare capacity gained when, for example, other tasks require less than their
worst-case execution time. This spare capacity can, however, be reclaimed by
the Extended Priority Exchange algorithm [36]. Comparisons of these server
schemes are provided by Bernat and Burns [9], who conclude that the best
choice of server algorithm is application dependent.

Another approach to supporting soft-deadline tasks within a system that
contains hard deadlines is to assign two priorities to the hard-deadline tasks
[10]. When necessary, the task is promoted to the second, higher, priority to
ensure that it will meet its deadline. In general, the soft tasks have deadlines
below the second but above the initial deadline of these hard tasks.

Recently, Abdelzaher, Sharma, and Lu [1] have developed sufficient con-
ditions for accepting firm deadline aperiodic work while guaranteeing that all
deadlines of those tasks will be met. The admission algorithm requires knowl-
edge of an arriving task’s computation requirement and deadline. Given this
knowledge, Abdelzaher derives a schedulability bound in the spirit of the Liu
and Layland bound showing that if the workload level is kept below a certain
synthetic utilization level, all admitted tasks will always meet their deadlines.
Specifically, assume that each arriving aperiodic task has known computation
time C and deadline D. At each instant of time, a synthetic utilization value,
U(t) =

∑ Ci

Di
, is computed where the sum extends over all tasks that have ar-

rived and been accepted but whose deadlines have not yet expired. Abdelzaher
et al. show that there is a fixed-priority policy that will meet all the deadlines
of the accepted aperiodic tasks as long as the restriction U(t) ≤ 2 −

√
2 is

enforced. Arriving aperiodic tasks that would cause U(t) to exceed this bound
are not accepted for processing. Under a heavy workload, this algorithm will
reject unschedulable requests and accept those whose deadline can still be
guaranteed, leading to improved aperiodic utilization.

2.6 Overload management

Analyses of schedulability must make some assumptions about workload,
which is ordinarily characterized by the worst-case execution time and the
minimum inter-release time of each task. However, real task execution times
may vary widely, and the actual worst-case execution time of a task may be
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difficult or impossible to determine. Task release times may also vary from the
ideal model. To cope with such variability, a system designer may try to (a)
prevent overloads, by making safe assumptions about workload, which may
be even more pessimistic than the actual worst case; (b) tolerate overloads,
by providing some reduced but acceptable level of service when the workload
exceeds normal expectations.

With fixed-priority scheduling, an execution time overrun (provided it is
not in a non-preemptible section) or early task release may only delay the
execution of lower priority tasks. If it is known which tasks may be released
early or run over their nominal worst-case execution times, then only those
tasks and the tasks of lower priority need to be designed to tolerate and recover
from overruns.

Many practical systems, e.g., factory automation systems, PCs, and cell
phones, have a mixture of real-time tasks and non-real-time tasks. A widely
used practice is to give real-time tasks higher priorities. We know that real-
time tasks can meet their deadlines as long as they are schedulable as a group.
For example, in a modern PC, the audio and video will have higher priorities
and typically have a total utilization that is far below the Liu and Layland
bound. They can meet their deadlines, even if the system is overloaded by
other activities such as compiling applications and backing up files. Such a
simple but effective solution takes advantage of the nature of fixed-priority
scheduling.

Even if all the real-time tasks are not schedulable under wost-case condi-
tions, it may be possible to distinguish critical and non-critical tasks. That is,
the system may be able to function tolerably for some period of time if all the
critical tasks complete within their deadlines. Sha and Goodenough showed
that it is easy to ensure that a set of critical tasks’ deadlines will be met when
non-critical tasks overrun their nominal worst-case executions times, provided
the critical tasks never overrun their own nominal worst-case execution times
and are schedulable as a group under those worst-case execution times [32].
The technique is to shorten the periods of the critical tasks (the period trans-
formation mentioned in Section 2.1) so that the critical tasks all have higher
RM priorities than the non-critical tasks. More precise control over the effects
of overload may be achieved in other ways. Servers can be used to isolate the
cause of overload or to provide resources for recovery. Another approach to
overload is to define, if the application will allow, certain executions of each
task to be “skippable” [8, 22].

If one designs to prevent overloads by sizing a system to function correctly
under very conservative, safe assumptions about workload, there will ordinar-
ily be significant spare capacity available at run time. This spare capacity
becomes available for many reasons, including tasks completing in less than
their worst-case execution time, sporadic tasks not arriving at their maximum
rate, and periodic tasks not arriving in worst-case phasing. One then has the
problem of resource recovery, that is, finding a way to use the spare capacity
to enhance the quality of hard real-time services.
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One important approach to designing to make good use of spare capac-
ity, for both fixed-priority and dynamic-priority scheduling, is the imprecise
computation model [35]. This is based on what are known more generally as
“anytime algorithms” because they can provide a useful result any time they
are queried or stopped. One such approach is to decompose every task τi into
a mandatory subtask Mi and an optional subtask Oi. The mandatory sub-
task is the portion of the computation that must be done in order to produce
a result of acceptable quality, whereas the optional subtask refines this re-
sult. Both subtasks have the same arrival time ai and the same deadline di

as the original task τi; however, Oi becomes ready for execution when Mi is
completed.

3 Dynamic-Priority Scheduling

With dynamic-priority scheduling, task priorities are assigned to individual
jobs. One of the most-used algorithms belonging to this class is the Earliest
Deadline First (EDF) algorithm, according to which priorities assigned to
tasks are inversely proportional to the absolute deadlines of the active jobs.
The feasibility analysis of periodic task sets under EDF was first presented
in 1973 by Liu and Layland [27], who showed that, under the same simplified
assumptions used for RM scheduling, a set of n periodic tasks is schedulable
by the EDF algorithm, if and only if

n∑
i=1

Ci

Ti
≤ 1, (4)

where Ci is the worst-case execution time of task τi and Ti is its period.
In 1974, Dertouzos [16] showed that EDF is optimal among all preemptive
scheduling algorithms, in the sense that, if there exists a feasible schedule for
a task set, then the schedule produced by EDF is also feasible. Later, Mok
presented another optimal algorithm, Least Laxity First (LLF) [29], which
assigns the processor to the active task with the smallest laxity.5 Although
both LLF and EDF are optimal algorithms, LLF has a larger overhead due to
the higher number of context switches caused by laxity changes at run time.
For this reason, most of the work done in the real-time research community
has concentrated on EDF to relax some simplistic assumption and extend the
feasibility analysis to more general cases.

In this section we provide an overview of the key results related to EDF
scheduling. We first present an analysis technique for verifying the feasibil-
ity of deadline-based schedules and briefly describe some efficient algorithms

5We recall that the laxity (or slack time) is the difference between the absolute
deadline and the estimated worst-case finishing time.



www.manaraa.com

184 M. Caccamo, T. Baker, A. Burns, G. Buttazzo, and L. Sha

for aperiodic task scheduling and shared resource management. Then, we de-
scribe some methods for dealing with overload conditions, and we conclude
the section by presenting some open research issues.

3.1 Processor demand criterion

Under EDF, the analysis of periodic and sporadic tasks with deadlines less
than periods can be performed by processor demand analysis, proposed in
1990 for strictly periodic tasks by Baruah, Rosier, and Howell [6], and for
sporadic tasks by Baruah, Mok, and Rosier [7].

In general, the processor demand in an interval [t1, t2] is the amount of
processing time g(t1, t2) requested by those jobs activated in [t1, t2] that must
be completed in [t1, t2]. Hence, the feasibility of a task set is guaranteed if and
only if in any interval of time the total processor demand does not exceed the
available time, that is, if and only if

∀t1, t2 g(t1, t2) ≤ (t2 − t1).

Baruah, Rosier, and Howell showed that a set of periodic tasks simultaneously
activated at time t = 0 is schedulable by EDF if and only if U < 1 and

∀L > 0
n∑

i=1

⌊
L+ Ti −Di

Ti

⌋
Ci ≤ L. (5)

Baruah, Mok, and Rosier showed that the points in which the test has to
be performed correspond to those deadlines within the hyper-period H not
exceeding the value max{D1, . . . , Dn, L∗}, where

L∗ =
∑n

i=1(Ti −Di)Ui

1− U .

It follows that when deadlines are less than or equal to periods, the exact
feasibility analysis of EDF is of pseudo-polynomial complexity. Of course,
when deadlines are equal to periods, the utilization test may be used, with a
complexity of only O(n).

3.2 Aperiodic task scheduling

The higher schedulability bound of dynamic scheduling schemes also allows
achieving better responsiveness in aperiodic task handling. Several algorithms
have been proposed in the real-time literature to handle aperiodic requests
within periodic task systems scheduled by EDF [18, 38]. Some of them are
extensions of fixed-priority servers, whereas some were directly designed for
EDF.
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The total bandwidth server approach

One of the most efficient techniques to safely schedule aperiodic requests under
EDF is the total bandwidth server (TBS) [38], which assigns each aperiodic
job a deadline in such a way that the overall aperiodic load never exceeds a
specified maximum value Us.

In particular, when the kth aperiodic request arrives at time t = rk, it
receives a deadline

dk = max(rk, dk−1) +
Ck

Us
,

where Ck is the execution time of the request and Us is the server utilization
factor (that is, its bandwidth). By definition d0 = 0. Note that in the dead-
line assignment rule the bandwidth allocated to previous aperiodic requests
is considered through the deadline dk−1. Once the deadline is assigned, the
request is inserted into the system ready queue and scheduled by EDF as
any other periodic instance. As a consequence, the implementation overhead
of this algorithm is practically negligible. The schedulability test for a set of
periodic tasks scheduled by EDF in the presence of a TBS is given by the
following theorem by Spuri and Buttazzo [38].

Theorem 1. Given a set of n periodic tasks with processor utilization Up and
a TBS with processor utilization Us, the whole set is schedulable by EDF if
and only if

Up + Us ≤ 1.

Achieving optimality

The deadline assigned by the TBS can be shortened to minimize the response
time of aperiodic requests, while maintaining the periodic tasks’ schedulability.
Buttazzo and Sensini [12] proved that setting the new deadline at the current
estimated worst-case finishing time does not jeopardize schedulability.

The process of shortening the deadline can then be applied recursively
to each new deadline until no further improvement is possible, given that
the schedulability of the periodic task set must be preserved. If ds

k is the
deadline assigned to the aperiodic request Jk at the sth iteration and fs

k is
the corresponding finishing time in the current EDF schedule (achieved with
ds

k), the new deadline ds+1
k is set equal to fs

k . The algorithm stops either when
ds

k = ds−1
k or after a maximum number of steps defined by the system designer

for bounding the complexity.
It is worth noticing that the overall complexity of the deadline assignment

algorithm is O(Nn), where N is the maximum number of steps performed by
the algorithm to shorten the initial deadline assigned by the TBS. Finally, as
far as the average case execution time of tasks is equal to the worst-case one,
this method achieves optimality, yielding the minimum response time for each
aperiodic task, as stated by the following theorem by Buttazzo and Sensini
[12].
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Theorem 2. Let σ be a feasible schedule produced by EDF for a task set T
and let fk be the finishing time of an aperiodic request Jk, scheduled in σ with
deadline dk. If fk = dk, then fk = f∗

k , where f∗
k is the minimum finishing

time achievable by any other feasible schedule.

Although the TBS can efficiently handle bursty sequences of jobs, it cannot
be used to serve jobs with variable or unknown execution times. In this case,
a budget management mechanism is essential to prevent execution overruns
from jeopardizing the schedulability of hard tasks.

The constant bandwidth server

The constant bandwidth server (CBS) is a scheduling mechanism proposed
by Abeni and Buttazzo [2] to implement resource reservations in EDF-based
systems.

A CBS is characterized by a budget cs, a dynamic server deadline ds,
and an ordered pair (Qs, Ts), where Qs is the maximum budget and Ts is the
period of the server. The ratio Us = Qs/Ts is denoted as the server bandwidth.

Each job served by the CBS is assigned a suitable deadline equal to the
current server deadline, computed to keep its demand within the reserved
bandwidth. As the job executes, the budget cs is decreased by the same
amount and, every time cs = 0, the server budget is recharged to the maxi-
mum value Qs and the server deadline is postponed by a period Ts to reduce
the interference on the other tasks. Note that by postponing the deadline,
the task remains eligible for execution. In this way, the CBS behaves as a
work-conserving algorithm, exploiting the available slack in an efficient way,
and providing better responsiveness as compared to non-work-conserving al-
gorithms and to other reservation approaches that schedule the extra portions
of jobs in background.

An important property is that, in any interval of time of length L, a
CBS with bandwidth Us will never demand more than UsL, independently
from the actual task requests. This property allows the CBS to be used as a
bandwidth reservation strategy to allocate a fraction of the CPU time to soft
tasks whose computation time cannot be easily bounded. The most important
consequence of this result is that such tasks can be scheduled together with
hard tasks without affecting the a priori guarantee, even in the case in which
soft requests exceed the expected load.

3.3 Resource sharing

Under EDF, several resource access protocols have been proposed to bound
blocking due to mutual exclusion, such as dynamic priority inheritance [40],
dynamic deadline modification [20], and stack resource policy [4]. The stack
resource policy is one of the most used methods under EDF for its properties
and efficiency; hence it will be briefly recalled in the next section.
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Stack resource policy

The stack resource policy (SRP) is a concurrency control protocol proposed
by Baker [4] to bound the priority inversion phenomenon in static as well as
dynamic-priority systems. In this work, Baker made the insightful observation
that, under EDF, jobs with a long relative deadline can only delay, but can-
not preempt, jobs with a short relative deadline. A direct consequence of this
observation is that a job cannot block another job with longer relative dead-
line. Thus, in the study of blocking under EDF, we only need to consider the
case where jobs with longer relative deadlines block jobs with shorter relative
deadlines.

This observation allows Baker to define preemption levels separately from
priority levels under EDF, in such a way that they are inversely proportional
to relative deadlines. It follows that the semaphore preemption ceiling under
SRP can be defined in the same way as the priority ceiling under PCP.

Hence, under SRP with EDF, each job of τi is assigned a priority pi ac-
cording to its absolute deadline di and a static preemption level πi inversely
proportional to its relative deadline. Each shared resource is assigned a ceil-
ing which is the maximum preemption level of all the tasks that will lock this
resource. Moreover, a system ceiling Π is defined as the highest ceiling of all
resources currently locked.

Finally, the SRP scheduling rule requires that

“a job J is not allowed to start executing until its priority is the highest
among the active tasks and its preemption level is greater than the
system ceiling Π”.

SRP guarantees that, once a job is started, it will never block until com-
pletion; it can only be preempted by higher priority tasks. SRP prevents
deadlocks, and a job can be blocked for at most the duration of one critical
section.

Under the SRP there is no need to implement waiting queues. In fact,
a task never blocks during execution: it simply cannot start executing if its
preemption level is not high enough. As a consequence, the blocking time Bi

considered in the schedulability analysis refers to the time for which task τi
is kept in the ready queue by the preemption test.

The feasibility of a task set with resource constraints (when only periodic
and sporadic tasks are considered) can be tested by the following sufficient
condition [4]:

∀i, 1 ≤ i ≤ n
i∑

k=1

Ck

Tk
+
Bi

Ti
≤ 1, (6)

where Bi is the maximum blocking time of task τi and it is assumed that all
the tasks are sorted by decreasing preemption levels, so that πi ≥ πj only if
i < j.
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As a final remark, the SRP allows tasks to share a common run-time stack,
allowing large memory savings if there are many more tasks than relative
priority levels.

Under EDF, resources can also be shared between hard tasks and soft tasks
handled by an aperiodic server. Ghazalie and Baker [18] proposed to reserve an
extra budget to the aperiodic server for synchronization purposes and used the
utilization-based test [27] for verifying the feasibility of the schedule. Lipari
and Buttazzo [26] extended the analysis to a TBS. Caccamo and Sha [15]
proposed another method for capacity-based servers, like the CBS, which also
handles soft real-time requests with a variable or unknown execution behavior.
The method is based on the concepts of dynamic preemption levels and allows
resource sharing between hard and soft tasks without jeopardizing the hard
tasks’ guarantee.

3.4 Overload management

An overload condition is a critical situation in which the computational de-
mand requested by the task set exceeds the time available on the processor, so
that not all tasks can complete within their deadlines. When a task executes
more than expected, it is said to overrun. This condition is usually transient
and may occur either because jobs arrive more frequently than expected (ac-
tivation overrun) or because computation times exceed their expected value
(execution overrun). A permanent overload condition may occur in a peri-
odic task system, when the total processor utilization exceeds one. This could
happen after the activation of a new periodic task, or if some tasks increase
their activation rate to react to some change in the environment. In such a
situation, computational activities start to accumulate in the system’s queues,
and the task response times tend to increase indefinitely.

Transient overloads

Transient light overloads due to activation overruns can be safely handled by
an aperiodic server that, in the case of a bursty arrival sequence, distributes
the load more evenly according to the bandwidth allocated to it. In heavier
load conditions, admission control schemes may be necessary to keep the load
below a desired threshold [39].

Overloads due to execution overruns can be handled through a resource
reservation approach [2]. The idea behind resource reservation is to allow each
task to request a fraction of the available resources, just enough to satisfy its
timing constraints. The kernel, however, must prevent each task from con-
suming more than the requested amount, to protect the other tasks in the
systems (temporal protection). In this way, a task receiving a fraction Ui of
the total processor bandwidth behaves as if it were executing alone on a slower
processor with a speed equal to Ui times the full speed. The advantage of this
method is that each task can be guaranteed in isolation, independently of the
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behavior of the other tasks. A simple and effective mechanism for implement-
ing temporal protection under EDF is the CBS [2]. To properly implement
temporal protection, however, each task τi with variable computation time
should be handled by a dedicated CBS with bandwidth Usi

, so that it cannot
interfere with the rest of the tasks for more than Usi

.
Although resource reservation is essential for achieving predictability in

the presence of tasks with variable execution times, the overall system’s per-
formance becomes quite dependent on a correct resource allocation. For ex-
ample, if the CPU bandwidth allocated to a task is much less than its average
requested value, the task may slow down too much, degrading the system’s
performance. On the other hand, if the allocated bandwidth is much greater
than the actual needs, the system will run with low efficiency, wasting the
available resources.

Two reclaiming techniques have been proposed to cope with an incorrect
bandwidth assignment. The CApacity SHaring (CASH) algorithm [14] works
in conjunction with the CBS. Its main idea can be summarized as follows:
1) whenever a task completes its execution, the residual capacity (if any) is
inserted with its deadline in a global queue of available capacities, the CASH
queue, ordered by deadline; 2) whenever a new task instance is scheduled for
execution, the server tries to use the residual capacities with deadlines less
than or equal to the one assigned to the served instance; if these capacities
are exhausted and the instance is not completed, the server starts using its
own capacity. The main benefit of this reclaiming mechanism is to reduce the
number of deadline shifts in the CBS, thereby enhancing the responsiveness
of aperiodic tasks.

The Greedy Reclamation of Unused Bandwidth (GRUB) [25] algorithm is
another server-based technique to reclaim unused processor bandwidth. Ac-
cording to the GRUB algorithm, each task is executed by a distinct server Si,
where each server is characterized by two parameters: a processor share Ui,
and a period Pi. GRUB is able to emulate a virtual processor of capacity Ui

when executing a given job, and it uses a notion of virtual time to enforce
isolation among different applications and to safely reclaim all unused capac-
ities generated by periodic and aperiodic activities. Compared to CASH, the
GRUB algorithm has more overhead due to its virtual time management, but
it achieves better performance in terms of aperiodic responsiveness.

Permanent overloads

Permanent overload conditions in periodic task systems can be handled using
three basic approaches that allow keeping the load below a desired value. A
first method reduces the total load by properly skipping (i.e., aborting) some
jobs in the periodic tasks, in such a way that a minimum number of jobs per
task are guaranteed to execute within their timing constraints. In a second
approach, the load is reduced by enlarging task periods to suitable values, so
that the total workload can be kept below a desired threshold. In the third
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approach, the load is reduced by decreasing the computational requirements
of the tasks, trading quality of results with predictability.

Permitting skips in periodic tasks increases system flexibility, since it al-
lows making better use of resources and scheduling systems that would other-
wise be overloaded. The job skipping model was originally proposed by Koren
and Shasha [22], who showed that making optimal use of skips is NP-hard and
presented two algorithms that exploit skips to increase the feasible periodic
load and schedule slightly overloaded systems.

According to the job skipping model, the maximum number of skips for
each task is controlled by a specific parameter associated with the task. In
particular, each periodic task τi is characterized by a worst-case computa-
tion time Ci, a period Ti, a relative deadline equal to its period, and a skip
parameter Si, 2 ≤ Si ≤ ∞, which gives the minimum distance between two
consecutive skips. For example, if Si = 5, the task can skip one instance of
every five. When Si =∞, no skips are allowed and τi is equivalent to a hard
periodic task. The skip parameter can be viewed as a quality-of-service (QoS)
metric (the higher the value of S, the better the quality of service). In the
same work, Koren and Shasha provided a sufficient condition for guaranteeing
a set of skippable periodic tasks under EDF. It is worth noting that, if skips
are permitted in the periodic task set, the spare time saved by rejecting the
skipped instances can be reallocated for other purposes. In [13], Caccamo and
Buttazzo generalized the results in [22] by identifying the amount of band-
width savings achieved by skips to advance the execution of aperiodic tasks.

A second approach, named elastic scheduling, is able to handle permanent
overloads by varying task periods. Whenever the total processor utilization
is greater than one, the utilization of each task needs to be reduced so that
the total utilization becomes equal to a desired value Ud ≤ 1. This can be
done as in a linear spring system, where springs are compressed by a force
F (depending on their elasticity) up to a desired total length. To apply this
method, each task needs to be specified with additional parameters, including
a range of periods and an elastic coefficient, used to diversify compression
among tasks, so that utilization reduction is higher for tasks with higher
elasticity. As shown in [11], in the absence of period constraints, the utilization
Ui of each compressed task can be computed in order O(n) (where n is the
number of tasks), whereas in the presence of period constraints (Ti ≤ Timax),
the problem of finding the Ui values requires an iterative solution of O(n2)
complexity. The same algorithm can be used to reduce the periods when the
overload is over, thus adapting task rates to the current load condition to
better exploit the computational resources. Another method is the imprecise
computation that was discussed in Section 2.6.
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4 Challenges Ahead

We have reviewed some of the major real-time scheduling results. Looking
at the “big picture,” we have witnessed the changing trends in real-time sys-
tems. System architecture has changed from a federated system architecture
to an integrated system architecture and then to a system of systems. Each
shift has brought about enormous challenges to the available technological
infrastructure.

In a federated architecture, a system is characterized by a collection of
private hardware resources, a small number of high volume, high variability
sensor data streams on dedicated links, loosely coupled distributed actions,
and hardware-based isolation and protection. Under this type of architecture,
the task of managing shared resources focuses mainly on how to handle peri-
odic data flow, driven by signal processing and control. The existing real-time
computing infrastructure has served most practitioners well for this type of
application.

In an integrated system architecture, sensors, communication channels,
and processors are extensively shared. The large number of possible configu-
rations becomes a challenge. The current generation of schedulability analysis
tools offers inadequate support for system architects. They must manually
create the alternative options and then check the schedulability of each op-
tion. It would be preferable to have tools that automatically search the design
space and perform sensitivity analysis taking into account the uncertainty of
task parameters. During the system engineering phase, the values of task pa-
rameters are often educated guesses. Finally, from the perspective of run-time
reconfiguration, dynamic-priority scheduling theory offers several advantages.
In addition to the potential of higher schedulability, the feasibility analysis
of dynamic priority scheduling is often faster. We are looking forward to the
maturing and subsequent use of dynamic scheduling theory in practice.

In modern integrated systems, there are substantial high volume and high
variability imaging data streams. Depending on the application, these streams
can have either hard or soft end-to-end deadlines. If the images are used for
steering a vehicle, they will have a hard end-to-end deadline and tight jitter
tolerance. Such hard-deadline streams pose challenges to traditional schedul-
ing theory using worst-case assumptions. The large execution time variability
causes inefficiency. Many algorithms have been developed to capture the un-
used cycles to improve local aperiodic response times. How to effectively use
such transient surpluses to improve end-to-end responses requires more study.
The soft real-time image data streams also pose challenges to the statistical
approach. In fact, the processing times of an imaging data stream at the var-
ious nodes on its path are positively correlated, not independent. In addition,
on congested resources such as shared buses, an image data stream can con-
sume a significant fraction of a shared resource, instead of consuming a small
fraction of a shared resource that allows the use of the law of large numbers.
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A system of systems is often a large distributed system, where keeping dis-
tributed views and actions timely and consistent is at the heart of collaborative
actions. Ideally, we would like to keep distributed views, state transitions, and
actions consistent with one another. In business systems, the consistency of
a distributed system is managed by atomic operations. Simply put, atomic
operations wait for every working component to be ready and then com-
mit the operations. However, this may not be viable for real-time systems.
Metaphorically speaking, the train must leave the station without waiting for
every passenger to board. However, those components that are left behind
with outdated views and states must quickly catch up and re-synchronize
themselves with the system. If more and more components fall out of syn-
chronization, the system of systems will fall apart. Handling the interactions
between timing constraints, consistency requirements, and re-synchronization
in a large distributed system remains a challenge. As a networked embedded
system of systems grows larger and its coordination becomes tighter, so grows
the importance of this technological challenge. The re-synchronization loop is
a form of feedback control: feedback is a powerful technique which has yet to
be fully exploited in the control of the behavior of computing systems in the
face of uncertainty.

Another characteristic of a system of systems is that a wide variety of
real-time, fault tolerance, and security protocols are used in different sys-
tems, because most of the systems of systems are integrated, not built from
scratch. It is well known that perfectly fine medicines when taken alone can
react pathologically when taken together. Priority inversion is an example of a
pathological interaction between an independently developed synchronization
protocol and a priority scheduling protocol. This is not an easy problem to
solve because the scope of modern technologies is so large and complex. To ad-
vance any area, one must specialize. As a result, we have specialized real-time,
fault tolerance, and security communities focusing on improving the results
in one dimension with little attention on how separately developed protocols
may interact. We need to create a forum for the co-development/integration
of real-time, fault tolerant, security, communication, and control protocols.
Research is needed to formally verify that protocols do not invalidate each
others’ pre-conditions when they interact.

Looking ahead, much remains to be done in the creation of a new real-time
computing infrastructure for modern real-time systems. It will be an exciting
time!
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1 Networking for Control Systems

1.1 Benefits of networking in control systems

Networks are the first widely applicable means of including multiple cooperat-
ing computers in the same control system. There are two primary motivations
for wanting multiple computers in a control system: additional computing
power and distribution of computing to match the target system’s topology.
While more computing power is always a good thing, in control systems com-
puting power is valued according to priority. What is most valuable is high
priority computing power. Given the sequential architecture of computers,
only one activity can occupy the highest priority slot. With several computers
in the system, there can be a highest priority activity on each of them.

The cost structure of computing also motivates the desire for obtaining
added computing power via several computers. At any given technological
time point, going beyond a certain computing capability in a single processor
becomes very expensive. If more computing power than that limit is needed,
the most cost-effective way to get it is with multiple processors.

System topology issues can be as strong or even stronger than comput-
ing power in motivating multiple computer control systems. Here the mo-
tivation is data and information integrity and reduced cabling. Traditional
control systems relied on analog information transmission, both for sensing
and for actuation. Analog cables carry one signal per cable. Analog signals
are also susceptible to contamination from a variety of noise sources. Even
when modulation schemes are used, significant noise susceptibility remains.
These attributes of analog systems provide a powerful incentive for the use
of networking in control. This incentive has both operational and capital cost
aspects.

Operationally, digital signals can have arbitrarily strong protection against
noise. Furthermore, the cost of that protection scales reasonably with the
severity of the noise, whereas beyond certain practical limits, the costs of
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protecting analog signals escalates rapidly. Thus, with proper design, once in
digital format, a very high degree of data integrity can be ensured.

Overall system cost is another major motivation for networked control
systems. In systems of even modest complexity, cabling is a major system cost
and is also a major source of reliability problems. Well-designed networked
control systems can dramatically reduce the amount of cabling—unlike analog
cabling, a digital cable can carry multiple signals on a single channel.

1.2 Costs of networking in control systems

Economists warn us that there is “no such thing as a free lunch,” so we should
expect some cost to go with these benefits. The costs are economic—the infras-
tructure of the network, and operational—the computational overhead used
to run the network, the added complexity of doing control over a network, and
particular network characteristics that impact on control system performance.

The functional costs associated with the use of networks in control systems
come from network performance specifications. The most common network
specifications come from the larger business and personal computing envi-
ronments. In these cases, the most important network attribute is throughput
—the amount of information that can be passed through the network per unit
of time. This is usually expressed in bits per second (bps) and is most properly
measured as the average rate for moving a large amount of information, for
example, downloading a large file. Control systems, however, operate on short
time scales. The most important property of a network in a control system is
the delay or latency time: How long does it take for information generated on
one computer to be available for use on another? When the network is used
as part of a feedback control loop, these delays degrade loop performance and
can cause instability. When the network is only being used at higher levels,
delays cause errors in synchronizing different parts of the system. It is true
that networks with higher throughput will often have shorter latency times
than networks with lower throughput, but the latency times depend on many
other properties as well.

The overhead associated with networking becomes critical when multiple
computers are being used to augment computing power in a control system.
The overhead is incurred in preparing information for network transmission,
transferring the information to the network interface so it can be transmitted
on the network, retrieving information from the network interface, and decod-
ing the received information for use by the program. Because of this overhead,
the gain in computing power is never proportional to the number of added
computers. It can, in fact, become negative as the overhead eats up all of the
added computing power of the extra computers!
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1.3 Time and event triggering in control systems

Control systems are driven by events. When specified events occur, the control
system must take some action within a specified time (latency). One particular
class of events, those based on time, are so ubiquitous in control systems that
they are usually classified separately. Certainly, the single most common trig-
ger for control system activity is the sample time of a discrete-time feedback
loop.

In time-triggered (TT) systems all activities must be known in advance and
thus it is easier to predict performances. The price to pay is inflexibility, which
means that unpredicted events will not be treated. A second characteristic of
TT systems is that the time at which every computation is made (and every
message is transferred) is known beforehand. In fact, everything runs as if we
were in the worst case with respect to overlap of event timings. In contrast,
in event-triggered (ET) systems, some properties may be predicted but they
are not deterministic, for example, the timing for some specific event. There is
more flexibility in handling unforeseen cases and under normal circumstances,
the performance is better than that of an “equivalent” TT system (we do
not make the worst-case assumption). However, such systems usually require
a substantial safety margin in their capabilities (processor speed, network
bandwidth, memory size, etc.) so that unlikely but possible circumstances
will not cause dangerous system errors.

Networks pose particular problems when it comes to triggering of control
system events. In addition to the delay issues noted above, depending on the
type of network, the delay times might have stochastic variations. Even the
concept of time must be reexamined. In a single-processor control system,
“time” is based on a clock that is part of the processor’s hardware. With
multiple computers, each one has its own clock. These clocks will drift with
respect to each other, so relative timing of actions in the control system cannot
be guaranteed unless specific measures are taken to keep them synchronized.

An even more insidious problem can occur when event-triggering informa-
tion is sent across a network. Depending on the network type and configura-
tion, the order of event notifications at the target node can be different than
the order in which the events occurred. Thus, any actions that are dependent
on event order can trigger incorrectly.

1.4 Network design for control

The advantages of networking in control systems are so strong that any sys-
tems above some minimal level of complexity are likely to utilize networking.
However, networking in control has operational requirements that are quite
different from networking in a general computing environment. Not only is
the selection of network type important, but the design and configuration of
the network are crucial for achieving satisfactory performance.
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2 What Is a Network?

2.1 Network basics

To be a “network” in the computational sense a configuration of computers
must:

• Share access to a common medium
• Encapsulate information into packets
• Share a common understanding of the meaning of the information.

A computer on a network, a network “node,” can use the shared medium to
access any other computer on the network. Packetizing the information to be
exchanged allows for efficient use of the network resources. In fact, packetizing
is why the modern network has achieved such incredible impact. Very large
shared-access media have existed before—think of the pre-modern telephone
network (say, before 1970), but this system was very expensive to use because
it provided a dedicated point-to-point connection in order to complete a call.
The even earlier party-line telephone networks made the shared access totally
obvious to the user.

Although people usually use the telephone network as a prototypical ex-
ample of a network, because of its point-to-point nature it is missing one of
the key ingredients—packetizing. Surprisingly, a better example is the postal
system (yes, snail mail!). Postal systems have provided low-cost, reliable com-
munication for several hundred years. The key to the effectiveness of the postal
system is the envelope. It encapsulates the information in a way that is inde-
pendent of the nature of the information being transmitted. The envelope also
includes addressing information in a standard format, sender identification,
and payment information. In computer networking this is called “header”
information. The very notion of “packet” as used in computer networking
comes from postal mail. Here are a couple of dictionary definitions (via dic-
tionary.com):

• ...a vessel employed by government to convey dispatches or mails (Web-
ster’s Revised Unabridged Dictionary, c©1996, 1998 MICRA, Inc.)

• a collection of things wrapped or boxed together (WordNet r©1.6, c©1997
Princeton University).

2.2 Local and wide area networks

A local area network (LAN) uses a single, common medium to connect a
set of computer nodes. All of the nodes are energetically connected to each
other (the form of energy depends on the medium—electrical, optical, radio
frequency, etc.). As the name implies, LANs cover relatively compact areas.
A primary issue in LANs is controlling access to the medium by each of the
nodes in order to maintain order, make efficient use of the medium, and to
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establish some notion of “equity,” that is, making sure each computer node
has appropriate access to the network.

A wide area network (WAN) is made up by interconnecting LANs. The
connection is accomplished by converting the information flowing in physical
form on the LAN to information (as data stored in a computer) and then re-
transmitting it to establish connections to computers not on the local network.
The computers that accomplish the translation and retransmission are called
“routers.” The most prominent example of a WAN is the Internet. In the
course of traversing a WAN, the information is typically carried over several
different physical media along the way.

There are profound differences in LANs and WANs vis-á-vis control ap-
plications. Although many networking technologies are equally applicable to
LANs or WANs, the performance issues are very different. Some performance
factors that can differ significantly in LANs and WANs are:

• Information delay time
• Network traffic control
• Lost packets
• Packet ordering
• Security.

Once a packet crosses the boundary established by a router, “it’s a big
bad world out there!” A LAN can be physically secured if all of the media
used in the network are on the same premises as the control system. Within
the LAN all of the computer nodes are in physical contact with one another.
Packets that are routed onto the WAN share traffic with all other users of the
segments that the packets traverse. Because of that, performance at the level
needed for control of physical systems can become quite unpredictable. The
time it takes to deliver a packet depends on the route the packet takes and
how heavily loaded those links are. While traffic on a LAN can be regulated,
other factors affect load on WANs. Packets in the wide area environment can
be lost or, because of routing differences, can arrive out of order. Security is
likewise a much more difficult problem when packets move through a WAN.

The general design rule is thus that time critical operations in networked
control systems are usually confined to well-designed LANs. Wide area usage
in control is usually limited to obtaining diagnostic information, very high
level supervisory access, etc.

2.3 Layering

Layering in network technology separates functional elements of a network
into layers and then very carefully defines how each layer interacts with the
layers above and below it. This model has successfully allowed specialists
at each layer to refine that layer’s technology while, because of the strongly
defined layer interfaces, providing successful interoperability across systems
from various manufacturers.



www.manaraa.com

202 D. M. Auslander and J.-D. Decotigne

The classic work on layered design of networks is the Open Systems Inter-
connection (OSI) model from the International Organization for Standardiza-
tion (ISO, know colloquially in English as the International Standardization
Organization, http://www.iso.org/iso/en/ISOOnline.openerpage). Although
this model is not used directly in commercial networking software, it forms
the basis for design and construction of many networking technologies.

The OSI model has seven layers ([1], [3], p. 28):

1. Physical layer.
Defines the physical and electrical characteristics of the network.

2. Data link layer.
Defines the strategy for sharing the physical medium.

3. Network layer.
Provides a means for communicating among open systems to establish,
maintain and terminate network connections.

4. Transport layer.
Ensures data reliability and integrity to the Session Layer (layer 5).

5. Session layer.
Provides for two communicating entities to exchange data with each other.

6. Presentation layer.
This is where application data is either packed or unpacked, ready for use
by the running application.

7. Application Layer.
This layer is for end-user and end-application protocols.

The top and bottom layers are quite intuitive. The physical layer is obvious
in the network wires, connectors, etc. The application layer manifests itself in
the many everyday applications that are network based, e-mail, for one. The
middle layers, however, are largely invisible to most computer network users.
Layer 3, for example, the network layer, is where the routers (mentioned above
in connection with WANs) operate.

By far the most widely used network technology is the Transmission Con-
trol Protocol operating over the Internet Protocol (TCP/IP). TCP/IP is based
on a four-layer model that was largely designed before the final release of the
OSI model. The TCP/IP model consists of ([4], [2], [3]):

1. Link layer
2. Network layer
3. Transport layer
4. Application layer

Other than aggregating network functionality more than the OSI 7 layer
model, the TCP/IP layers provide the same technology modularization that
the OSI model does. The success of the layered model can be measured by
the ease with which technology from many suppliers can be intermixed in
the same network. As with any modular scheme, however, a major limitation
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is that any optimization that crosses layers cannot be implemented without
breaking the layered model.

These modules, which supply basic network functionality, are called “lay-
ers” in network technology because information goes through them in se-
quence. Information that starts in an application goes down through the lay-
ers in the originating computer until it hits the lowest level, where it enters
the network and is transmitted to the target computer. The information then
goes up through the layers until it gets to the application on the target com-
puter that needs the data. Implementations of layered network systems are
generally called “stacks” for that reason.

The full layered model is only required for WANs. Not all of the middle
layers are required for LANs because each node on a local network is physically
connected to all other nodes and so sees all traffic on the network. It only reacts
to packets that are intended for it, ignoring the others. A network technology
intended only for local area use can thus be simpler than one intended for
both local and wide area use.

2.4 Shared access

Because network media are shared, there must be a mechanism to ensure that
all participating nodes have “equitable” access. Equitable is in quotes because
it does not necessarily mean equal as might be implied. Network technologies
can be designed “flat,” that is, where equitable does mean equal, or they can
be designed with varying classes of service or priorities. In control systems, it
may be important to establish priorities in order to make sure that the most
critical activities get preference.

The nature of a shared medium is that all nodes of the local network
can listen simultaneously, but only one at a time can be transmitting. The
challenge, then, is to figure out a method that gives all nodes on the network
appropriate access for transmitting packets.

There are two primary methods of controlling access to the network
medium by a computer node: token passing and collision detection. There
are also a number of variants that combine properties from both of these. A
good way to visualize these methods is by analogy to conversations among
people. The shared medium is the audio environment for verbal communi-
cation among them. For the equivalent of token passing, imagine a group of
people sitting around a table. Each one gets to speak in turn; when a person
is done, the person to the right (or left) gets a turn. The person speaking has
the “token” giving him/her permission to speak. Sometimes, an actual object
is used for the token to give people a more concrete visualization and keep a
meeting more orderly. Once a person starts speaking, there is often a rule on
how long that person can speak before passing the token to the next person.

A parliamentary proceeding, or one using Robert’s Rules of Order, is a vari-
ant on a token passing situation—token passing with signaling. The meeting
chair is equivalent to a network master. The token is passed to whomever raises
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a hand (or some other signaling mechanism). Signaling on a network requires
additional communication channels (in the human situation, vision is usually
used for signaling). Because networks are designed for efficient long-distance
communication, it is not normally economic to include signaling channels.

A group of people in normal conversation use collision detection to manage
access to the shared audio channel. If a person wishes to speak he/she first
listens to see if anyone else is speaking. If not, the person wishing to speak
starts speaking. At the same time, he/she listens—the speaker continues if
nothing is heard but his/her own voice. If other voices are mixed with it, then
it means that someone else is starting to speak simultaneously. If there is a
conflict, both speakers stop. After a short period one or the other (or both!)
will try again. This is a collision detection method of granting access. It is
simpler to administer than a token ring, but the performance is statistical in
nature and deteriorates rapidly at high load.

Face-to-face conversation as described above also has elements of signaling
since there are visual cues as to who would like to speak in addition to just the
audio collisions. A purer form of collision detection occurs in a teleconference.
There, the only cues are audio, so no added signaling channels are present.

A strong argument can be made that a token ring architecture, with its
deterministic behavior and better performance at high load (relative to ca-
pacity), would lead to its choice over collision detection as the mainstream
network architecture. That has not happened, however. By far the dominant
mainstream network architecture is to use Ethernet as the physical layer for
TCP/IP. Ethernet uses collision detection for access control (carrier sense
multiple access/collision detection, CSMA/CD).

The argument is even stronger for control systems where network per-
formance can be a critical factor in maintaining acceptable control of target
physical systems. While some dedicated control system network architectures
do use token ring or similar access methods, the enormous international in-
vestment in Ethernet technology makes it very hard to beat in either cost or
performance—standard business-use computers are now being delivered with
gigabit/sec Ethernet connections. Maintenance of predictable performance
within the statistical universe of collision detection, however, requires that
the network load be kept “light.” A rule-of-thumb for “light” is 40% or less
of maximum throughput rate. Thus, a collision detection network used in a
control system where predictable performance is essential must be derated to
somewhat less than half its stated rate.

A number of network architectures solve the access problems with combi-
nations of these techniques. For example, the Controller Area Network (CAN)
uses collision detection combined with bit arbitration ([14]). A variant of CAN,
called CANopen, and Profibus, for example, use a master-slave architecture
(also called primary-secondary) in which one node controls all communication
on the network. Each architecture carries certain benefits and costs; these will
be discussed below for some of the more popular network technologies.
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This argument continues in the control system world. There are successful
implementations of standard TCP/IP over Ethernet, there are a number of
proposals for one form or another of industrial Ethernet, and there are many
control-specific network architectures.

2.5 Protocols

A protocol is a well-defined set of rules for interactions between entities. In
network systems, protocols operate at each network layer. The power of the
system is that in using a protocol at any given network layer only the inter-
action with the partner network node need be considered—from a functional
point of view, the other layers are completely transparent. The performance
will depend entirely on how the other layers are implemented but not the
function.

Using networking for control systems may require using existing protocols
or writing new ones. Using existing protocols is very much like using any other
software package. Software to utilize the protocols is written to utilize the ap-
plication programming interface (API). Writing new protocols is considerably
more complex. Most network protocols written for control systems are at the
highest layer—the application layer. An application layer protocol makes use
of the already defined protocols in the layer below (for TCP/IP, for example,
that would be the transport layer). Designing a protocol involves all of the
usual problems of software design, with the addition of interactions with other
computers, lost information, delays, etc. An example of the design process for
a simple control system application layer protocol (used in an educational
context) is given in [6].

3 Control Network Configurations

3.1 Control loops and networking

Control systems may be represented in a layered manner. At the bottom is
the controlled process. Next comes a first control layer in which each control
loop acts on a single variable of the process. This is what we may call the
“axis” layer in manufacturing. On top of this layer comes a second layer, the
“axes” layer, which coordinates the actions on two or more control loops of the
first layer. This coordination may use feedback from the first layer or may be
independent of any feedback (feedforward). A third layer may then coordinate
the actions of the coordinators of the second layer. Again, this may be done in a
feedback or feedforward manner. This layering may be repeated to any number
of layers even if in practice only a few layers are present. This cascading of
feedback loops is sometimes referred to as multirate control [7]. Even if the
presentation given above seems hierarchical, we do not assume any hierarchy.
In practice, coordination between two or more entities at a given layer may
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either be ensured by exchanging messages between the entities (decentralized
case), or by using an entity of the next higher layer (hierarchical case). For
the sake of the discussion, we shall assume a system with two layers as in Fig.
1. The first layer hosts all the single variable feedback controllers. The second
layer hosts the set point generators. The conclusions that we will draw with
this simplification may be easily generalized to a more complex case (we also
assume periodic controllers).

Level 2

Fig. 1. Two level control system

If a control network is used in the system depicted on Fig. 1, it may carry
the transfers between the sensors (or the actuators) and the loops at the first
level. Alternately, it may also be inserted between the first and second levels
and carry the information necessary to coordinate the level 1 control loops.
In the first case (Fig. 2), the network will transport the values of the sensors
to the loop controllers that will elaborate output values. These output values
will be transferred on the network to the actuators. The network will also
be used to synchronize the sampling on sensors that is required for temporal
consistency reasons [8]. The main incentive for such a solution is the economy
in cabling as well as the possibility of remote commissioning for the sensors
and the actuators.

In the second solution (Fig. 3), the network is used to convey the syn-
chronization information between the level 1 loop controllers as well as the
necessary data. It will also carry the configuration and status data when nec-
essary. This is the solution used when the loop controllers are decentralized
close to the process or when the first solution is not available. The localization
of the network in the system and the possible architectures of the elements at
each level will create a number of different configurations and lead to varying
constraints on the network.

3.2 Hierarchical systems

In this kind of system, two or more level 1 controllers are coordinated by a
level 2 unit. This unit calculates the set point data for each of the controllers.
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Fig. 2. Two level control system with control network within the control loop
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Fig. 3. Two level control system with control network above the control loop

Coordination may be ensured in two possible ways, explicit or implicit. In
the explicit coordination, the level 2 unit periodically sends a message to
all the controllers it manages. The message acts as a kind of heartbeat and
instructs the level 1 controllers to start a new control period. The set point
data may be sent with the synchronization message or separately. Implicit
coordination is ensured through a common sense of time. The level 2 unit
regularly sends the new set point data to each level 1 controller. The controller
starts the new control period when its local clock indicates it. The local clocks
are synchronized over the network using some clock synchronization algorithm
[9].

3.3 Distributed control: peer-to-peer

The term “distributed control” is often used to describe hierarchical systems
and refers to the fact that level 1 controllers are implemented as different
hardware units. Our definition is different. In distributed control systems,
level 1 units coordinate their operations without being synchronized by one
or more units at level 2. An example is a distributed path controller for a
machine-tool [11] or a robot. Each level 1 controller is given the description of
the path and calculates the set point for the axis it controls. Coordination is
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guaranteed by a common sense of time that may be obtained as in hierarchical
systems. In some systems, in each coordination group, one of the level 1 units
plays a special role by sending a kind of heartbeat message. The message is
clearly a synchronization order but may also contain some index that is used
by the other units to elaborate their own set point data. The index is often
used as a pointer in a table of values that has been previously stored in each
decentralized unit. This is often referred as “electronic cam” as it is similar
to the master axis in a cam-based machine-tool.

3.4 Server-based systems

Server-based systems have the opposite structure of hierarchical systems. In-
stead of being commanded by the next hierarchical level, units fetch their
orders from one or more servers.

3.5 Control-related network performance constraints

In the architectures described above, the network is either within the control
loop (between the controller and the sensors and actuators) as in Fig. 2 or
above the controller (Fig. 3). In the first case, the network transports the
sensor input values and the actuator output values. In the second, it is used
to provide the parameters and the set point data and to synchronize the loops.
In case of cascaded loops (multirate control), both cases will be mixed and the
constraints will add up. We shall here assume that all control loops operate
periodically.

Two types of transfer incidents may occur, vacant sampling and message
rejection. In the first case, a message does not arrive early enough for the
application to use it. In the second, an application receives two input values
when only one is expected. Both cases are related to variations in the transfer
delay. Control networks should hence exhibit predictable transfer delays.

Network above the control loop

This case, depicted in Fig. 3, has sometimes been referred as feedforward
([12]). The network is used to synchronize the control loops and to transport
the set point data.

Obviously, the set point data should arrive before they are used. The
constraint is thus a bounded latency between the time the data is submitted
to the network and the time it is delivered to the control loop.

Synchronization may be obtained in at least two ways: reception of the
data or a special message and action based on synchronized clocks. In the first
case, the transfer must take place at periodic instants because the control loops
start their operations at reception of the message. This gives strict constraints
on the periodicity of the transfers and the jitter (variation) in the period. As
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a rule of thumb, the periodicity should be kept within a few percent of the
required period. On the other side, if the latency must be constant, it may
be long, as long as it is known, because the set point data may then be sent
in advance. As guaranteeing periodic transfers with a small jitter on multiple
messages is difficult, the set point data are seldom used to synchronize and
synchronization is ensured by a single separate message. Note that sources
of jitter are numerous, transfer errors, uncertainty in medium access control,
variation in transfer duration of previous messages, etc., so message-based
synchronization is seldom used in isolation.

The second option uses local clocks that are synchronized by adequate
messages. Each control loop starts its period according to the value of its
local clock. The local clocks are synchronized using one of the multiple dis-
tributed clock synchronization mechanisms ([9]). The advantage of this solu-
tion is that the strict message transfer jitter constraints disappear. This is
paid by additional transfers of messages for the synchronization and some
local computing to run the consensus algorithm. The set point data transfers
must still be bounded in time. However, the messages used to synchronize the
clocks need not be transferred periodically. There is an additional price to
pay on the network. The accuracy of synchronization is directly linked to the
uncertainty in the transfer delay over the network. The transfer delay is the
time elapsed between the instant at which the first bit of the message leaves
the source and that at which it arrives at the destination. This is different
from the latency that includes the delays in the protocol layers. If the transfer
delay is constant or if we are able to measure it, or calculate it, the accuracy of
synchronization will be good. Otherwise, the accuracy will degrade. However,
this constraint is less strict than the periodicity requirement of the first case.

In summary, control loops impose bounded latency and either periodicity
with limited jitter or predictable transfer delays.

Network within the control loop

In this architecture (Fig. 2), the sensor input values are transported to the
controller through the network. The outputs of the controller are later trans-
ferred by the network to the actuators. If there are multiple controllers, they
may be synchronized through the same network as in Section 3.5. The same
applies to the set point data. Here, we shall only deal with the input and
output transfers.

The system operates in five steps. The sensors are sampled, the resulting
information is transferred, the controller executes its algorithm, the results are
transported on the network, and the outputs are reflected on the actuators.
The usual assumptions are that sampling is periodic and the latency between
sampling and actuating is constant and possibly small with regard to the
sampling period. The controller need not execute strictly periodically, but it
should run after receiving the input values and before the outputs values are
transferred on the network.
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Periodic sampling may be obtained using synchronized clocks or a spe-
cial sampling message. The constraints are thus the same. However, when a
controller uses several input values (position, speed, and acceleration, for in-
stance), it expects that all were acquired at the same time. This means that
all inputs should be sampled at the same time (temporal consistency). The
sampling message must then be sent to all input nodes and received nearly at
the same time (this might be a problem when switches are used).

The input and output data transfers are more or less constrained depend-
ing on the control solution. Let us depict two typical cases. In the first one, a
single controller node executes N control loops for N axes. There is a single
input value and a single output value for each axis. The objective is to limit
the control latency below the duration of the sampling period. The inputs are
sampled at the same time and result data are transferred one after the other
on the network. As soon as a value is received, the controller executes the algo-
rithm for this control loop. When this is done, the output value is ready to be
transported on the network. With this solution, there is strict synchronicity
between the network and the controller. The execution of a control loop may
not start before the corresponding input value has been received. The output
messages cannot be transferred before the controller has finished executing
the corresponding algorithm. This translates into bounded latency for trans-
fers. It may also create problems when the network is time triggered. If the
controller desynchronizes and fails to produce an output value on time, the
network will transport something invalid (possibly the value at the previous
period). If the controller is time triggered, the same may apply at the inputs
(vacant sampling).

Let us now assume that each control loop is executed on a separate node.
Synchronization may be ensured as described previously. For input and out-
put transfers, this case is the same as the first one. However, one may want
to use smaller processors for the controller, and the execution time of the
control algorithm will increase accordingly. Ideally, one would like to use each
processor close to its capacity which corresponds to an execution time close
to one sampling period. Then the constraints become stricter. Basically, all
inputs must be transferred at the beginning of the period and all the outputs
close to its end. The network has hence to withstand peaks of traffic and must
be designed accordingly. There are other solutions to relax this constraint but
they are beyond the scope of this chapter ([13]).

In summary, the constraints are the same as in the case for which the
network is above the control loop. In addition, the instantaneous throughput
may have to be much higher than the average one.

Common constraints

There are a few constraints that apply independent of the architecture:

• Notification of errors: Errors may occur in transfers. Many protocols trig-
ger an immediate retry in this case. If the retry is not successful, additional
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retries will take place until a maximum number is reached. Whether the
protocol uses retries or not, the application should be notified of the failure.

• Temporal consistency: If required, the network should provide a way to
know if different input values have been acquired at the same time.

• Absolute temporal consistency: This notion refers to the age of the infor-
mation. The application should be able to determine if a given data was
acquired recently or not. Usually, we need to know if the data corresponds
to the last sampling instant or not.

• Event ordering: In some cases, the order in which events have occurred
is important. This order may be obtained by time-stamping the event
at occurrence time and relying on synchronized clocks to relate events
that have occurred at different nodes. In some cases, it is sufficient to
know at which period the event has occurred. In any case, the network
should provide at least minimal support for this. If not, this should be
reconstructed inside the application.

• Predictive behavior in case of overload: Unless the network is used well
below its capacity, temporary overloads are likely to occur, e.g., in elec-
tromagnetic interference (EMI) perturbations. These are periods of time
during which the network is given traffic exceeding its capacity. At such
times, some networks delay low priority traffic. Some have a totally un-
predictable behavior. For control application, the network should exhibit
a predictable behavior.

• Amenability to analysis: Given the traffic requirements from the applica-
tion, one expects to be able to find out if the network will comply with
the given constraints before actually running the application. This means
that the solution should be amenable to worst-case analysis.

4 Network Media

4.1 Media types

A number of transmission media have been used in networking: cables, wave-
guides, open space. From the transmission viewpoint, wired and wireless trans-
missions are the two main categories because they exhibit fundamental differ-
ences.

Wired transmission is usually based upon twisted pairs of copper conduc-
tors, coaxial cables, or optical fibers. Despite their high resistance to external
electromagnetic fields, coaxial cables are today seldom used because of their
cost. Because shielding is one of the conductors, ground loops may also appear
when coaxial cables are used.

The most popular transmission media is the twisted pair. It is made of
two metallic conductors that are twisted to mitigate the electromagnetic in-
terferences. The pair may be shielded to provide an additional protection. A
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cable may include one or more pairs that may be shielded as a whole or pair
by pair. The most popular example of this cable is CAT 5 used in Ethernet.

When a higher degree of protection or galvanic isolation is necessary, op-
tical fibers are a good solution. This comes with a price. Using optical fibers,
multidrops must be excluded (in fact, they are possible using optical couplers
but not economically viable). In other words, several network nodes may be
hooked on the same twisted pair for instance when using the RS485 standard.
With optical fibers, there must be a separate fiber from one station to the
next.

Wireless transmission is an alternative when nodes are mobile. This may
be the case of automatic guided vehicles in a workshop. Rotary joints on robots
and machine-tools is another example. In this last example, the signals and the
power are often transmitted using slip rings. There is a ring per conductor on
the fixed part and a brush on the rotating part. This may be easily replaced by
wireless transmission based on inductive coupling. One winding is on the still
part (stator) and the other one on the rotating part (rotor). The rotation axis
is the common axis of the windings. Longer ranges (longer than a few tens of
centimeters) use either light, mostly infrared, or radio transmissions. Infrared
is limited to line of sight (in reality this is a little better due to reflections on
the walls), whereas radio waves may traverse walls and ceilings.

The main differences between wireless and wired transmissions are in their
transmission range, bandwidth cost, security, and reliability. Kilometers may
be easily achieved using cables. Wireless transmission is usually limited to
meters for regulatory and space reuse reasons. For the same cost, wired trans-
missions offer effective bandwidths much higher than wireless bandwidths.
While bit error rates around 10−7 to 10−9 are common on cables, rates up to
10−3 or 10−2 are not rare in wireless transmission. It may even be impossible
to communicate in some cases. The main reason is that a cable may be con-
sidered as a private communication channel between two or more nodes. On
the other side, open space is available to all. A perturbing device may totally
hinder communication. Another common source of problems is fading. This
happens when the waves that follow different paths interfere destructively at
the receiver. This effect is wavelength dependent; that is why many wireless
solutions either use a wide band (i.e., 802.11) or frequent carrier frequency
changes (i.e., Bluetooth). Because a wireless signal cannot be constrained, se-
curity issues are more difficult as well. Eavesdropping or insertion of unwanted
signals is much easier than in wired networks because a wireless signal may
well propagate beyond its intended confines.

Despite all of the disadvantages enumerated above, wireless networking
is wildly popular in the general computing environment because of the flex-
ibility and cost and convenience savings generated from the hugely reduced
need for fixed cables (there is still a need for some cables to connect the ac-
cess points). Control system designers have been much more conservative in
adopting wireless technologies except in special circumstances such as rotat-
ing parts of a machine. In particular the network speed variations and error
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rates are a more serious problem in control systems than they are in general
computing networks. However, as wireless technology matures, the lure of cost
savings in cabling is affecting control systems as well. An interesting area of
research that may have an important effect on control systems is that of very
low powered, self-configuring networks [20]. Because of their low bandwidth,
their impact would be in control systems with relatively long characteristic
times such as building energy control.

4.2 Media requirements

Section 3 has pointed out the application requirements of control systems.
The transmission medium plays an important role in complying with these
requirements. At the physical layer, this translates into transmission error
requirements. Each transmission error, unless there is an immediate recovery,
will introduce some delay in transmitting the required information. The lower
the error probability of the medium, the better the medium from that point of
view. Here the cable itself, or the open space of a wireless system, is not solely
responsible for errors. The transceiver properties (voltage levels, noise margin,
impedance, etc.) also play an important role. A common requirement is that
devices should withstand discharges of 1500 volts without being destroyed. It
would be desirable that, under the same circumstances, communication could
still take place. In summary, the combination of the transmission medium and
the transceiver should be properly selected in order to keep the bit error rate
sufficiently low.

There are obviously additional requirements such as the following.

• Topology: The cabled solution should be consistent with system design
goals. For instance, Ethernet forces a tree topology in which each node is
linked via a cable to a central point (switch or hub). In many cases, users
would prefer a line topology in which the same cable runs from one node
to the next and from the next to the following, etc.

• Connectors: They are in some cases the most expensive part of the solution.
Connectors should be inexpensive but also robust to pulling and vibration.
This only applies to wired solutions.

• Intrinsic safety: Some control networks are installed in environments that
are explosive or inflammable. Special care must be taken in these circum-
stances.

5 Network Protocols

5.1 Interoperability

Two different nodes built by two different companies should be able to coexist
on the same network and also to exchange information in a meaningful way
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while complying with the requirements. This implies that they should use the
same protocols at the different layers. Coexistence (without intercommunica-
tion) is possible, but only when the protocols at the lower layers are identical.
Interoperability is sometimes guaranteed by tests, often specified by standards
organizations, and realized at independent bodies. The guarantee may also be
left to the manufacturers, who will test their devices against others. In any
case, interoperability is an issue that needs serious consideration when select-
ing a solution. In the case of control networks, the issue becomes even more
complex because the temporal constraints have to be assessed. In many cases,
it is desirable or even necessary to include components from different man-
ufacturers in the same control system network. Under these conditions, the
importance of interoperability should never be underestimated.

5.2 Layering

It is the general acceptance of layered designs for network technologies that
has been responsible for the high level of interoperability that is currently
achievable. The idea of a layered representation of the protocols involved in a
communication solution is not new and, as explained earlier in this chapter,
a few different models have been presented. Here we will stick to the OSI
seven-layer model for its better documentation. Layering is an important tool
in understanding the functionality of a communication system. It may also be
useful to build components that can be reused to create a solution. In each
layer, various protocols may be used depending on the requirements of the
application. For instance, at the application layer, one may use the Simple
Mail Transfer Protocol (SMTP) to transfer mails or the Hypertext Transfer
Protocol (HTTP ) to access Internet pages. At the physical layer, a solution
may be to use RS485 on shielded twisted pair as in Profibus or 2.4GHz direct
sequence spread spectrum as in IEEE 802.15.4. Although, in principle, the
choice of a solution at a given layer is independent of the option selected at
another layer, this is not always the case. For instance, the IEEE 802 series
of standards always describes the physical layer together with part of the
data link layer (medium access control, MAC, adjudication of conflicts in ac-
cess to the physical network medium). For control networks that have strict
temporal requirements (see Section 3), there is even more interdependence.
For instance, it is well known that the transmission control protocol (TCP)
exhibits undesirable behavior using wireless media [21]. Finally, even if the
solution is presented in a layered manner, the actual implementation may not
follow the layering. In fact, in many cases, for efficiency reasons, layering is
partially violated in the implementation. This violation of a design modular-
ity principle is not uncommon in other areas of system design where, as in
control systems, performance is extremely important. However, it should not
be done lightly because portability, interoperability and maintainability are
often sacrificed in order to achieve improved performance.
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5.3 Connection between parts of a network

It is often necessary to interconnect parts of a complete network. The device
that interconnects two or more subparts will be more or less sophisticated
depending on the differences between the protocols used in the subparts.

• Repeaters are used when the protocols on all layers are identical on both
sides. They are used to expand the distance covered by a link, either wire-
less or wired. They regenerate the signals received on one side and transmit
them on the other side and vice versa. On some occasions, repeaters may
also be used to interconnect a wireless cell to a wired link ([18]). Ethernet
hubs are an example of repeaters.

• Bridges interconnect subnetworks using the same layer protocols above the
data link layer. Both sides must also use compatible addressing informa-
tion. For instance, IEEE 802.11 base stations interconnect an Ethernet-
based link and a wireless cell. Similarly, an Ethernet switch is used to
interconnect two or more Ethernet links.

• Routers operate at the network layer level. Their task is to find a route
to convey a message from a source to a destination. Routers exchange
information between themselves in order to find such a route. They can
thus find an optimum path between two nodes, whereas bridges only use a
subset of the available topology. The main difference between bridges and
routers is that the latter are not transparent. Routers modify the packets
they forward—in particular their address fields.

• Gateways are used when the protocols at the application layer are different
on both sides. They translate the messages from one protocol to the other.
For instance, connecting a Profibus or a CANopen network to the Internet,
HTTP over TCP/IP, requires a gateway because the protocols are different
at all layers.

5.4 Data link layer

The data link layer includes two subparts, the medium access control (MAC)
and the logical link control sublayers. The MAC protocols define:

• How the medium is shared, as explained in Section 2.4;
• How the messages are organized in frames so that the beginning and the

end of the messages can be recognized at reception;
• How the integrity of the messages is checked.

To check message integrity, additional information is appended to the in-
formation provided by the higher layers. The principle is that, at reception,
alterations to the message can be detected with a high probability. Cyclic
redundancy checks (CRCs) are examples of additional information. For in-
stance, the CCITT-16 CRC is able to detect 100% of odd numbers of errors,
double-bit errors, as well as any contiguous burst of errors shorter than 17
bits. Above 16 erroneous bits, more than 99.998% of the errors are detected.
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Some error detection codes can also correct a number of errors. However,
most of the time, the errors are corrected by asking for the retransmission of
the information. This is usually done at the logical link control sublayer. This
layer provides reliable message exchange between stations in a single link. It
may also implement multicast and broadcast transmission. In the first case,
the message is transmitted to a group of identified stations. In the second, it
is sent to all stations.

Cyclic or even periodic transfers, when available, are implemented at the
level of the data link layer. This is the case of Profibus, Multifunction Vehicle
Bus (MVB), or factory instrumentation protocol (FIP). These standards share
in common the use of buffers to control this kind of transfer. In a conventional
transfer, a message is used to request some information from the provider of
the information. The request goes up all the layers until it reaches the appli-
cation. The application prepares a response that is sent back to the requester.
The problem with this approach is that either the network is blocked until
the response is given back, or the response must be transported in a sepa-
rate transaction. To overcome this limitation, some standards disconnect the
application behavior from the information transfer. When an application is
ready to send information, it invokes the corresponding application layer ser-
vice and the information is stored in a buffer at the data link layer (it is not
transferred immediately). When the time comes to transfer the information,
the content of the buffer is conveyed over the network to its destination. At
the destination, it is again stored in a buffer at the data link layer. The ap-
plication at the destination node may retrieve the information at any time
by invoking the appropriate application layer service. The protocols at the
destination node will then read the data link layer buffer and return the in-
formation to the application. There is no transfer involved at that time. The
use of buffers allows better predictability in the transfers.

5.5 Higher layers

The next layer is the network layer. It is only required in large networks. The
most popular protocol at this level is the Internet protocol (IP). Note that,
contrary to some belief, interconnection with the Internet can be done without
the use of IP. A gateway may be used instead.

The transport layer offers guaranteed transfers on a large network. It is
only necessary when such a guarantee is needed and a network protocol is
present. TCP is the most well-known transport protocol. However, it is some-
times not suitable for real-time transfers [15].

The session layer is used when recovery points must be inserted in the
connection. It is never used in control networks.

The presentation layer is in charge of the representation of the informa-
tion. It defines the transfer syntax. Conversion from the local syntax to the
transfer one, and vice versa, is done in the presentation layer. For instance,
some computers use the little-endian representation for the numbers while



www.manaraa.com

Network Fundamentals 217

some use the big-endian representation (“endian” refers to the order in which
the individual bytes that make up an integer are transmitted). The presen-
tation layer is in charge of the necessary conversion when these computers
communicate.

In many cases, the presentation layer is included in the application layer.
This is the only layer visible from the application. It defines the abstract
view of the other nodes as seen from the local application. It also defines
how the local application may operate on this abstract view. For instance,
the file transfer protocol (FTP) defines the concept of files and directories.
The available services allow for transferring files and for browsing directories.
In the case of control networks, many of the application layers are inspired
from the Manufacturing Message Specification (MMS) which defines a virtual
manufacturing device that contains objects. Among the most useful objects
are variables with services to read and write them, and programs with services
to download and execute them.

The application layer plays an important role in the performances of the
network. Many solutions are based on the client-server interaction. In this
model, a node, the client, makes a request on another node, the server. For
instance, the client may request the value of a given variable from the server.
This often translates into a message carrying the request going from the client
node to the server node. The response from the server is another message sent
back to the client. As the server application is involved in the answer, it is
very difficult to provide temporal guarantees. The producer-consumer model
[19] is an alternative model. In this model, the application on the producer
node delivers the value of the variable to the network. The value is stored in
the data link layer and later transferred to all the subscriber nodes. When
the application on a subscriber node wants to access the value, it is retrieved
from the data link layer on this node without any transfer. It is thus much
easier to offer real-time guarantees.

6 Network Reliability and Security

6.1 Reliability and security considerations

Reliability refers to the probability that a message on a network will arrive
within the time constraints specified for the network. Security refers to the
possibility that someone will purposely interfere with the network operation,
to hinder delivery of information, to change the nature of the information, or
to eavesdrop on the interchange.

In a broad sense, reliability subsumes security. However, in a practical
sense, reliability usually refers to message delivery in the absence of purposeful
disruption.
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6.2 Physical integrity

The first line of defense for both reliability and security is the physical envi-
ronment. The physical environment effects on message delivery can be catego-
rized into two time scales: moment-to-moment traffic delays and the relatively
rare catastrophic failures. Moment-to-moment issues usually revolve around
electrical noise in the environment. Noise causes data corruption, leading to
excessive retries, lost packets, etc., all of which can push message delivery
outside the specified performance limits. In a control system, this can result
in system failure.

Protection against noise requires proper understanding during the design
phase of what the characteristics of environmental noise will be, and then
the design of adequate shielding, effective grounding, and filtering so that
network information loss is kept within specifications. Too often there is no
realistic understanding of the noise levels that a network will actually see in an
industrial environment. Optical data transmission is often specified in noisy
environments because of its very high immunity from electrical noise.

Catastrophic failures in the information transfer part of a control system
come from broken, disconnected, or shorted wires (other than shorts, optical
systems are susceptible to the same failures). In discussing these issues for net-
worked control systems, note that a major reason networks are used in control
systems is to reduce the amount of discrete wiring. Thus, a networked control
system, by virtue of having so much less wiring, is already far less likely to
suffer such damage. With that said, standard design considerations such as
strain relief for wires, connectors properly specified for the expected vibra-
tional and environmental conditions, etc., are the primary routes to highly
reliable systems.

Physical integrity can also be enhanced through network redundancy. Any
number of independent communication paths can be provided so that a catas-
trophic failure in one will not disturb system operation. Because network in-
formation is packetized (see Section 6.3), sorting out duplicate information
and detecting when one path has been damaged are quite straightforward.
A major design issue in redundant systems, however, is ensuring that there
is not a common point of failure, as for example, when a pair of redundant
network cables is located close to each other so that both can be destroyed
by the same mishap.

Wireless systems drastically reduce the number of wires and connections,
but are much more susceptible to electrically or magnetically induced noise.

Protection of the physical perimeter is also the first line of defense for
network security. Many control system networks can be completely local so
that physical security can focus on people who are authorized to be in that
space. Wireless networks, however, cannot be confined (except in the most
extreme circumstances), so additional measures must be taken even if the
network is technically local.
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6.3 Abstraction

Because information is abstracted away from the physical layer in networks
both reliability and security can be made arbitrarily strong—at a price.

Network reliability above the physical layer depends mainly on error de-
tection and correction theory ([22]). Section 5.4 refers to some results of the
application of error detection and correction within the data link layer of the
protocol stack. In brief, extra information is added to each packet in such
a way that errors can be detected, corrected, or both. The common parity
check is the simplest of these schemes. With a parity check, one extra bit is
added to whichever unit of information is to be checked (byte, word, record,
etc.). The extra bit is added to make the total number of logic-one bits in the
information unit specifically odd or even. When that information is received,
the total number of logic-one bits is counted. If it is not odd (or even), then
an error has occurred. This error detection scheme will find all one-bit errors
and half of all multibit errors. It cannot correct any of the errors it detects.
However, because the receiving node now knows that the packet is incorrect,
it can request retransmission to get the correct information. Thus, the com-
bination of a parity check with a retransmission facility will both detect and
correct all one-bit errors.

The price to be paid for the added reliability is in network bandwidth and
processing power. Assuming that the network is designed with proper band-
width before any error detection or correction is added, an error detection and
correction scheme will add to the size of the packet without adding any new
information. Processing the packet will also require more computing power
for the error detection and correction algorithms. Thus, the bandwidth will
have to be increased to get the same information flow rate, resulting in a more
expensive network as well as a more expensive processor.

Security uses the same structure—information abstraction and layering.
Encryption is the tool of choice to ensure the security of information flowing
on the network ([23]). Again, the stronger the encryption, the more the cost
in network bandwidth and processing power.

Finally, both security and reliability also depend heavily on, as the saying
goes in the world of automobiles, “the nut behind the wheel.” Security, in
particular, is peculiarly susceptible to individuals who are cleared to work on
the system but, for some reason, wish to compromise it. However, even reli-
ability can be seriously compromised by improperly performed maintenance,
badly designed operator interfaces, etc.

6.4 Reliability and security: overview

The good news in designing reliable, secure networked control systems is that
the very structure of networks lends itself to measured application of security
and reliability solutions with predictable cost. The bad news is that the vul-
nerabilities are so broad, from a rodent chewing through a network cable to
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an individual falsifying network information, that, unless a thoroughly inte-
grated management and technical approach is taken, it is easy to leave serious
holes.

7 A Survey of Network Solutions

7.1 Control networks

The first generation of control networks was designed in the late 1980s. Exam-
ples are FIP (CENELEC EN50170:3), SERCOS (CENELEC EN 61491), In-
terbus (CENELEC EN 50254), Profibus (CENELEC EN50170:2), LON (EIA-
709.1) and CAN (ISO 11898). CAN has been successful in the automotive
market except for critical functions. SDS (IEC 62026-5) and DeviceNet (IEC
62026-3) are variants of CAN designed for industrial automation. SERCOS has
been designed for axis control and has its market in numerical controls. Inter-
bus and Profibus-DP are commonly used for remote inputs and outputs in the
programmable logic controller (PLC) market. LON is mainly used in building
automation. WorldFIP (part of European Fieldbus standard EN50170) is now
mainly used in safety related applications.

Most of these solutions have now reached their limits in terms of per-
formance. They must be upgraded. The limited market size and the cost of
new silicon development are major impediments for these new generations.
On the other side, Ethernet, which was rejected in the 1980s for its lack of
determinism, has been regularly improved toward higher performances and
lower costs. For these reasons, the beginning of the century has seen the
revival of Ethernet-based solutions. Solutions based on standard Ethernet
use bandwidth limiting and subnet isolation to achieve satisfactory control
performance. A number of different (and largely incompatible) solutions are
currently proposed for control system use by different groups and industrial
companies.

The advent of switched Ethernet with quality of service (802.1D and
802.1Q), better clock synchronization algorithms (IEEE 1588), and the use
of traffic shaping pave the way to a standard solution based on Ethernet.
The power-over-Ethernet standard (802.3af, [24]) further enhances industrial
Ethernet by including power on the same cable as the network signal, further
reducing the cable count.

An emerging network technology at the other end of the bandwidth spec-
trum is based on extremely low-power wireless connections. These networks
are intended for applications requiring very low bandwidth but large num-
bers of very inexpensive nodes. An idea of the sizes contemplated is shown in
the names used for this technology: “motes,” “dust,” “specks,” and TinyOS
(an operating system that supports the self-configuration needed for such net-
works to be practical). While initially conceived for sensing applications, there
are some research applications in control problems where network speed is not
a big issue, such as building energy control ([16], [17]).
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7.2 Other issues

Besides the aspects described up to now, networking solutions may offer var-
ious degrees of sophistication to ease installation, commissioning, and main-
tenance.

• Self-configuration is sometimes provided. Protocols such as UPnP (Univer-
sal Plug and Play), SDP (Service Discovery Protocol) or Jini are examples
of efforts to provide various degrees of automatic configuration.

• Protocol analyzers are used to display the actual behavior of the networks.
• Design and simulation tools are used to give the expected performances of

the solution.

8 Conclusions

The value of networking in control systems is indisputable at this point. How-
ever, if the design and integration of the networking are not done well, the
performance of the control system can become completely unacceptable.

Design of a networked control system starts with functional and physical
specifications. The functional specifications are of particular importance be-
cause they must be done in a control system context rather than a conventional
networking context. Conventional network architectures specify average rate
of data transfer. Even in video or audio streaming, the closest that common
networks come to real-time applications, buffering is heavily used to provide a
skip-free performance to the user. Control systems, by contrast, must specify
delivery times. Getting this information may require considerable research of
the performance literature or testing of prototype installations.

As we have noted, the choice of network technologies for control systems
is quite large. Even when technologies that cannot meet the functional spec-
ification are eliminated, the choice is usually still large. Here the physical
environment becomes a major factor. Control system environments are typi-
cally far harsher than standard business network environments.

Thus, reliability of the network becomes the next important part of the
specification. Here the difference between analog delivery of control system
information and networks becomes quite stark. Analog systems have a sta-
tistically based signal-to-noise ratio, but the information is always delivered
(as long as there are no catastrophic failures). Because of the packet-based
nature of networks, there is always some probability that a packet will not be
delivered (however small). A fairly sophisticated stochastic-statistical analysis
is required to relate these properties to control system performance.

Once reliability factors are assessed, adequate reliability can always be en-
sured if the error correction system is sufficiently robust. This reduces network
useful bandwidth, however, so the design process then becomes iterative with
the basic timing specification.
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Because control system networks are often isolated, security issues can
be less severe than in the much more open business network environment.
Security issues do exist, however, and must be dealt with.

Finally, of course, are issues of cost. These are too complex to deal with
in any detail here, but include physical cost (i.e., bill of materials costs),
installation cost (keeping in mind that networked solutions usually provide
substantial wiring cost savings over analog information transmission), cost of
added processing power to deal with network protocols, and cost for problem-
specific application layer software.

With proper attention to the network design and specification, and proper
partitioning of the control system functionality to meet the full range of the
system’s timing requirements, networking expands on control system capabil-
ity immeasurably.
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1 Introduction

Data acquisition was traditionally carried out manually by noting down the
readings of various instruments at specified times. Traditional instruments re-
quired extensive time and specific skills for adjusting the measuring range and
for saving and documenting the results. Later, electronic recorders recorded
the data acquired on paper plots. Computer-based data acquisition replaced
paper records by digital data acquisition and storage. The automatic collec-
tion of data from sensors, instruments and devices in a factory, laboratory
or in the field is called data acquisition. The use of computers in various
aspects of data collection, control and analysis over the past few years has
revolutionized modern-day research, development and manufacturing.

Real-world signals are not compatible with the binary formats used by the
microcomputer. Hence, there is a need for signal conversion before and af-
ter processing. In this chapter, the additional circuits required for connecting
real-world sensors to the computer and for connecting the computer to the
final control elements are presented. Real-time interfacing is a general term
used to describe the aspects of connecting a computer with a real-world pro-
cess for communicating data between the two. A data acquisition system is a
collection of add-on hardware and software components that allow the com-
puter to receive real-world information from sensors. The data will be stored
for plotting, processing and writing to a file. The data acquisition system
may be considered as a monitoring system. A data acquisition and control
(DA&C) system sends data to the real-world system (mainly to actuators
such as solenoid valves, pneumatic valves, relays, motors, etc.). Fig. 1 shows
the block diagram representation of a data acquisition system. The flow of
information in a typical DA&C system can be described as follows.

1. The input transducers measure some property of the process.
2. The output from the transducers is conditioned (amplification, filtration,

etc.).
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Converter

Analog
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Fig. 1. Data acquisition system

3. The conditioned analog signal is digitized using an analog-to-digital con-
verter (ADC).

4. The digital information is acquired, processed and recorded by the com-
puter.

5. The computer may then calculate the control signals to the process.
6. The digital control signals are converted to analog signals using a digital-

to-analog converter (DAC).
7. The analog signals are conditioned appropriately for a final control ele-

ment.
8. The final control element interacts with the system by changing the value

of the manipulated variable.

2 Signals

The majority of signals are analog signals. Analog signals are defined over
continuous time intervals and assume a continuous range of amplitude values.
An ADC module changes an analog input signal into a binary output code.
For an input analog voltage or current, there is a corresponding proportional
binary output. If an 8-bit ADC has a 0 to 2.56 V input signal range, then
0 V input could produce an output word of 00000000, while the +2.56 V
level seen at the input would produce an output of 11111111. Sampling is
necessary in real-time digital processing to (i) allow for the processing time
in ADC and control law calculations and (ii) share expensive computers or
other equipment among many signals.

The DAC receives the binary value (digital signal) from the computer
(CPU) and converts it into an analog voltage (or current) that can be used
for actuating an external final control element or device or for displaying the
digital data from the microcomputer to the equivalent analog data. DACs
and ADCs are available for the IBM PC in a number of forms. The most
common form is as one of the components on a general-purpose laboratory
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data acquisition interface card, which plugs into one of the slots of the mother
board of the PC. This card (refer to Fig. 2) typically contains an ADC, one
or more DACs, and sections for digital input/output and counting/timing.
ADC specifications are given by conversion time, resolution and accuracy.
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Fig. 2. PC add-on card for DA&C

Conversion time is the time required to complete a conversion of the input
signal. It establishes the upper signal frequency limit that can be sampled
without aliasing:

fmax = 1/(2*conversion time).

Resolution is the number of bits in the converter. The resolution is the smallest
analog signal for which the converter will produce a digital code. It may be
given in terms of the full scale input signal,

resolution = (full scale signal)/2n,

where n is the least significant bit of the ADC. Resolution relates the small-
est signal to the full scale value. Accuracy relates the smallest signal to the
measure signal. Accuracy is given by percentage and describes how close the
measurement is to the actual value. When converting analog information into
digital information, the resolution of the data conversion is an important con-
sideration. ADCs have 8-bit, 10-bit, 12-bit or 16-bit precision, For example,
an 8-bit converter within a range of −5 V to +5 V will slice the total voltage
span (10 volts) into 255 steps. Each step or resolution would equal 39.2 mV.
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A 12-bit converter will slice the 10 volts span into 4095 slices. The step size
or resolution is 2.4 mV. The higher the resolution, the higher is the cost of
the ADC, however.

3 Interfacing Input Signals

3.1 Analog signal conditioning

Table 1 provides a list of transducers that give an analog signal as the output.
The analog signal from a transducer must be conditioned by a signal condi-
tioning circuit to meet the input requirements of an ADC input. Circuits such
as operational amplifiers, bridges and comparators are used for analog signal
conditioning. Signal conditioning involves the following steps: (i) signal am-
plification, (ii) isolation,(iii) multiplexing, (iv) noise filtering, (v) transducer
excitation, (vi) use of simultaneous sample and hold and (vii) anti-aliasing
filtering.

Thermocouple
Resistance temperature detector (RTD)
Thermistor
Strain gauge transducers (for pressure, load force, torque measurements)
Potentiometer/resistance output 0–20 mA or 4–20 mA current signals
Millivolts/volts output from pH electrode, humidity sensors, level sensors,
flow sensors, pressure sensors, conductivity electrode, chromatography

Table 1. Sensors giving output as analog signal form

3.2 Signal conditioning circuits

Operational amplifiers (op-amps) are used to amplify a signal or difference
between two signals. The input from many instruments is at low signal levels.
An amplifier is thus often required. In order to take full advantage of the
resolution of the ADC, the amplifier must be designed to provide outputs
over the entire range of the ADC. For example, a signal from instruments
that vary over the range of 0 to 10 mV should be amplified by a factor of 1000
to provide 0 to 10 V output (a typical range required for an ADC).

There are two basic methods for carrying out the amplification steps: us-
ing an external amplifier or buffering an ADC with a built-in amplifier. The
external amplifier can be placed inside the instrument or at least very close to
it, thereby reducing the effect of noise. External amplifiers are more expensive
than the internal systems, because of added hardware (excluding the power
supply unit). They are slower than the internal systems. Even though the data
may be collected at a faster rate, transmission of the digitized information to
the host is limited by the transmission speed. The use of an amplifier built
into the ADC board has advantages: it is convenient and it avoids possible
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grounding and impedance matching problems that are encountered with an
external amplifier. Many of the commercially available ADC boards give the
user the option of an on-board amplifier. In some cases, the gain of the am-
plifier is fixed; in others, the gain can be modified by changing the hardware
on the ADC board (i.e., changing the size of the resistor). It is also possible
to change the gain in the software between data conversions; this is referred
to as programmable gain. However, it may slow down data collection because
of the need to check the size of the input signal and to reset the gain when
appropriate. Its chief advantage is the added flexibility it gives to the user in
selecting the gain when the experiment is proceeding.

An ADC for PCs may use a 12-bit resolution in a fixed analog signal range
of−10 V to +10 V. At best the ADC will be able to distinguish between analog
voltages 5 mV apart (20 V/212). A transducer, for example, a thermocouple,
produces a small voltage, perhaps in the range of 0 to 30 mV. As a result, the
12-bit ADC will produce only 6 out of a possible 4096 integers to describe the
temperature being recorded by the thermocouple. If the thermocouple covers
0 to 2000oC, then the ADC can only resolve 333oC (2000/6) differences in
temperature. This is not at all acceptable. An external analog amplifier should
be used to amplify the thermocouple signal to provide more resolution. An
amplifier with a gain of 333 will amplify the thermocouple signal so that the
full temperature range (0 to 2000oC) will correspond to 0 to 10 V at the ADC
input. In this case, with the external amplifier the ADC can resolve 0.98oC
(2000/2048) difference in temperature.

3.3 Input signal buffering

Some interfacing applications require impedance matching between the sensor
and the input terminal on the DA&C board. A unity gain operational ampli-
fier is connected between the sensors and the DA&C board. The high input
impedance of the operational amplifier minimizes the loading in the sensors
and prevents signal degradation. The low output impedance of the opera-
tional amplifier is ideal for loads such as motors, recorders or connection to a
DA&C board. External amplifiers can also be used as buffers to electrically
isolate sensors and transducers from the PC data acquisition systems. This is
done so that the noise or signal in the PC ADCs does not affect the trans-
ducer responses. Other sensors that provide large signals such as piezoelectric
transducers may damage the PC if they are not buffered or electrically iso-
lated from the PC. If the analog signal produced by transmission is too large
for direct conversion to an ADC, then the signal must be reduced to a lower
value. This scale down can be achieved by dropping the required voltage across
a suitable resistor.

3.4 Offset elimination

An offset occurs with a variety of sensors and transducers. An offset volt-
age is an unwanted voltage that is produced by a sensor though the sensor
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theoretically should be producing zero volt. Offset occurs due to inaccuracies
in manufacturing and calibration of sensors. The offset can be eliminated by
using a signal conditioning circuit such as an operational amplifier connected
in a summing application.

3.5 Filters

A filter is required in signal conditioning circuits to eliminate unwanted fre-
quencies (of the noisy corrupted signal). There are two types of filters: passive
and active filters. Passive filters are designed using standard discrete compo-
nents such as resistors, capacitors and inductors. Filters are classified as low
pass filters, high pass filters and band pass filters depending on the range of
frequencies over which the signal is useful. When we use derivative action in
a proportional-integral-derivative (PID) controller, it is desirable to filter the
noisy signal and remove the high frequency noise before the control action is
calculated.

ADCs are often connected to analog signals that contain frequencies higher
than the sampling rate of the ADC. Many analog signal transducers like photo-
diodes and piezoelectric sensors generate high frequency noise, often referred
to as harmonic distortion. If these transducers are sampled using an ADC,
the high frequency components in the signal will increase the amplitude of
the low frequency components of the acquired data samples. This error is
called aliasing error since the high frequency components of the signal appear
erroneously in the sampled data as low frequency components. A general rule
in the laboratory is to use A/D conversion frequencies that are at least 10
times higher than the highest frequency component in the signal. To avoid
aliasing errors, many PC ADCs include an anti-aliasing filter with the ADC
circuitry. These are usually low pass analog filters (refer to Fig. 3).
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Fig. 3. First-order low pass filter
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3.6 Bridge circuit

This circuit is used to measure the small resistance changes caused by a resis-
tive transducer. Transducers using Wheatstone bridges include strain gauges,
thermistors, resistance temperature detectors (RTDs) and almost all resistive
transducers. A number of such primary elements convert changes in the mea-
sured variable into small changes in the resistance of the element. Strain gauge
force transducers, strain gauge pressure transducers and resistance tempera-
ture detectors are three examples. The use of a bridge circuit is the traditional
method of measuring small changes in the resistance of an element. The op-
eration of a bridge is classified into two categories, balanced and unbalanced
operation. In the balanced operation, the resistance of the sensor is deter-
mined from the values of three other resistors whose values are known with
precision. In the unbalanced operation, the change in the sensor resistance
from a base value produces a small difference between two voltages. A dif-
ferential amplifier is used to amplify the difference between the two voltages
(refer to Fig. 4).
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Fig. 4. Unbalanced Wheatstone bridge and instrumentation amplifier circuit

3.7 Isolation

In many situations, isolation of the control and controlled signal is desirable
or even necessary. For example, the digital output from a computer may be
used to switch the power device on and off. The instrument at the other end
may be used to run a furnace or a pump or anything else. While it is quite
possible to use the digital output to directly switch a thyristor or a triac, it
is not desirable since a failure of the thyristor may in certain cases lead to
feeding the main to the computer with disastrous results. This can be avoided



www.manaraa.com

234 M. Chidambaram

using a solid state (optically coupled) relay or a magnetically coupled relay
or reed relay circuit. Another situation may be an electrically noisy system
where it may become necessary to isolate the controller and the controlled
system to avoid feedback of noise into the controllers.

3.8 Current loop

If analog sensors are located at a considerable distance from the computer
or controller, then the analog signal is transmitted as a current signal rather
than as a voltage signal. The standard associated with a current loop circuit
is a 4 to 20 mA circuit. The minimum current of 4 mA always in the circuit
can be used to check circuit integrity. A signal above 20 mA indicates that the
system is malfunctioning. A special module transmitter does the conversion of
the voltage signal to the 4 to 20 mA current signal. The current loop provides
a high degree of noise immunity and avoids the loading difficulties caused by
having more than one receiving device in the loop. For example, a current
loop can be connected to a DA&C board as well as to a strip chart recorder,
or other instrumentation devices.

Most of the actuators also work with a 4–20 mA control signal. The main
advantage of the current loop operation is that the signal is not affected by a
long cable length. Also, this leads to standardized operation, making it sim-
pler to develop interfaces. Quite often the signal converter that converts the
transducer output to a linear 4–20 mA signal induces electrical isolation of
the input from output. Similarly, many analog elements such as valves are
operated by a 4–20 mA signal through current-to-pressure (I/P) converters.
For A/D conversion, a short resistor (normally 250 ohms) is required at the
ADC end to convert the loop signal into a voltage. The 4–20 mA signal is con-
verted into 0–5 volts, which is easy to handle with single-ended inputs. General
circuit diagrams for voltage-to-current and current-to-voltage conversion are
given in Fig. 5.

3.9 Sample and hold circuit

The sample and hold (S&H) circuit shown in Fig. 6 consists of an electronic
switch, a capacitor and a buffer amplifier. The circuit is switched to the sample
mode using a control line from the microprocessor port and this closes the
switch, forcing the capacitor to charge to the value of the analog input. After
a short interval the circuit is put into the hold mode and the switch is opened.
The capacitor then retains the value of the analog signal to which it had
been charged. During the hold mode, the ADC performs the conversion. Since
a high quality capacitor and buffer amplifier are used in the S&H circuit,
the voltage signal presented to the ADC will remain constant during the
conversion time. As stated earlier, the S&H circuit is used at the input of the
ADC where it keeps the analog signal constant during the data conversion
process.
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3.10 Multiplexers

A multiplexer (MUX) is an electronic equivalent of a rotary switch. When
in operation the common line is connected to one of the eight channels. The
MUX can be disabled, in which case the common is not connected to any of
the channels. A four channel MUX should only require two binary lines to
select any of the four different channels. Fig. 7(a) shows a gate circuit that in
conjunction with the four switches forms a rudimentary MUX. The channels
selected by the four combinations of A and B are shown in Fig. 7(b).

3.11 Selection of a unipolar or a bipolar input range

For most signals, the input should be set to bipolar. In this mode, the DA&C
board will accept both positive and negative voltages. Typical ranges are −5
to +5 V and −10 to +10 V. In cases where the signal is to be guaranteed
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(b) Channels selected by various combinations of control lines A and B
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never to be negative, then setting the input to unipolar mode will improve
the resolution by a factor of up to 2. On the other hand, if the input is set
to unipolar and the signal goes to negative, it will be severely distorted by
the recording process. Changing between the unipolar and bipolar modes is
carried out by setting a switch or a jumper on the data acquisition board itself
or via the computer.

3.12 Selection of single-ended or differential inputs

In most cases, the inputs should be set to single ended. Differential inputs are
better at rejecting noise, particularly if the signal is small or if it is connected
to the data acquisition system by long cables. However, differential inputs are
more complex to wire up, and only half the number of input channels will
be available compared to that in single-ended mode. Signals or noises that
are the same in both the inputs of a differential amplifier (relative to ground)
are called common-mode signals. The differential amplifier will amplify the
differential-mode signals and reject the common-mode signals. How well the
amplifier does this is measured by the common-mode rejection ratio (CMRR).

More complex devices such as pH meters, ion-exchange probes and glass
microelectrodes are frequently used but all come complete with their own
special amplifier, and connecting the amplifier output to a data acquisition
system is not difficult.
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4 DA&C Add-on Card

Plug-in data acquisition and control (DA&C) boards (called add-on cards)
are the fastest growing instrumentation option and represent the heart of
instrumentation. Plug-in DA&C boards are available for many popular com-
puters. There are also cards for a single purpose (i.e., dedicated to a particular
function), for example, carrying out only A/D or only D/A conversion. The
single-purpose card is low cost, simple to use and easy to program. If we need
to use more than one function, then buying cards for each function will add
to the cost; also, that many expansion slots may not be available in the PC.
Another class of interface boards, known as multifunction cards, have various
combinations of analog, digital and pulse inputs and outputs. Many cards have
programmable channel sampling and conversion modes (separate gain for each
channel). One card often can perform a variety of functions including A/D
or D/A conversion, digital input-output (I/O) and counter/timer operations
(refer to Fig. 2). The multifunctional card needs one expansion slot, and the
cost of the card is cheaper compared to buying several single function cards.
However, the multifunctional card requires several consecutive I/O addresses.
Most of the multifunctional laboratory cards are built with 4 to 16 analog
input channels; even 4 channels are certainly sufficient. Because the channels
are multiplexed (there are 6 channels but one A/D), the sampling rate quoted
for A/D is the maximum rate for all the channels combined. If some channels
are not used, then the sampling rate is decreased accordingly.

The bus expansion slot allows a card to communicate electrical signals
directly with the central processing unit (CPU) over the PC bus. Control of
this process is achieved through software that addresses the card either as a
memory location or as an I/O port. Memory address referencing is used for
most process control I/O applications because of its speed and larger address
space. The speed at which a card can communicate data with the CPU is a
function of three items:

1. Clock frequency of the processor chip (i.e., 50 MHz, 66 MHz, 75 MHz)
2. Bit length of the processor (i.e., 16 bits, 32 bits)
3. Bit length of the bus (i.e., 8 bits, 16 bits, 32 bits)

The ranges of PC expansion boards currently available from a large number
of manufacturers include:

1. Analog I/O card with up to 16 analog inputs (and up to 4 buffered analog
outputs)

2. Digital I/O cards with direct transistor-transistor logic (TTL)-compatible
inputs and outputs

3. Digital I/O cards with optically isolated inputs and outputs
4. Digital I/O cards with buffered I/O lines
5. Digital output cards with reed relays
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6. Digital output cards fitted with solid state relays for AC or DC power
control or triac for AC power control

7. IEEE-488/ general-purpose interface bus (GPIB) interface card
8. Multifunctional I/O cards (offering mixed analog and digital I/O facilities)
9. Bus expansion cards (which interface external card frames or mother

board)
10. Thermocouple interface cards
11. Stepper motor controllers
12. Specialized instrument cards (e.g., digital multi-meters, counters/digital

frequency meters)

It is easy to construct a PC-based process control system by selecting off-the-
shelf modules. Only when dealing with specialized applications is it necessary
to use one’s own dedicated I/O cards and or external signal conditioning
boards.

4.1 Digital I/O

Data acquisition systems often include the facility to deal directly with digital
signals. Digital I/O circuits move information from the real world into the
computer and from the computer into the outside world. The circuitry to
make a digital input is similar to that needed to make a digital output. Thus,
the two functions are combined into one; hence the term digital I/O. During
the configuration of the add-on card, we have to set which channels are input
channels and which are output channels. A variation of the basic digital I/O
port is the counter and timer. Most data acquisition systems with a digital
port have one or two counter/timers. These are digital inputs and work over
the same range of voltages as standard digital inputs. Like basic digital I/O
lines, the counter/timers can be configured either as inputs or outputs. In
counter mode, the line is configured as an input. The counter counts pulses
applied to it; a single pulse is counted when the digital input goes from low
to high and back to low again (or from high to low to high). The number of
pulses is then read by the host computer, which can also clear the counter (set
the counter to 0). The counters in the I/O circuitry are digital and binary.
They are specified by the number of bits in each counter. In timer mode,
the counter/timer acts like a digital stop watch. The counter is connected
internally to a circuit that generates a stream of pulses of known frequency.
This circuit is often referred to as a clock.

4.2 Digital-to-analog converter

The heart of most DACs, is a current summing node where the currents are
selected by digital inputs. Consider, for example, the 3-bit DAC (refer to
Fig. 8). A2 and A0 correspond to the most significant bit (MSB) and least
significant bit (LSB) of the digital input, respectively. The largest resistor
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value is only twice that of the smallest, and hence this network is called an
R-2R ladder DAC. The right-hand side of all of the 2R resistors is at 0 volt
and hence the total resistance of the network is R ohms. The reference current
Iref is Vref/R . The current at the summing node I, becomes

I = (Vref/2R)(A2+0.5A1+0.25A0)
= Vref (4A2+2A1+A0)/(8R)

Hence, the output voltage V0 is given by

V0 = −IR = −Vref (4A2+2A1+A0)/8

The output voltage range is from 0 to −7Vref/8 volts in steps of Vref/8. This
step size corresponds to the LSB.

4.3 Analog-to-digital converter

The successive approximation ADC is very widely used because it is relatively
fast and cheap. It uses a DAC in a feedback loop as shown in Fig. 9. When
the start signal is applied, the S&H amplifier latches the analog input. The
control unit then begins an iterative process, where the digital value is ap-
proximated, converted to an analog value with the DAC and compared to the
analog input, the end signal is set by the control unit and the correct digital
output is available at the output. If n is the resolution of the ADC, it takes
n steps to complete the conversion. More specifically, the input is compared
to combinations of binary fractions (1/2, 1/4, 1/8, . . . , 1/2n) of the full scale
(FS) value of the ADC. The control unit first turns on the MSB of the reg-
ister, leaving all lesser bits at 0, and the comparator tests the DAC output
against the analog input (refer to Fig. 10). If the analog input exceeds the
DAC output, the MSB is left on (high); otherwise, it is reset to 0. The pro-
cedure is then applied to the next lesser significant bit and the comparison is
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made again. After n comparisons have completed, the converter is down to the
LSB. The output of the DAC then represents the best digital approximation
to the analog input. When the process terminates, the control unit sets the
end signal, signifying the end of the conversion. Typical conversion times for
8-, 10-, and 12-bit successive approximation ADCs range from 1 to 100 s.
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Fig. 10. 4-bit successive approximation A/D conversion

4.4 Buffered DA&C

There are standard techniques that take some of the load off the computer and
transfer it to the ADC hardware. One of these techniques frees the computer
from the task of fetching and storing each sample from the ADC when it is
ready. Instead, the data are held in a temporary electronic store called a buffer.
A buffer is a circuit containing some memory chips and it is placed in between
the ADC and the computer. In some cases, it is physically located on the
DA&C board—a buffered DA&C board. The ADC and buffer circuits collect
data on their own without any intervention from the computer until the buffer
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is full: the computer then copies all the numbers from the buffer into its own
storage system in one go. Moving a block of data is much more efficient than
moving samples one at a time, and while the buffer is filling, the computer
continues with data analysis. Buffers are also useful when collecting large
amounts of data rapidly because the buffer circuit can collect samples much
faster than the computer. The second technique for handling large amounts
of data at high sampling speeds is to use direct memory access (DMA). With
DMA, the DA&C board stores the samples directly in the computer memory
area (RAM) without any intervention from the computer CPU. This technique
is often combined with buffering because it allows the DA&C card to use the
host computer’s RAM as a buffer rather than having to have memory chips
on the A/D card itself. This lowers the cost of the DA&C card.

5 Configuring Options and Settings

DA&C adapter cards often have configurable options that must be set for
the adapter card to function properly. Examples include: interrupt request
(IRQ), base I/O port address and base memory address. Sometimes it is pos-
sible to configure DA&C adapter card settings in software, but these settings
commonly must match jumper or dual in-line package (DIP) switch settings
configured on the DA&C adapter card. DA&C card documentation should
be referred to for DIP switch settings. Many newer DA&C adapter cards use
Plug-and-Play (PnP) technology, which makes manually setting the adapter
card options obsolete. The operating system configures the hardware device
automatically.

5.1 Interrupt requests (IRQ)

Interrupt request lines are hardware lines over which devices such as in-
put/output ports, the keyboards, disk drives, DA&C adapter and computer
network adapter cards can send interrupts or requests for services to the com-
puter’s microprocessor. Interrupt request lines are built into the computer’s
internal hardware and are assigned different levels of priority so that the
microprocessor can determine the relative importance of incoming service re-
quests. Each device in the computer must use a different interrupt request
line or interrupt (IRQ). The interrupt line is to be specified when the device
is configured.

5.2 Base I/O port

The base I/O port specifies a channel through which information flows be-
tween the computer’s hardware (such as DA&C adapter card) and its CPU.
The port appears to the CPU as an address. Each hardware device in a system
must have a different base I/O port number.



www.manaraa.com

242 M. Chidambaram

5.3 Base memory address

The base memory address identifies a location in a computer’s memory
(RAM). This location is used by the adapter card as a buffer area to store
the incoming or outgoing data. Some adapter cards contain a setting data
that will specify the amount of memory to be set aside for storing data. For
example, for some cards we can specify either 16K or 32K memory. We have
to specify some appropriate part of the main memory as the starting memory
or base memory for the card. To set the devices or card for this base memory
address we have to set appropriate DIP switches in the add-on card. The base
memory address is to be specified as a hexadecimal number. The memory
required by the add-on card is given in the manual provided with the card.

A driver is the software utility that enables a computer to work with a
particular device. Devices such as mouse devices, disk drives, DA&C adapter
cards, network cards and printers all come with their own driver. The com-
puter’s operating system will not recognize a device until its associated driver
has been installed, unless the operating system is Plug-and-Play compliant.
Drivers are included as a disk with the DA&C card when it is sold.

6 Output Signal Conditioning

Table 2 provides the list of control elements that require digital signals and
sensors that give outputs as digital signals. Table 3 gives a list of typical con-
trol system actuations. The electrical output voltage and current rating for
most DA&C boards is limited to modest electrical ratings. Output ratings
are 1.7 mA (sinking) while maintaining 0.45 V and 200 µA (sourcing) while
holding the output voltage at 2.4 V. These current and voltage values are
satisfactory for interfacing to TTL-compatible devices such as integrated cir-
cuit chips. However, when integrating a DA&C board to real-world equipment
such as electrical motors connected to pumps, fans and other rotating devices,
electromechanical solenoids and other heavy duty electromechanical devices,
the TTL-compatible outputs simply cannot drive these devices.

TTL or CMOS I/O
Optically isolated I/O
Electromechanical relays
Solid state relays
Frequency input
Proximity sensors
Photo-electrode sensors
Switches/contacts
Encoder

Table 2 Digital input/output
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Control action Devices Input
Electric heating Electric furnace Voltage or current
Flow adjustment Pneumatic valve Air pressure

Solenoid valve Voltage, current
Motor driven valve Digital pulses
Variable speed pump Voltage or current
Fluidic control valve Pressure

Alarms Lights, bells Digital pulse
On-off signals Relays, switches Digital pulse

Table 3 Some typical control system actuations

The output port is said to be sourcing current if current flows out of the
port into the load. It is said to be sinking if the current flows through the
load and into the output port. Most actuators require more than 100 mW.
Since most types of digital logic circuits source or sink 20 mA (100 mW), the
ports by themselves are not enough to drive the actuators. The TTL gate will
source 16 mA (i.e., supply a current to ground through a load connected to a
positive supply) and is turned on by a logic zero. Therefore, discrete circuits
are required. Driving circuits are (i) integrated circuits, (ii) discrete solid state
devices, (iii) electromechanical relays and (v) solid state relays.

6.1 Electromechanical relays

Electromechanical relays are the primary interface between the solid state
electrical current and heavy real-world devices such as motors, pumps and
solenoids. If a relay is of high current or voltage rating, then a transmitter
must be selected so that the current and voltage ratings are compatible. A
transistor is a solid state DC switching device used with low voltage DC-
powered conductive and capacitive sensors as the output switch. Advantages
of the transistor are instantaneous response, low off-state leakage and voltage
drop, longer life and immunity against shock and vibration. Disadvantages
of the transistor are low current handling capacity, inability to handle inrush
current unless clamped, and change of being destroyed by short circuit unless
protected. Proper buffering and current are needed for an interface between
the TTL level and the real world of electromechanical relays. A contact can
be either normally open or normally closed. The current and voltage require-
ments of relays are more than the TTL gate can provide. Transistor buffers
can be used to drive a relay coil. The contact life depends on the load current
and frequency of operation. The relay coil must be shunted by a freewheeling
diode to protect it from damage when the driver is turned off. The advan-
tages of electromechanical relays are switching high current loads, multiple
contacts, switching AC or DC voltages and tolerance of inrush current. The
disadvantages are slow response time (10 to 25 ms), mechanical wear, corro-
sion of contacts due to arcing, contact bounce and vulnerability to shocks and
vibration.
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6.2 Solid state relay

The problems of relays can be overcome by replacing relays by solid-state
relays (SSRs) such as a triac or silicon-controlled rectifier (SCR). SSRs are
capable of controlling only AC operated devices such as motors or heaters. The
advantages are fast response time (8 ms) and longer life. The disadvantages
are that the SSR can be falsely triggered by large inductive currents, can be
destroyed by short circuit, and it is used only for controlling AC.

An optocoupler (or optoisolator) is a device that provides electrical isola-
tion between a source and a load. The optocoupler consists of a light emitting
diode (LED) in the input and a photo sensor at the output with no electri-
cal connection between them. The photo sensor may be a photo transmitter,
or an SCR, photo Darlington type or photo triac type. SCRs or triacs are
suitable for AC power switching applications (such as motors and solenoids)
whereas the Darlington output is used for applications requiring large current
gains and the photo transmitter output for general-purpose applications. Op-
tocouplers allow interfacing systems with different grounds, etc., which would
otherwise be incompatible with the controllers.

B

C

10 K

150

E

Fig. 11. Power Darlington solid state device

The current gain of the transmitter switch is improved by using the Dar-
lington connection (refer to Fig. 11). This has two (or more) transistors wired
so that the base current drive to the output transmitter is supplied from the
emitter of the first. This type of connection gives a very high value of current
gain (typically 200 to 1000). The Darlington device can switch a large out-
put current (2 A) with a relatively small input current (mA). In Fig. 11, two
resistors and a diode are included to reduce leakage current. An output load
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power of, say, 300 W can be switched with an input power of about 60 mW.
Since the collector to emitter current is higher, resulting in a high amount of
heat, a proper air cooling arrangement must be made.

6.3 I/P converter

If the final control element is a pneumatic operated valve, then the output
signal to the valve has to be converted into a pneumatic signal by using an
I/P converter. Here, depending on the current (4–20 mA) from the controller,
the output of an I/P converter is a pneumatic signal which will be sent to the
pneumatic valve. A constant air supply is given to the I/P converter which
will send an appropriate amount of pneumatic signal to the valve and bleed
out the remaining portion of the air signal. The valve will be opened or closed
proportional to the signal obtained from the I/P converter.

6.4 Heater control circuit

A > B

10 k ohms

Output of a 7475
error detector

+ 5 V

2N3392

1

2 4

6

Red

180 ohms

220 ohms

30 ohms

10 nF

110 V
at 60 Hz

Heater
(light bulb)

5 W
10 nF

Snubber network
for the coupler Snubber network

for the triac

LED

MOC3010

Fig. 12. Drive circuit for the heater (or light bulb)

If the desired temperature is higher than the actual temperature (output
A > B), then the heater is to be on (refer to Fig. 12). We also isolate the
high voltage AC signal from the low voltage digital signal from the computer.
An optically isolated drive MOC3010 satisfies the need. To increase the drive
capability of an MOC3010, an additional triac may be connected at the output
of the MOC3010 depending on the electrical ratings of the load it drives. The
current from the computer may not be sufficient to drive the MOC3010, and
then we need current amplification. The schematic diagram of the amplifier,
optically isolated triac driver and a triac and a snubber circuit are shown in
Fig. 12.
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6.5 Need for a snubber circuit

To prevent turn-on due to overvoltage or line transients, a varistor is con-
nected in parallel with the SCR or triac. This also prevents the SCR from
being damaged by overvoltage during its off state. If the voltage applied to
the anode changes very abruptly, the SCR can turn on and short conducting
(this is due to the effect of rapidly changing voltage upon the SCR’s junction
capacitance). To reduce the effect, a combination series resistor/capacitor net-
work is connected in parallel with the SCR. The parallel branch is called a
snubber. The snubber helps in the following ways: (i) The parallel capacity
appears as a temporary conduction circuit to a rapidly changing anode volt-
age. This circuit is parallel with the internal junction capacitance, and if the
external capacitor is of the correct size, it virtually shorts the SCR during the
period of rapid change. Thus the false turn-on is eliminated. (ii) When the
SCR is conducting an inductive circuit, the rise of current in the circuit is de-
layed due to the effects of the inductance. Thus the growth of the conducting
surface area, within the SCR, to the application of the trigger pulse and the
flow of load current is limited, and the energy contained within the pulse is
not sufficient to establish conductance. However, when a snubber network is
present, the external capacitor will probably already be charged, and at the
time at which the firing pulse is applied, the capacitor discharges via the SCR
and aids in establishing current flow.

Basically, two types of solid state relays are commercially available: zero-
cross switching and random switching. Zero-cross switching relays do not
switch on until the first zero-crossing of the line voltage after the control
signal is applied. On the other hand, random switching relays switch on im-
mediately after receipt of the control signal. A proper type of device should
be selected, depending on the nature of the application.

6.6 Pulse width modulated (PWM) amplifiers

In a PWM motor control, the DC voltage is switching rapidly across the arma-
ture, and the current through the motor is affected by the motor inductance
and resistance. Since the switching speed is high (the frequency is often in
excess of 1 kHz), the resulting current through the motor has a small fluctua-
tion around the average value. The duty cycle is defined as the ratio between
the on time and the period of the waveform, usually specified as a percentage.
As the duty cycle becomes larger, the average current becomes larger and the
motor speed increases.

7 Cabling

Several types of cables are commonly used for interfacing tasks. In increasing
order of cost and immunity from noise, the choices are single cables, flat cables,
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twisted pair conductors, coaxial cables and triaxial cables. Flat cables consist
of many thin conductors running parallel to one another and are insulated with
plastic. The flat cable has almost the same characteristics as single wire but
allows the cabling to be more organized. Both of these cablings are suitable
when the signal is 1 to 10 volts and the current is less than 100 mA (i.e.,
low noise situation). For a flat cable, it is easier to use a single connector.
Many analog I/O plug-in cards for the IBM PC use 25 conductor flat cable
for analog and digital signal connections.

Any signal that interferes with the signal of interest is called an interference
or, more commonly, a noise. Electrical noise refers to currents induced by
coupling external electric fields and the wiring in the instrument. Most of the
methods for dealing with electrical noise are based on the principles of the
Faraday cup, which is a big conducting cup (or cage) that surrounds the object
of interest. The cup is connected to the ground. The objects inside the Faraday
cup are effectively isolated from external electrical fields. Magnetic noise refers
to the current in the wiring of the instruments when they are placed near a
changing external magnetic field. The usual technique with magnetic noise
is to physically isolate the instruments from large alternating magnetic fields
such as those found in electric motors. For either type of noise, the smaller
the level of the signal of interest, the more important is the noise prevention.

Twisted, shielded pair wiring provides a very effective shield against elec-
trostatic and magnetic coupling. The twisted pair conductors can be used for
differential, as opposed to single ended, analog (A/D, D/A) I/O connections.
Twisted pair wire normally consists of four or eight copper strands of wire, in-
dividually insulated around each other in braided pairs and bound together in
another layer of plastic insulation (they were originally just two wires, rather
than four or eight, hence the name twisted pair). Except for the plastic coat-
ing, nothing shields this type of wire from outside interference, so it is called
unshielded twisted pair (UTP) wire. Some twisted pairs of wire are further
encased in a metal sheath and this setup is called shielded twisted pair (STP)
wire. Twisted pair wire is more economical than coaxial cable. Twisted pair
wire can be used where greater bandwidth and greater noise reduction than
those provided by flat cables are necessary.

A coaxial cable consists of two conductors: one is a single wire in the
center of the cable and the other is a wire mesh shield that surrounds the
first with an insulator in between. Current flows in one direction on the inner
conductor and in the opposite direction on the outer conductor. As a result
of this bidirectional current flow, the electromagnetic fields generated within
the two conductors cancel each other. High frequency analog signals may be
transmitted over coaxial cables without causing any interference with other
laboratory electronic instruments, and with little loss of signal. The coaxial (or
coax) cables are shielded so that laboratory electronic noise does not interfere
with the coaxial cable transmission. Bayonet Neill Concelman (BNC) connec-
tors are usually used with the coax cable to provide convenient connections.
Impedance matching connectors and terminators are available to improve the
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signal quality at high frequencies on coax cables. Coax cables can carry more
data than the older types of twisted pair wiring and are less susceptible to
interference from other wiring. They are more expensive and have become less
popular as twisted pair wiring technology has improved.

7.1 Terminal stripper connectors

Many commercial PC plug-in peripherals for analog data acquisition have
strips connecting all the signals of interest. Screw mounts on these strips are
provided so that bare wires may be interfaced to the ADC or DAC. Each screw
is isolated with a plastic barrier to prevent short-circuiting. The terminal strip
connector is mounted on a printed circuit board (PCB) which usually has a
shielded flat cable connecting the PCB with the D-type connector of the PC
data acquisition plug-in card. Terminal strip connectors thus provide conve-
nient connections, but may provide relatively little signal isolation, depending
upon the cable attached to the terminal strip.

Digital signals use two voltage levels (or frequencies) that are widely sepa-
rated from one another to do their signaling. Hence, even rather large amounts
of noise result in little degradation in the ability to distinguish between these
two signal levels. As a result, almost all digital systems use a cheap cable; the
most common are flat cable for parallel digital I/O systems and twisted pair
for serial digital I/O systems. At very high frequencies, the noise may be more
of a problem, and shielded wires are required.

8 Process Control Example for DA&C

Fig. 13 shows the flowsheet of a pH control using a computer. The effluent
stream from chemical industries usually will be acidic in nature. The stream
has to be neutralized by adding appropriate amounts of alkali (sodium hy-
droxide solution) in a mixing tank. The pH of the solution in the mixing tank
is measured using a pH electrode. The output of the electrode will be in the
millivolt range. This weak signal has to be signal conditioned (amplified to
0–10 V). Since the conditioned signal has to be sent a long distance where a
PC is kept (maybe in an air-conditioned room), there is a need to convert the
0–10 V signal to a current (4–20 mA) signal. The signal requirement for an
add-on card is 0–10 V. Hence this current signal has to be converted into a
0–10 V signal. In the PC, appropriate control calculation will be carried out
(PID control action or nonlinear control action). The calculated signal from
the DAC in the add-on card will be 0–10 V. For transmission of the signal to
the final control element, the signal will be converted into 4–10 mA. At the
control valve side, this signal will be converted to a pneumatic signal (3–15
psig) using an I/P converter for actuating the pneumatic valve. An instrument
air supply should be available to the I/P converter.
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Fig. 13. Flowsheet of a pH control

9 VXI Standard

In the late 1980s, a new VXI standard was introduced, which permits com-
munications with a transfer rate of 20 megabytes per second between VXI
systems. VXI instruments are installed in a rack and are controlled by and
communicate directly with a VXI computer. These instruments do not have
buttons or switches for direct local control and do not have a local display.
They can be used for compact monitoring systems.

As stated earlier, the sensors typically require some sort of signal condi-
tioning. Various choices are available in the packaging of sensors and signal
conditioners. These include (i) data loggers, (ii) PC plug-ins, (iii) computer
backplane PC plug-ins and (iv) network-based systems. A data logger solution
is often a stand-alone instrument but could include a low cost interface to the
personal computer. A PC-based plug-in solution generally uses available low
cost slots in the computer to hold measurement modules. A computer back-
plane solution makes use of a separate main frame holding multiple modules
connected to a personal computer with a high speed interface. Their strength
comes from being able to accommodate large channel counts, provide an ex-
tremely wide range of measurements and record/analyze the resultant data
with high real-time speeds. A network-based solution can be physically dis-
tributed, inheriting the advantages of local area network (LAN) technology.
Using such standards as the Ethernet, small measurement modules can be
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connected to PCs, sometimes at greater distances. This new architecture pro-
vides an information bandwidth greater than that typically available from a
standard data logger, but less than that available from a computer parallel-
backplane architecture. The network-based system encourages digitization of
the measurement data as close to the point of measurement as possible, then
brings the data to the controller digitally.

10 Software

Every computer language offers an input instruction that enables the com-
puter to receive data from sensors or switches via an internal board. The
language also provides an output instruction that allows the computer to out-
put data to the external world through an interface board connected to the
computer. Let us discuss the application of the language BASIC to I/O appli-
cations. IBM computers and IBM clones use INP (input) and OUT (output)
statements, whereas the computers that use Motorola processors such as the
Apple Macintosh use PEEK (input) and POKE (output) I/O statements.

The form of the input instruction (INP) in the BASIC language is given
by INP(n), where n is an integer which represents a number or port address of
the input port being selected or accessed through the software. The statement
Indata = INP(&H300)
contains a variable name assigned to the data and that data has been input
to the computer via the address port. The input port address is provided in
hex (hexadecimal). The ampersand (&) used in this statement indicates that
the port address within the parentheses is provided as a hexadecimal number.
In contrast, in the statement
Indata = INP(768)
the port address is to be given by a decimal equivalent of the port address.

Output from the computer through an I/O port is initiated by the out
statement. The form of the out statement in BASIC is given by
OUT port, byte
In this statement, (port) is the output port address in hex or decimal form
and (byte) is the data in hex, decimal or binary form that is going to be out-
put through the specified port. The data byte output to a port must be eight
bits. Even if not all of the eight bits are used in the output circuitry, the data
byte sent to the port must be a full byte. In the statement
OUT &H301, &HFF
the output port address on the I/O board is 301 hex and the digital data
delivered to the port consists of eight ones (11111111). The two statements
LET LEDS = &HF0
OUT &H301, LEDS
will cause a binary (11110000) to be delivered to output port 301 hex. As-
suming that the LEDs were connected to this port, four LEDs would be lit
and four LEDs would be off.
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The Blue Chip Technology ACM-42 DA&C card has a factory-set base
address of &H300. The user can alter this base address, if required, by the
adjustment of miniature jumper switches on the card. All ports used by a
controlling program are referenced to the base address as follows:
Base+0 ADC bit 7 going high registers an end of conversion signal.

Base+1 ADC result, high byte with four most significant bits set to zero.

Base+2 ADC result, low byte and automatic start conversion signal.

Base+3 DAC update output.

Base+4 DAC A, low byte load register.

Base+5 DAC A, high byte load register.

Base+6 DAC B, low byte load register.

Base+7 DAC B, high byte load register.

Base+8 Digital I/O port A.

Base+9 Digital I/O port B.

Base+10 Digital I/O port C.

Base+11 Digital I/O control register.

Base+12 Analog multiplexer channel select.

Base+13 Programmable interrupt source control.

If the input ADC or output DAC facilities are used, they can be accessed
using the relevant base offsets given above. The analog input is set for bipolar
inputs in the range of −2.5V to +2.5V, but this can be changed, if necessary,
by adjusting the jumper connections on the card. If the digital I/O ports are to
be used in any application however, then the control register, Base+11, must
be set up as required by writing the appropriate control word to the control
register. The instruction OUT BASE+11, &H93, for example, configures the
port A, port B and the upper four bits of port C set for input. The lower
four bits of port C are set for output. The instruction OUT BASE+11, &H80
configures the ports A, B, and C all as output.

The general data acquisition procedure is as follows:
1. Define the card base address with a suitable variable.
2. Select an input channel.
3. Send out a start conversion signal.
4. Check for end of conversion.
5. Read the ADC output.
6. Store data in memory.
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A suitable BASIC program to continuously monitor analog input channel
5 is shown below (bipolar range is considered). A heater is to be switched on
or off depending on whether the measured signal is higher or lower than the
set point.

Program 1. single channel input

PORT=&H300 :REM set base address

OUT PORT+12,5 :REM select channel 5

OUT PORT+11, &H80 :REM setting ports A, B, and C as
outputs

INPUT volts set point;SP

OUT PORT, &H00 :REM heater off

S=INP(PORT+2) :REM start conversion by reading
low byte

FOR J=1 TO 10, NEXT J :REM small time delay to allow for
A/D conversion

CYCLE:

HIGH=INP(PORT+1) :REM read high byte

LOW=INP(PORT+2) :REM read low byte

RESULT=LOW+256*HIGH :REM calculate the 12 bit result

PRINT RESULT

VOLTS=(RESULT-2048)*5/4095 :REM convert digital result to
voltage level

PRINT VOLTS

IF VOLTS >=SP THEN 1000

OUT PORT+8, &H00 :REM heater off

GO TO CYCLE

1000
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OUT PORT+8, &H01 :REM heater on

GO TO CYCLE

In the above program, REM is the keyword in the BASIC language for writing
remarks within the program. It is used for understanding the program.

11 Graphical Programming

PC-based monitoring and control systems using graphical programming are
used frequently. This permits the utilization of graphical components for as-
sembling systems and simplifies the development of monitoring and control
programs so that scientists and engineers as well as nonspecialists in com-
puters can easily develop PC-based monitoring or control systems. The intu-
itive nature of the graphical programming languages reduces significantly the
time required for learning, programming of the prototype and realization of
the final product. Textual programming for computer-based instrumentation
however has some specific advantages: the user familiarity with a computer
aided package like MATLAB allows easy adoption of textual programming for
the MathWorks data acquisition tool box. Moreover, in applications requiring
the computation of measurement uncertainty, textual programming can be
advantageous due to the explicit instruction used in data processing.

Formerly, most of the PC software was DOS-based. Today almost all PC
software is designed to run under windows. Most add-on card manufacturers
offer their own windows-based software for controlling their cards. This soft-
ware is adequate for basic I/O functions common to open loop applications
but still relies on a conventional text language (BASIC or C) for closed loop
applications. An important limitation of this type of software is that it works
only on cards provided by the manufacturer, making multi-card, multi brand
applications difficult. Packages like LabView, Matrix, Simulink, and VisSim
are capable of both open loop and closed loop applications.

12 Industrial Signal Conditioners

Nowadays most manufacturers of electronic instrumentation devices are pro-
ducing signal conditioners intended to simplify the use of transducers. These
signal conditioners have built-in (i) a power supply for passive transducers,
(ii) capability to amplify the output signal up to the levels of several volts,
directly compatible with the industrial ADCs and (iii) capability to filter
either industrial noise or unwanted spectral components in the phenomena
measured.

As an example, let us give the family of signal conditioners 5B or 6B from
the supplier Analog Devices, including conditioners for strain gauges, thermo-
couples (with cold-junction compensation) or metallic resistance temperature
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detectors (taking into account the nonlinearity of the R-T transducers). These
modules are rather compact sealed hybrid circuits (size: 57x57x16 mm); they
can be factory adjusted for many different standard measurement ranges and
even for customized ranges. They have a rated precision of 0.05% for the tem-
perature range −25 to 800oC and a galvanic insulation up to 1500 V between
input and output. The cold-junction compensation of the thermocouple is re-
alized by small auxiliary hybrid circuits and the linearization of resistance
temperature detector (RTD) is implemented in the signal conditioner itself.
Several modules can be plugged on a printed circuit backplane, and their
output is connected in series with an internal analog switch which allows
multiplexing the outputs without the need for additional components.

Another example is the hybrid circuit IB32 for the signal conditioning of
resistive transducers in a bridge configuration. The circuit features an ad-
justable excitation voltage for the bridge, an amplifier for the output voltage
with a gain ranging from 100 to 5000, a low pass filter, a CMRR of 140 dB,
a linearity of 0.005% and a global precision of 140 bits.

SCXI: Signal Conditioning eXtensions for Instrumentation (SCXI) is a
high performance, multichannel signal conditioning and data acquisition sys-
tem supplied by National Instruments for use with PCI. We can use the SCXI
as either a signal conditioning front end with DA&C boards and modules, or
as a complex external system. An SCXI system consists of one or more rugged
chassis that can house a variety of signal conditioning modules for most I/O
needs, such as the following:

• Analog inputs: Thermocouples, RTDs and thermistors, strain gauges, volt-
age sources, 4–20 mA current sources, frequency inputs. Analog outputs:
voltage and current.

• Digital I/O: Optically isolated I/O, AC/DC inputs, solid state relays, elec-
tromechanical relays.

Analog input modules interface the system to a variety of transducers and
signal conditioning circuits such as those for signal amplification, isolation,
multiplexing, filtering, transducer excitation, and simultaneous S&H. For local
DA&C systems, we can use the SCXI module to consider I/O signals for plug-
in DA&C cards. We can also use the external with the DA&C module to
digitize the data to the PC via the parallel port or serial port over a distance
of 4000 ft. We can use the SCXI as a remote on RS-486 networks up to 1.2 km
from the host PC. The expansion system can range from a few channels for
desktop computers to a large rack-mount system with up to 3000 channels.

13 General-Purpose Interface Bus (GPIB)

The GPIB, also known as an IEEE-488 bus, is a system that allows intercon-
nection of up to 15 electronic instruments or devices so that they can interact
with each other. There are three categories of devices on the GPIB: talkers,
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listeners and controllers. The system is programmable and so can form the
basis of automatic test equipment (ATE) systems. ATE is now one of the
leading methods for testing electronic equipment in factory production and
troubleshooting situations. The data acquisition system can also be designed
around standard ATE modules and equipment. The usual method is to use a
programmable digital computer to control a bank of test instruments. The pro-
gram turns the various instruments on and off and then evaluates the results
as measured by other instruments. The bank of equipment can be configured
for a special purpose or for general use. For example, we can select a particular
lineup of equipment needed to test, say, a broadcast audio console, and pro-
vide a computer program to make the various measurements: gain, frequency
response, total harmonics distortion, etc. Alternatively, we can also make a
generalized test set. This is the method selected by a number of organizations
that have numerous different devices to test. There will be a main bank of
electronic test equipment, adapters to make the devices under test intercon-
nect with the system, and a special program for each type of equipment. Such
an approach provides a cost effective system of test equipment. Nowadays,
electronic test equipments are either fitted with the necessary GPIB interface
or can be upgraded with optional GPIB interface cards. A GPIB card installed
in a PC would make it a GPIB device, and it connects the adapter card to
the instruments using a special GPIB cable.

14 Microcontrollers

Perhaps more than any other factor, the development of microprocessors has
been responsible for the explosive growth of the computer industry. A micro-
processor is a computer on a chip. While early microprocessors required many
additional components in order to perform any useful work, the increasing use
of large-scale integration (LSI) or very large-scale integration (VLSI) semicon-
ductor fabrication techniques has led to the production of microcomputers,
where all of the required circuitry is embedded on one or a small number of
integrated circuits. A further extension of the integration is the single chip
microcontroller, which adds analog and binary I/O, timers, and counters so
as to be able to carry out real-time control functions with almost no addi-
tional hardware. Examples of such microcontrollers are Intel 8051, 8096, and
Motorola MCH 68HC11. These chips were developed largely in response to
the automotive industries’ desire for computer-controlled ignition, emission
control and antiskid systems. They are now widely used in process industries.
The major types of microcontrollers are (i) embedded 8-bit microcontrollers,
(ii) 16- to 32-bit microcontrollers and (iii) digital signal processors.

The basic characteristics of a microcontroller are as follows:

1. It has a built-in ROM (4 Kbytes) within the chip to store the control
program.
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2. It has a small built-in RAM (128 bytes) for temporary data storage.
3. The CPU uses single bit instructions so that the limited program memory

(ROM) is effectively used.
4. Many microcontrollers have a Boolean co-processor along with the CPU

to simplify implementing Boolean expressions occurring often in control
applications.

5. Microcontrollers have built-in counters and timers which can be set by
users.

6. There are built-in I/O ports and control for easy interaction with external
devices.

Digital signal processing is defined as the arithmetic processing of signals sam-
pled at regular intervals. Examples of this type of processing are filtering, con-
volution, amplification, modulation and transformation of signals. A digital
signal processor (DSP) basically replaces analog controllers and conventional
microprocessors in digital control system applications. Because of the DSP’s
special architecture, it is more useful than a general-purpose microprocessor
for high speed processing applications. Because a control system is a real-time
system, the DSP architecture must handle a control system’s numerical tasks
and band width requirements. Microcontrollers traditionally have a von Neu-
mann architecture (meaning that instruction and data are in the same bus).
However, most DSPs use a Harvard architecture (meaning that instruction
and data are separated from the instruction bus to increase the speed) or a
modified Harvard architecture that is optimized for signal processing.

15 Summary
Computer interfacing for data acquisition consists of analog-to-digital conver-
sion of input analog signals. Prior to the conversion, the analog signal has to
be conditioned to meet the input requirements of the ADC. Signal condition-
ing consists of amplification (for sensors generating very low level signals),
filtering (to limit the amount of noise on the signal) and isolation (to protect
the sensors from interacting with one another and/or to protect the signal
from possible damaging inputs). Conversion of a digital signal to an analog
signal at the output is to be carried out if the output signal is sent to a final
control element which requires an analog signal. The digital output signal has
to be amplified by a transistor or solid state relay or power amplifier. DA&C
can be made simple by using a PC’s standard add-on card and associated
software. Software configurable cards with auto isolation devices are prefer-
able. Most manufacturers of electronic instrumentation devices are producing
signal conditioners as modules.
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A computer system for automation has to satisfy many requirements that we
take more or less for granted. It has to run around the clock since a production
break may cost enormous amounts of money. It has to work in real time
taking various time requirements and process disturbances into consideration.
Whatever happens, the system has to behave in a predictable way. It has to
be safe, both for the process and for humans.

In most automation systems there are events that will bring the process
into another state of operation. Furthermore, there are a lot of applications in
both the process and manufacturing industries where control involves primar-
ily switching and sequencing. In both the process and manufacturing indus-
tries there is a wealth of applications of switching circuits for combinatorial
and sequencing control.

Switching theory, which provides the foundation for binary control, is not
only used in automation technology but is also of fundamental importance
in many other fields. This theory provides the very principle on which the
function of digital computers is based. In general, binary combinatorial and
sequencing control is simpler than conventional feedback (analog and digital)
control, because both the measurement values and the control signals are
binary. However, binary control also has specific properties that have to be
considered in more detail.

Programmable logical controllers (PLCs) have been in use since the 1960s
and are still the basis for the low level control in many automation systems.
Today PLCs can handle not only the lowest levels of control but also advanced
control of hybrid systems, where time-driven continuous controllers have to
be integrated with event-driven controllers. We will introduce the PLC and
briefly review its short history. The state concept is of fundamental impor-
tance in understanding sequencing control. This will be described by a simple
example, followed by an introduction to sequential function charts (SFCs).
They can be used not only for simple control sequences but also for parallel
processes. Ladder diagrams (LDs) are inherited from the old electromechanical
relays and are nowadays implemented in software in PLCs. Another low level
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description of combinatorial circuits and sequences is obtained via assembly-
like Instruction Lists (ILs). Programming of a modern PLC can be realized
in five different programming languages, text oriented or graphical. An in-
ternational standard, IEC 61131-3, forms the basis for advanced automation
system programming [6]. There is a wealth of literature on PLCs and their
applications. There are several books with good coverage on, not only PLCs
and the IEC 61131 standard, but their application in discrete manufacturing
(see [1]–[5]).

1 The Development of PLCs

The modern computer control system of today is the result of two parallel
developments, one from relay technology to implement logical circuits and the
other from continuous instrumentation and pneumatic proportional-integral-
derivative (PID) controllers developing into software realizations of continuous
controllers.

Logical circuits have traditionally been implemented with different tech-
niques. The primary reason for designing a PLC was to eliminate the large
cost involved in replacing the complicated relay-based machine control sys-
tems. When production requirements changed, so did the control system. This
becomes very expensive when the changes are frequent. Since relays are me-
chanical devices they also have a limited lifetime, which required strict adhe-
sion to maintenance schedules. Troubleshooting was also quite tedious when
so many relays were involved. Picture a machine control panel that included
many, possibly hundreds or thousands of, individual relays. Then it is easily
recognized that alternative solutions were sought.

Bedford Associates (Bedford, MA) proposed something called a Modular
Digital Controller (Modicon) to the U.S. car manufacturer General Motors.
The first PLC was introduced at GM in 1968. Other companies at the time
proposed computer-based schemes, one of which was based upon the Digi-
tal Equipment PDP-8. The Modicon 084 brought the world’s first PLC into
commercial production.

These “new controllers” also had to be easily programmed by mainte-
nance and plant engineers. The lifetime had to be long and programming
changes easily performed. They also had to survive the harsh industrial en-
vironment, both mechanically and electrically. The answers were to use a
programming technique most people were already familiar with and replace
mechanical parts with solid-state ones. The new device had to be smaller than
its relay or semiconductor-built equivalent and it had to be easy to maintain
and repair. In addition, the new device had to be cost-competitive with the
solid-state and relay panels then in use. These requirements should be con-
sidered in the light that at the end of the 1960s and beginning of the 1970s
there still were no small-size programmable computers (the microprocessor
was invented in 1971). The initial requirements provoked great interest from
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engineers of all disciplines as to how the PLC could be used for industrial
control. Allen-Bradley Corporation in the USA introduced a microprocessor-
based PLC in 1977. It contained an Intel 8080 microprocessor, and additional
circuits allowed processing of logical bit operations at high speed.

Still, until the mid-1970s most circuits were built with electromechanical
relays and pneumatic components. During the 1970s the PLC became more
and more commonplace, and today sequencing control is almost exclusively
implemented in software. Despite the change in technology, the symbols for
the description of switching operations, known as ladder diagrams, that de-
rive from earlier relay technology are still used to describe and document
sequencing control operations implemented in software.

In the mid-1970s the dominant PLC technologies were sequencer state-
machines and the bit-slice based CPU. The AMD 2901 and 2903 were quite
popular in the Modicon and Allen-Bradley PLCs. Conventional microproces-
sors lacked the power to quickly solve PLC logic in all but the smallest PLCs.
As conventional microprocessors evolved, larger and larger PLCs were based
on them. Today there are hundreds of different PLC models on the market,
differing by their memory size and number of I/O channels but primarily in
the features they offer. The smaller PLCs are designed principally to replace
relays and have some additional counting and timing functions. More com-
plex PLCs process analog signals, perform mathematical calculations, and
even contain feedback control circuits like PID controllers.

In the process industries, like the paper and pulp, chemical, and oil and
gas industries, there has been a parallel development of control systems. The
typical control loop consisted of a pneumatic PID controller connected to some
analog sensor for a variable like level, pressure, flow rate, or temperature. The
controllers were gradually realized by electronic circuits, but the functionality
was still the same. More than one controller could soon be implemented into
one device.

When Honeywell introduced the TDC 2000 system in the mid-1970s, it
was considered a great sensation and a big leap forward. In direct digital con-
trol (DDC) all the controllers were implemented in a single computer. Some
control engineers considered DDC as the ultimate solution, while the practic-
ing engineers disliked the extreme sensitivity of the system. If the computer
failed, then the whole process control system would fail. A distributed com-
puter control would of course minimize the risk of plant failure.

Communications abilities began to appear in approximately 1973. The first
such system was Modicon’s Modbus. The PLC could now talk to other PLCs
and PLCs could be far away from the actual machine they were controlling.
They could also now be used to send and receive varying voltages, allowing
them to enter the analog world. Unfortunately, a lack of standardization,
coupled with continually changing technology, has made PLC communications
a nightmare of incompatible protocols and physical networks. Still, the 1970s
was a great decade for the PLC.
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The 1980s saw an attempt to standardize communications with General
Motor’s Manufacturing Automation Protocol (MAP). It was also a time for
reducing the size of PLCs and making them software programmable through
symbolic programming on personal computers instead of dedicated program-
ming terminals or handheld programmers. Today the smallest PLC is about
the size of a single control relay, just a few centimeters across.

The 1990s saw a gradual reduction in the introduction of new protocols
and the modernization of the physical layers of some of the more popular pro-
tocols that survived the 1980s. There is a textbook [9] that tells almost any-
thing that is to be told about computer communication. The Ethernet is being
increasingly applied at the automation level, and the Ethernet Industrial Pro-
tocol (Ethernet/IP) is an open, industrial Ethernet standard, managed and
promoted by several leading industrial network trade associations. A compre-
hensive description is given in [10]. The fieldbus market is steadily changing;
current standards and applications can be found on www.fieldbus.org. A com-
prehensive description is given in [11].

The latest standard, IEC 61131-3, has tried to merge PLC programming
languages under one international standard. We now have PLCs that are
programmable in ladder diagrams (LDs), function block diagrams (FBDs),
instruction lists (ILs), C, and Structured Text (ST) all at the same time. PCs
are also being used to replace PLCs in some applications.

The PLC systems and the DDC systems grew out of two different indus-
trial needs. In order to understand the different programming system devel-
opments that are now integrated into modern systems, we have to realize that
two different kinds of technicians served the systems. The relay systems were
designed and maintained by electricians, who still wanted to structure the
software as the old electromechanical relays. Therefore, the ladder diagram is
still a natural way of thinking for many of these technicians. Instrumentation
engineers, on the other hand, served the process control loops. They wanted
to continue thinking in terms of the PID control loop that had to be imple-
mented in software. These traditions have been implemented very favorably
in the IEC standard 61131, allowing the two traditions to be combined into
the same computer control system.

The automation industry is highly competitive, and many of the com-
puter control companies from the 1980s and the 1990s have now disappeared.
Competing companies have acquired many of them; others have gone out of
business. Six large companies, having 84% (in 2002) of the automation market,
today dominate the automation market. They are ABB, Honeywell, Invensys,
Emerson, Siemens, and Yokogawa. Each one of these had between 9 and 21%
of the market share in 2002, while the seventh company, Alstom, had only 3%.
The web-based information from the vendors provide valuable information.
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2 The Finite State Concept

A discrete event system can be described as always being in one well-defined
state. For example, a machine can be operating or idle, which means that it
is always in one of these two states. A buffer storage can be in many states,
equal to the number of places (N) plus one. The complexity of a discrete state
system is not the sum of all the states, but is closer to the product of all the
states, if all the variants have to be described. For example, a system of two
machines—each one described only by the two states operating and idle—is
described by four states.

Some condition has to be satisfied in order to transfer between two states.
Such a condition can, e.g., be an external event, an operator command, or a
timer signal. When a machine operation is finished, its state will change from
operating to idle. In our models we assume that such a state transition takes
place immediately. Likewise, a timer can indicate a state transfer, for example,
the start of a pump. Consequently, the pump condition will (immediately)
change from idle to operating.

In a discrete event control system there are two basic elements, states
and transitions. While the system is in one state there will be some action
(operation) taking place. We will illustrate this by a simple example.

A tank is to be filled with a liquid. When the tank is full its content must
be heated up to a predefined temperature. After a specified time, to make
sure that the liquid is well mixed, the tank is emptied, and the process starts
all over again. Let us now define the states and the state transitions of this
process.

• A sensor signal empty signals that the tank is empty and can be filled
again. This is defined as the initial state of the operation.

• A signal start will initiate the filling of the tank. The start signal then
indicates the transition from the initial state to the filling state. In this
state there are two actions being performed. First the bottom valve of the
tank is closed. Then a filling pump is started.

• The next transition signal is a sensor signal, indicating that the tank is
full. This transition will bring the tank into the state heating. Now there
are another two actions being started. First the filling pump is turned off,
and then a heater is switched on.

• The tank will remain in the heating state and the heater will stay on until
the temperature has reached the predefined setpoint. When the preset
temperature has been reached another transition takes place. At this point
the state will be transferred to the state wait.

• In the wait state the heater is first switched off and a timer is initiated.
The timer will run a predefined waiting time “time out” to make sure that
the temperature in the liquid has become homogeneous. A mixer may also
be running in this state.

• The timer initiates the next state transition, to the emptying state. The
action open the discharge valve is initiated and will stay on until the tank
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is empty. Once the tank is empty a sensor signal will indicate empty, and
there is a state transition to return to the initial state.

We again note some typical features:

• The system is only in one state at a time;
• The state transition is initiated by some sensor, timer, or operator signal

and it takes place immediately ;
• While the system is in one state some action will take place. There may

be more than one action at the same time. The actions have to stop at the
next state transition.

In order to implement the various states and the state transitions, the
software has to guarantee that the three conditions above are satisfied at all
times.

3 Describing States and Transitions Using
Sequential Function Charts

A sequential function chart (SFC) can be considered as a special-purpose
language for the description of control sequences in the form of a graphi-
cal scheme. Toward the late 1970s the first function chart language, Grafcet
(GRAphe de Commande Etape-Transition, “Function chart-step transition”)
was developed in France and later provided the basis for the definition of the
international standard IEC 848 (Preparation of function charts for control sys-
tems).1 Now there is an international standard for the control of sequences,
IEC 61131-3. This standard lists a number of alternative languages. Of these,
the SFC is the most important. It may be noted that the IEC 61131-3 standard
does not really consider an SFC to be a programming language, but rather a
program-structuring element used to organize the program written in one or
more of the other languages. Here we will consider the SFC a programming
language.

Function charts describe control sequences with the help of predefined
rules for:

• The controls that must be carried out and the order in which they are
carried out;

• The execution details of each instruction.

The function diagram is correspondingly divided in two parts (Fig. 1).
The “sequence” part describes the order between the major control steps. It
consists of the states (marked by the five boxes to the left), also called steps
in the SFC. The vertical lines that connect each box with the following one

1The International Electrotechnical Commission (IEC) has the web page
http://www.iec.ch.
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represent active connections (directed links). Each transition from a step to
the following one is connected with a logical condition, the transition condition
or receptivity. The Boolean expression for the transition condition is written
in proximity of a small horizontal line that intersects the link from one box
to the next. When the logical condition is satisfied, i.e., the related Boolean
expression is true, the transition takes place, and the system proceeds with
the following step. The actions taking place in each state (step) are described
by the “object” or “control” part of the diagram. This part consists of the
boxes to the right of the sequence steps. Every action has to be connected
to a step and can be described either by an LD, a logical circuit, a Boolean
expression, or even a continuous control action like a PID controller.

The use of function charts will now be illustrated with the batch tank
example of the previous section. The states can now be recognized in Fig. 1
as the boxes numbered 1–5, while the state transitions are the marked signals
between the states.

initial state

filling

heating

wait

emptying

tank empty

discharge valve closed
pump on

pump off
heater on

heater off
wait time=“time out”

open discharge valve

empty * start

full

temp

wait time

empty

Function Comment

This expression is true if the sensor for the low level
indicates empty=1 and a start command is given

Start filling operation

The level has reached the upper limit value

End of filling operation and start of heating time

The desired temperature has been reached

The waiting time is “time out”

The waiting time is over

The tank is empty

Fig. 1. SFC for the control of a batch tank process

In the function charts syntax a step (= state) at any given time can be
either active or inactive. “Active” means that this step is currently being
executed. The initial step is represented in the function chart by a double-
framed box. An “action” is a description of the commands that have to be
executed at each step. A logical condition can be associated with a step, so
that the related commands are executed only when the step is active and the
condition is fulfilled. Therefore, the association with a condition represents
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a security control. Several commands can be associated with a step. These
commands can be simple controls but also represent more complex functions
like timer, counters, regulators, filtering procedures, or commands for the
external communication.

The function chart syntax allows much more than just the iterative execu-
tion of the same control instructions. The three functional blocks initial step,
step(s), and transitions can be interconnected in many different ways, thus
allowing the description of a large number of complex functions. Three types
of combinations are possible—in analogy with Petri nets:

• Simple sequences;
• Execution branching (alternative parallel sequence);
• Execution splitting (simultaneous parallel sequence).

In the simple sequence there is only one transition after a step and only one
step after a transition. No branching takes place. In the alternative parallel
sequence (see Fig. 2), there are two or more transitions after one step. In
this way the execution flow can take alternative routes depending on external
conditions. Often this is an if-then-else condition, and it is useful to describe,
e.g., alarm situations.

Fig. 2. Alternative parallel paths. The execution is performed from the top and
downward. At the branch there is a selection of one out of two alternative execution
paths.
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In the alternative parallel sequence it is very important to verify that
the condition for the selection of one of the program execution branches is
consistent and unambiguous; in other words, the alternative branches should
not be allowed to start simultaneously. Each branch of an alternative parallel
sequence must always start and end with logical conditions for a transition.

In the simultaneous parallel sequence (see Fig. 3), two or more steps are
foreseen after a transition, and these steps can be simultaneously active. The
simultaneous parallel sequence represents the concurrent (parallel) execution
of several actions.

Fig. 3. Simultaneous parallel paths. The execution is performed from the top and
downward. At the branch both the concurrent paths are executed simultaneously
as two parallel tasks. Before they meet, the fastest branch has to wait for the other
one to become completed before the execution can continue.

The double horizontal lines indicate parallel processing. When the condi-
tion for the transition is satisfied, both branches become simultaneously active
and are executed separately and concurrently. The transition to the step be-
low the lower double horizontal line can take place only after the execution of
all concurrent processes has been terminated. This corresponds to the simul-
taneous execution of control instructions and is comparable with the notation
cobegin-coend, used in real-time programming.

The three types of sequence processing can also be used together. However,
one should act carefully in order to avoid potential conflicts. For example, if
two branches of an alternative execution sequence are terminated with the
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graphic symbol for the end of parallel execution (the double horizontal bars),
then further execution is locked, since the computer waits for both branches
to terminate their execution, while only one branch was started because of the
alternative condition. Also, the opposite error is possible. If parallel branches
that have to be executed simultaneously are terminated with an alternative
ending (a single horizontal bar), then many different steps may remain active,
so that further process execution might no longer take place in a controlled
way. Of course, a compiler would recognize such a mismatch of beginning
and end clauses and would thus alarm the user before the code was exe-
cuted. But even with the best compiler around, many errors remain tricky
and undetectable. A structured and methodical approach on the part of the
programmer is always an important requirement.

4 Computer Implementation of SFCs

Programs written with the help of functions charts operate under real-time
conditions, so each implementation must exhibit real-time capabilities. Usu-
ally, the realization of real-time systems requires intensive efforts with consid-
erable investments in time and personnel. However, in this specific case, the
designer of the function chart language compiler carries most of the burden,
while the user can describe complex control sequences in a comparatively sim-
ple way. The aspects of real-time programming are also valid for the design
of PLCs, but concern the final user only indirectly and in a limited way.

Compilers for function charts are available for many different industrial
control computers. The programming and program compilation on PCs is
commonplace. After compilation the code in the form of control instructions is
transferred to a PLC for execution. The PC is then no longer necessary during
the real-time PLC operation. Some compilers can also operate as simulation
tools and show the execution flow on the computer screen without needing
to be connected to the object PLC. There are also PLCs with the compiler
already built into their software.

The obvious advantage of abstract descriptions in the form of function
charts is their independence from any specific hardware and their orientation
to the task to be performed rather than to the computer. Unfortunately, it
must be said that high level languages like function charts do not yet enjoy the
success they deserve. It seems odd that so many programmers always start
anew with programming in low level languages, even for those applications
that would be much easier to solve with function chart description languages.

As in any complex system description, the diagram or the code has to be
structured suitably. A function chart implementation should allow the divi-
sion of the code into smaller parts. For example, each machine of a complex
line to be controlled may have its own graph, and the graphs for several ma-
chines could then be assembled together. Such hierarchical structuring is of
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fundamental importance when programming the operation of large, complex
systems.

Function charts are not only suitable for complex operations, but can
also be very useful for simpler tasks. A function chart is quite easy for the
non-specialist to understand. An accepted standard for the description of au-
tomated operations also has the advantage that more computer code can be
maintained and re-utilized and does not need to be written anew each time,
as would be the case with incompatible devices and languages.

The translation of function charts to computer code depends on the specific
PLC and its tools, as not all devices have such compilers. Still, even if the
function charts cannot be transformed in programming code, the diagrams are
very useful, since they provide the user with a tool to analyze and structure
the problem. Some companies use function charts to describe the function and
use of their equipment. Of course, it would be much simpler if function charts
would be used all the way from functional description to actual programming.

5 Combinatorial Circuits

Switching theory provides a model for the operations of binary elements, i.e.,
those that can be only in one of two possible states. The books [7] and [8]
are well-known texts on the subject. There are several examples of binary
components. Binary circuit components like switches, relays, and two-position
valves to be used in logic circuits are designed to operate in two states only.
A transistor is basically not a binary component, but it can be operated as
a binary element, if only the states “conducting” and “not conducting” are
considered.

The state of a binary element is indicated by a binary variable that can
consequently only take two values, conventionally indicated as “0” or “1”.
For a switch contact, relay contact, or a transistor (represented by a Boolean
variable x) the statement x = 0 means that the element is open (does not
conduct current) and x = 1 means that the element is closed (it conducts a
current). For a push button or a limit switch, x = 0 means that the switch
is not being actuated, while x = 1 indicates actuation. A binary variable can
also correspond to a voltage level in a practical circuit implementation. In
“positive logic” the higher voltage level corresponds to a logical “1” and the
lower level to a logical “0”. In transistor-transistor logic (TTL), binary “0” is
usually defined by a voltage level between 0 and 0.8 V and binary “1” by any
voltage higher than 2 V. Similarly, in pneumatic systems x = 0 may mean
that a line is at atmospheric pressure and x = 1 that the line is at higher
pressure.

Standardized symbols are used to represent logic (combinatorial and/or
sequential) circuits independently of the practical implementation (with elec-
tric or pneumatic components). This type of representation is called a function
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block. There are international standards for the logic symbols, IEC 113-7 and
IEC 617; many other national standards are also defined on their basis.

An SFC is used to realize a sequence of operations, where each step cor-
responds to a finite state of the system. The control (or object) part of the
SFC often consists of a Boolean expression or a logical circuit. Such an ex-
pression can be expressed as a combinatorial circuit. It consists of several
logical expressions, in which the output value y depends only on the current
combination of the input signals u = (u1, u2, . . .):

y(t) = f [u(t)].

Note that this is an algebraic condition and there are no states defined. The
number of Boolean functions grows rapidly with the number of variables n,
since the number of combinations becomes 2n. There are different methods for
the simplification of Boolean functions, in which the number of the variable
relations is reduced. It is outside the scope of this text to discuss in detail
the different simplification methods for Boolean functions, but references are
given at the end of the text.

5.1 Representation using LDs

The implementation of Boolean expressions can be programmed in LD, which
now make up a part of the international standard IEC 61131-3. An LD consists
of graphic symbols, representing logic expressions, and contacts and coils,
representing outputs.

Relay circuits are usually drawn in the form of wiring diagrams that show
the power source and the physical arrangement of the various components of
the circuit (switches, relays, motors, etc.) as well as their interconnections. The
wiring diagrams are used by technicians to do the actual wiring of a control
panel. The LD is a widely used representation form for logical circuits. It
represents a conventional wiring diagram in schematic form, without showing
each electrical connection explicitly. In an LD each branch of the control
circuit is shown on separate horizontal rows (the “rungs” of the “ladder”), as
shown in Fig. 4.

Each branch reflects one particular function and the related sequence of
operations. In this drawing frame it is implicitly assumed that one of the
vertical lines is connected to a voltage source and the other to ground. Note
that all the rungs of the ladder are “executed” simultaneously in a wiring
diagram.

In the LD are shown relay contacts that can be either of normally open
or normally closed type (the normal state is the one in which the coil is not
energized). The output consists of a relay (a coil) that could also symbolize a
more complex circuit or a flip-flop. The drawing symbols for the switches and
an actuator (relay) are shown in Fig. 5.

Example (A combinatorial circuit) An LD can represent a combina-
torial circuit (see Fig. 6). The series connection of the switches represents a
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Fig. 4. The framework of a ladder diagram (LD). This is the way that the wiring
of relay schemes was built up. The same structure is implemented into PLCs but
with logical instructions.

Fig. 5. The German DIN and the U.S. standards for symbols for (a) a normally
open contact, (b) a normally closed contact, and (c) an output element, such as a
relay coil, in an LD.

logical AND and the parallel connection a logical OR. The variables u1, u2,
and u3 indicate the input contacts and Y1, Y2, and Y3 the output relays. The
variables y2 and y3 denote the corresponding logical variables, stored in the
computer. All the input conditions, i.e., the activation of the switches, must
be satisfied simultaneously.

Y1 = u1 · ū3

Y2 = u2 · y3

Y3 = ū1 + y2

Fig. 6. A combinatorial circuit represented as an LD. The power supply and the
ground are now symbolized by the vertical lines. The LD is interpreted as Boolean
expressions. The notation “·” indicates a logical AND while “+” denotes OR.
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The input switch contacts usually have negligible resistance and can be,
e.g., pushbuttons, limit switches, or pressure or temperature sensors. The
output element could be any resistive load (e.g., a relay coil) or a lamp, motor,
or any other device that can be electrically actuated. Each “rung” of the LD
must contain at least one output element; otherwise, a short circuit between
power supply and ground will take place.

6 Basic Structure of PLCs

The basic operations of a PLC correspond to the combinatorial control of a
logical circuit. In addition, a modern PLC can carry out other operations such
as counting, the processing of signal delays, and a wait for defined time inter-
vals. The major advantage of a PLC is that a single circuit with its compact
construction can replace hundreds of relays. Of course, another advantage is
that the PLC is programmable and not hardwired, so that its operation can
be changed with limited effort. PLCs can, on the other hand, be slower than
hard-wired relay logic. An optimal solution for each specific application can
be realized when both technologies are installed in the same system, so that
the advantages of each can come to use.

The PLC hardware is usually built to fit a typical industrial environment,
especially regarding signal levels, heat, humidity, unreliable power supplies
and mechanical shocks and vibrations. PLCs also contain particular interfaces
for conditioning and preprocessing of different signal types and levels. PLC
functionality is also being increasingly offered in process input/output units,
which are connected to larger integrated control systems.

6.1 PLC instruction list

A PLC must operate in real time. The input and processing of external signals
can take place in two ways in a PLC: by polling (repeated requests) or via
interrupt signals. Polling has the drawback that some external event(s) may
be missed if the PLC is not sufficiently fast. On the other hand, such a system
is simple to program. An interrupt-driven system is more difficult to program,
but with this system the risk of missing some external event is much smaller.
In simpler automation systems polling is usually more than adequate; whereas,
interrupt-driven control is used in more complex control situations.

The programming of a PLC consists mainly of defining control sequences.
The input and output functions are already implemented in the PLC ba-
sic software. The assembler-like instructions are translated in the PLC-to-
machine code. At execution time the program is run cyclically in an infinite
loop. In this way it is simulating the parallelism inherent in the wired relay
logic. The read-execute-write cycle is called a scan cycle. Every full scan may
take about 15–30 ms in a small PLC; this time is approximately proportional
to the program size in memory.
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The response time of the PLC depends on the time that is necessary for
processing the program code. During the scan cycle the PLC processor cannot
read any new input signals or output new control signals. Given that the scan
cycle time is short enough with respect to the time constants of the plant,
this effectively simulates the parallel behavior in the hardwired relay logic
that the PLC was meant to replace. For an outside viewer, and specifically
the controlled process, all outputs seem to change their values simultaneously
in response to the input signals.

The ladder rungs are evaluated in a fixed order, beginning with the first
rung. When the scan cycle has finished, the intermediary output-memory
region is then copied to the physical outputs by the PLC hardware in one op-
eration. It is important to note that the PLC evaluates the rungs sequentially,
usually from top to bottom and from left to right. This means that previously
evaluated rungs can affect the evaluation of the current rung, even though
the results of those previous rungs are not yet shown to the outside process.
As a consequence, it is usually a mistake to assign the same output from two
different rungs. Some PLCs warn about such programming mistakes.

A small number of basic machine instructions can solve most sequencing
problems. A program that contains these instructions is called an instruction
list (IL). A PLC has pins that are assigned to inputs and outputs, connected
to the physical process. The input signals are first read into a buffer memory
register. This function is always included in the PLC system software and does
not need to be explicitly programmed by the user. Some of the fundamental
instructions are listed here; usually they can operate on bits as well as on
bytes.

• ld, ldi: Loading of a value from one input buffer memory into the accu-
mulator, direct (ld) or inverted (ldi);

• and, ani: AND or inverted AND instruction between the value in the
accumulator and the value of an input channel; the result is stored in the
accumulator;

• or, ori: An OR or inverted OR instruction between the value in the ac-
cumulator and the value of an input channel; the result is stored in the
accumulator;

• out: The content of the accumulator is copied to the output buffer memory
and controls the output signals. The value is also retained in the accumu-
lator so that it can be further processed or sent to other output ports.

7 PLC Programming with Ladder Diagram and
Instruction List

The logical control instructions for the PLC can be expressed in the form of
an LD as well as with an IL. The gate y1 is used to give memory capability
to the relay Y1 (self-holding capability). See Fig. 7.
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ld u1
and u2
or y1
and u3
out Y 1
out Y 2
ldi u2
out Y 3

Fig. 7. PLC control instructions in the form of an LD and as an IL.

8 Sequencing Circuits Describing Ladder Diagrams

In the previous sections a sequential function chart was used to implement
states and transitions of a sequencing circuit. They can also be programmed
in a low level language, the LD. As a consequence we need a way to represent
a state within an LD. The building block for the sequencing control is the
set-reset (SR) flip-flop circuit.

A flip-flop can be described by an LD (see Fig. 8). When a set signal S
is given (i.e., a set switch is pressed), the S switch conducts a current that
reaches the relay coil Y ; the input R is so far not activated. The energization
of the relay coil leads to the closure of the relay contact y in the second rung. If
the S switch is now released, a current still continues to flow to coil Y via the
contact y and the flip-flop remains set. The y contact acts as the “memory” of
the flip-flop. By pressing the reset switch R, the circuit to the coil Y is broken
and the flip-flop returns to its former reset state. In industrial practice such
a relay is called bistable, self-holding, or latched.

Fig. 8. An SR flip-flop, represented in the form of an LD (self-holding or latched
relay)
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Since only one state at a time can be active, some kind of execution control
signal is necessary in order to change from one state to another. In other
words, a transition has to be realized. This type of control signal can be given
when a condition is satisfied (the condition could of course also be a complex
combination of control signals). The conditional order acts at the same time
as a reset (R) signal for one step and also as a set (S) signal for the following
step. The sequencing control execution can therefore be described as a series of
SR flip-flops, where each step corresponds to a rung of the ladder, as shown in
Fig. 9. At each execution control signal, the next flip-flop is set. The execution
proceeds one step at a time and after the last step returns to the beginning
of the sequence (step 1).

In practical execution, step 1 is initiated with a start button or, in the
case of a closed execution loop, automatically after execution of the last step.
When the last step is active and the condition for the jump to the first step
is satisfied, then the step 1 coil is activated, and the self-holding relay also
keeps it set after the first condition no longer holds. The output of the first
step also activates the input contact “step 1” that is connected in series with
the contact for the condition for step 2. As soon as this condition is satisfied,
the relay step 2 latches circuit 2 and at the same time opens the circuit for
step 1. The following steps are carried out in the same fashion. Obviously, in
order to ensure a repetitive sequence, the last step has to be connected to step
1 again.

This type of execution is called asynchronous. In switching theory a syn-
chronous execution is also considered, in which the state changes are controlled
by a time clock. An asynchronous system is thus known as event based, while
a synchronous system is time based. In manufacturing automation applica-
tions, asynchronous control is much more common, since the operation of most
machines and equipment (and thus their state changes) depends on a set of
conditions rather than on a stiff time plan. In the design of control sequences
it is also important to consider that the conditional input signals must keep
their logical level for the full duration of the corresponding operation. If this
is not the case, then buffering or intermediate storage must be provided for
the input signals.

9 PLC Programming

PLCs can be programmed in different ways: with the assembler-like IL or in
higher, problem-oriented Structured Text (ST). We have demonstrated that
both combinatorial networks and sequences can be described using LDs. The
LD has been particularly popular in the U.S.A., while in Europe the use
of function block diagrams (FBDs) with the graphical symbols for logical
gates is more common. The high level description of sequencing functions
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Fig. 9. Sequencing execution described in LD notation

using the Grafcet-like sequential functions chart (SFC) is naturally gaining in
popularity.

PLCs are usually programmed via external units. These units as a rule are
not needed for the PLC on-line operation and may be removed when the PLC
is in operation. Programming units are typically small, hand-held portable
units or portable personal computers. A manual PLC programmer looks like
a large pocket calculator with a certain number of keys and a simple display.
Each logic element of the LD or program instruction is entered with specific
keys or key combinations. More sophisticated programming can be performed
with a PC, offering both graphical and text editors.

The international standard IEC 61131-3 (earlier called IEC 65A (SEC)
67) is the only global standard for industrial control programming. It harmo-
nizes the way people design and operate industrial controls by standardizing
the programming interface. A standard programming interface allows people
with different backgrounds and skills to create different elements of a program
during different stages of the software lifecycle: specification, design, imple-
mentation, testing, installation, and maintenance. Yet all pieces adhere to a
common structure and work together harmoniously.

IEC 61131-3 includes the definition of the SFC language, used to structure
the internal organization of a program, and four interoperable programming
languages: IL, LD, FBD, and ST. ST has a formal syntax similar to that of
the programming language Pascal, as shown in this short example:

IF TEMP1 > 50.0 THEN
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Flow rate := 65.0 + OFFSET
ELSE
Flow rate :=75.0; PUMP:= ON;
END IF;
ST supports a wide range of standard functions and operators. ST and IL

represent algorithmic formulations in clear text. The FBD, the LD, and the
SFC are instead graphical representations of the function and the structure
of logical circuits. The international standard IEC 61131-3 should therefore
guarantee a wide application spectrum for PLC programming.

By using a graphical editor an SFC can be programmed readily. The ac-
tions can then be programmed in some other 61131 language definitions, such
as an ST or LD piece of code. FBD is also a popular complement to the SFC.
The actions can also consist of special regulator algorithms, such as a PID
controller.

PLCopen

PLCopen is a vendor- and product-independent worldwide association. Its
mission is to be the leading association resolving topics related to control pro-
gramming to support the use of international standards in this field. To achieve
this, PLCopen has several technical and promotional committees. PLCopen
was founded in 1992 [12]. One of the core activities of PLCopen is focused on
IEC 61131-3.

SoftPLC

In 1997 several automation software producers started to market products
called SoftPLC [13]. The partners are called authorized SoftPLC integrators
and they offer SoftPLC integration services. A number of vendors supply
SoftPLC compatible products. The basic idea is to make use of the enormous
development of the PC hardware. The cost of a common PC is very low today
and gives a remarkable computing power for the price. Also, the PC hardware
of today has quite a high quality. There are many reasons to take advantage
of this development for the benefit of automation. The PLC market is much
smaller, and the PLC development has a hard time competing with the PC
market.

At the same time, distributed I/O has become increasingly common. Dis-
tributed I/O and “intelligent” sensors and actuators make is possible to re-
place the traditional signal wire with a digital information carrier. If the PC
controls its I/O units via a fieldbus, there is no need for more measurement
and actuator cables between the PC and the physical process.

The PC is not primarily designed for real-time applications. However, due
to its high performance, it can still be used in many demanding automation
applications. The hardware has a large computing capacity and advanced
graphics capabilities are available. This makes it possible to program, debug,
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and document the software according to the standard IEC 61131-3. The pow-
erful hardware gives the SoftPLC implementation quite a high performance.
It is relatively straightforward to couple the control system to systems for
material requirements and planning and to graphical operator interfaces since
there are data base systems already available for PC platforms.

10 Summary

The PLC development has been remarkable—from simple machines perform-
ing only binary operations to a wide spectrum of PLC systems. There are
now units for simple and basic operations as well as complex automation
computers.

The software development has now reached a maturity that is demon-
strated in the international standard of IEC 61131-3. A PLC can be pro-
grammed in a structured way, allowing a mixture of both sequential func-
tion charts that offer a program structure and four other low and high level
languages that permit both algorithmic and graphical representations of the
actions to take place. Furthermore, complex sequencing and parallel processes
can be readily programmed, and hierarchical representations are possible.
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1 DSP Applications

As the name digital signal processor (DSP) suggests, the main application
area is digital signal processing. The need for such processing occurs in a
variety of domains including:

• Wireless communication
• Wireline communication
• Video and imaging
• Audio
• Security (e.g., biometrics)
• Digital control
• Automotive
• Measurement/sensing.

More important than an exhaustive list of applications are the characteris-
tics of digital signal processing to understand the specifics of DSPs. Typically,
algorithms are applied to a signal, e.g., to extract information, to get a different
representation, and to “clean” or to shape the signal. Examples of frequently
used algorithms are time variant and time invariant filtering, transformations
like the fast Fourier transform (FFT) or discrete cosine transform (DCT) or
parameter estimation. A special type occurring in a variety of algorithms is
the vector scalar product, which combines multiplication and accumulation
(MAC):

N−1∑
k=0

a(k)b(k) or
n∑

k=0

a(k)b(n− k).

In general, signal processing algorithms require execution of mathematical
operations, e.g., multiplications, additions, and nonlinear functions like sine,
cosine, ln or exp on real and complex numbers and, for example in coding, may
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even include finite field arithmetic. Usually, these operations have to be per-
formed on larger sets of data (the signal). While in some applications off-line
processing may be possible, most digital signal processing is real-time process-
ing leading to minimum throughput and maximum latency requirements.

Over time, algorithms have become more and more sophisticated to get as
close as possible to the (theoretical) optimum of the processing result. This
often means that algorithms are adapted on-line to the detected scenario. In
multi-standard and multi-application devices, various signal processing algo-
rithms are used. The required flexibility is a strength of DSPs.

Basically, DSPs can cover a wide range of throughput requirements. High
end DSPs are able to execute several billion instructions per second due to
a combination of high clock rate and a high degree of parallel processing.
But high throughput has its price: high power consumption and high parts
cost. Since many DSP applications are battery-operated mobile devices (e.g.,
cell phones, WLAN) and high volume products, this is an issue. Therefore,
the trade-off is always between price and power consumption on one hand
and processing speed on the other. The cost of high throughput can be re-
duced significantly if a more specific solution is used. The range is from a ded-
icated hardware implementation (least programmable, minimum power con-
sumption), via an application specific processor (optimized for an application),
to a general-purpose DSP (most flexible, maximum power consumption).

2 DSP Architectures

2.1 Basic considerations

DSP architectures have developed significantly over time. With the progress
of silicon technology, it became possible to implement more sophisticated fea-
tures and functionalities and to use more parallel processing to increase the
throughput. Most DSPs, however, are based on an architecture and compo-
nents as shown in Fig. 1. This architecture addresses the specific requirements
of digital signal processing.

Bus architecture:
Since large amounts of data have to be processed and throughput is crit-
ical, DSPs have separate program and data buses. Mathematical opera-
tions often require two or more operands. Therefore, DSPs have multiple
data buses. A typical number is 3 to support reading of two operands and
writing of a result in the same cycle.

Algorithmic units
The basic operations usually supported by dedicated hardware com-
ponents are logical operations, addition/subtraction, and multiply-and-
accumulate (see Section 1) as well as some manipulations of particular
importance for integer arithmetic like shifting, rounding, and truncation.
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Fig. 1. Basic DSP architecture

Sometimes a separate multiplier (in addition to the multiplier in the MAC
unit) is available.

Program address generation
Besides the common functions for program address generation, DSPs usu-
ally support zero-overhead loops. As was stated earlier, signal processing
often is done on large sets of data. Therefore, loops, where the same pro-
cessing is repeated multiple times, are common. To speed up execution,
loop control—decrementing the loop counter and conditional branching—
are taken care of by the program address generation unit. Thus, these
operations do not consume extra cycles (except for the initialization) or
arithmetic unit resources.

Data address generation
In a DSP the data address generation unit supports several schemes typi-
cal for signal processing. The general pattern for processing sets of data is
that the data address is stored in a register and, after data access, the data
address generation unit calculates the next data address. To support this,
the data address generation unit provides a number of addressing registers
and address arithmetic units: increment/decrement, addition/subtraction,
and modulo arithmetic. Since the address arithmetic is done by hard-
ware blocks in the address generation unit, neither additional cycles nor
arithmetic unit resources are consumed for address generation, which is
important to achieve high throughput.

2.2 Pipelining

A key concept to increase the throughput is pipelining [1], which is standard
in DSPs. To execute an instruction:

1. The instruction word is fetched from the program memory.
2. The instruction word is decoded.
3. Operands (if any are required by the instruction) are fetched.
4. The instruction is executed.
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5. The result of the operation is written back.

Instruction and operand fetch require at least one clock cycle each. There-
fore, significant speed-up is achieved by breaking down the instruction into a
number of pipelined steps, as shown exemplarily in Fig. 2. While an instruc-
tion is decoded, the next instruction is already fetched. Once the pipeline is
filled, one instruction per cycle is completed.

Fig. 2. Instruction pipelining

TI’s TMS320C54x series, for instance, uses six pipeline stages (similar
to the partitioning in Fig. 2 but with two pipeline stages instead of one for
each of the two fetch steps). Note that with pipelining three data buses are
advantageous: a two-operand fetch of an instruction in the operand fetch stage
may occur together with a write from an instruction in the final pipeline stage.

Unfortunately, pipelining can overturn the order of execution and, thus,
cause wrong results if not handled properly. For example, if an instruction
needs operands written by the immediately preceding instruction, old operand
values will be fetched (data hazard) since the preceding instruction is still in
the execute/write stage at that time (see Fig. 2). Similarly, instructions follow-
ing a branching instruction enter the pipeline before the branch instruction is
decoded and the program control unit switches to the appropriate instruction
(control hazard). There are two ways to resolve such hazards: pipeline control
by the programmer (or a compiler) or by the DSP hardware (interlocking).
TI, for example, uses hardware pipeline control.

With growing processor speed and increasing memory sizes, memory access
becomes the limiting factor for the clock speed. To overcome this bottleneck,
advanced DSPs use one or even two levels of caching. Detailed descriptions of
cache design are found, for instance, in [1].

2.3 Arithmetic

DSPs are available with floating-point arithmetic as well as with fixed-point
arithmetic. Recalling the basic floating-point number format (Fig. 3), it is
obvious that the arithmetic is more complex (e.g., adjustment of operands
before operations and re-normalization of results after operation). There-
fore, floating-point arithmetic is typically slower and consumes more power.
Floating-point DSPs usually also support fixed-point arithmetic. However, the
floating-point operations use more pipeline stages than the fixed-point oper-
ations to achieve the same clock rate.
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Fig. 3. Floating-point number representation

Especially with fixed-point arithmetic, the range expansion of operations
needs to be taken care of. A 16x16 bit multiplication, for instance, yields a 32
bit result. Before storage the result has to be rescaled to the original size. The
algorithmic unit of a DSP supports different types of rescaling, e.g., rounding,
truncation, or saturation. For operations like multiply-and-accumulate it is
preferable to perform the rescaling only after the final accumulation. This is
made possible by providing accumulation registers with more than twice the
word length, e.g., 40 bit registers in a 16 bit DSP.

In comparison, software development is faster for floating-point arithmetic,
since for fixed-point arithmetic, additionally the parameters (constants) have
to be converted to fixed point, and scaling of operands as well as trunca-
tion/rounding have to be specified without degrading the (algorithm) per-
formance unacceptably. The trade-off between floating-point and fixed-point
DSPs, therefore, is between faster code development and, sometimes, better
algorithm performance for floating-point DSPs, and lower cost per part and
lower power consumption for fixed-point DSPs.

Since signal processing involves arithmetic on large sets of data, through-
put can be significantly increased by providing multiple arithmetic units which
can execute in parallel or by including application-specific arithmetical func-
tions. This will be revisited when discussing advanced architectures.

2.4 Data address generation unit

The general concept of the data address generation unit was already discussed
in the introductory Section 1. Two very DSP-specific functions should be
considered in more detail.

Algorithms like the MAC equation shown in Section 1 are often calculated
on an ongoing basis. Since we cannot store permanently additional new values
in the memory, only the signal values needed for one step are stored. After
each step, the new signal value needed for the next step is stored such that it
replaces the oldest value, which is not required in the next step anymore. To
have a consecutive storage of data with the the newest signal value always at
the lowest (or highest) memory address of the range, the complete data set
would have to be moved each time a new value is stored. In such a case it is
more efficient to skip the data shift and create a “circular buffer.” Without
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shifting the data, the pointer to the newest value moves through the data set
and, after reaching the end address of the data set range, continues at the
beginning of the data set range. The consecutive ordering of the data then is
also from the position of the newest value to the end of the data set range and
continuing at the beginning of the data set range. This means for the address
generation that the offset from the data set start address must be incremented
using a modulo-addition:

Offset(k+1) = {Offset(k) + Increment} modulo Bufferlength

Since this is a frequent operation in signal processing applications, DSPs
usually provide the required hardware in the address generation unit. Thus,
the circular buffer arithmetic does not require additional cycles or arithmetic
unit resources for execution.

A second DSP-specific address generation function is bit reversed address-
ing. It is a particular way of bit permutation in the addresses between data
accesses for an efficient implementation of an FFT. Again, to support fast
execution, many DSPs provide this function as part of the address generation
unit.

2.5 General-purpose DSP architectures

In general-purpose computing, reduced instruction set computing (RISC) ar-
chitectures are dominating. The name RISC stems from the original idea to
reduce the number of instructions by providing only frequently used instruc-
tions. This approach makes it possible to build faster CPUs. Although the
missing instructions now have to be emulated by several instructions, a signif-
icant overall throughput gain remains. Today the key characteristic of RISC
architectures is that all operations on data exclusively apply to data in reg-
isters. Loading data to registers and storing data from registers is done by
separate load/store operations. Thus, load/store and data manipulation op-
erations are separated (for this reason, RISC is also referred to as “load/store”
architecture).

Since signal processing often applies the same operation to large sets of
data, a load/store architecture offers fewer advantages for such applications.
Therefore, most DSPs do not fall into this category. Instead, advanced DSPs
employ parallelism to increase throughput. Besides a parallel utilization of
available resources, speed-up is achieved by providing resources multiple times,
e.g., several multipliers, arithmetic logic units (ALUs) or MAC units in par-
allel. Instructions then must support parallel execution.

With single instruction multiple data (SIMD) architectures, one instruction
triggers parallel execution of the same operation on multiple data. Since
the parallel execution increases the throughput, the load/store through-
put must also be increased by either increasing the bus width or adding
separate data buses.
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On this basic level, SIMD is limited in its efficiency. Taking the specifics of a
particular application into account, the SIMD concept can be employed more
effectively (this will be discussed in the next section). In general, operation on
multiple data in parallel should be combined with instruction level parallelism,
whose two basic flavors are superscalar and very long instruction word (VLIW)
processors.

Superscalar processors read blocks of instructions and control the distribution
of the instructions to the parallel processing units and the avoidance of
hazards by hardware at run time. The instructions do not differ from the
instruction of a scalar processor.

VLIW processors offer long instruction words which are either groups of a
fixed number of instructions or fixed instruction packets with parallelism
explicitly indicated by the instruction. Thus, either the programmer or
the compiler has to take care of parallelism and hazards.

While for advanced general-purpose processors the superscalar architec-
ture is favored, advanced DSPs prefer the VLIW concept and its variants
(e.g., using compressed long instruction words, see, e.g., [6]). More informa-
tion about the architectures of commercially available DSPs is found in the
user manuals, which, in general, are available via internet, e.g., [3], [4], [5].
For an overview of DSP features, see, e.g., [2].

2.6 Application-specific processors

When the design of an ASIC for a particular product is out of scope, e.g.,
for cost reasons, a stand-alone DSP possibly combined with a field pro-
grammable gate array (FPGA) for hard-wired functions is the solution of
choice. A general-purpose DSP, however, is not the most efficient solution in
terms of cost and power consumption. Therefore, some vendors are address-
ing particular application domains by adding specific functions to the DSP.
An example of such a function is the add compare select required in Viterbi
decoding available in several TI DSPs.

Where part cost (in particular, in high volume products) and power effi-
ciency (e.g., in battery-operated devices) are critical, an application-specific
design is the only choice. In these cases the developed IC is a system-on-chip,
as shown exemplarily in Fig. 4. A µ-controller for user application software
and control is combined with a DSP, hardware accelerators, and specific in-
terface blocks. The signal processing is either mapped on the general-purpose
DSP functions or on specific hardwired blocks. Here we have a number of op-
tions: a separate hardwired block, an application-specific co-processor, or the
option of tailoring the instructions of the processor to the application, i.e., to
implement an application-specific instruction set processor (ASIP). Shorter
development time for increasingly complex products, on-going revisions and
enhancements of standards (like, for example, wireless communication stan-
dards), and multi-standard devices can only be handled with the flexibility of
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programmable devices. On the other hand, throughput requirements must be
met at an acceptable power consumption level.

Fig. 4. DSP-based application-specific SoC

A hardwired implementation typically yields the best power efficiency but
has the least flexibility. A general-purpose DSP offers the highest flexibility but
at high power consumption. An ASIP (and an application-specific co-processor
can also be seen as an ASIP) is an excellent compromise between DSP and
hardwired implementation in terms of flexibility and offers significantly better
power efficiency (MIPS/watt) over a general-purpose DSP.
Examples of different ASIP architectures are:

Specific hardware resources, e.g., an application-specific algorithmic unit.
Examples are the add-compare-select function for Viterbi decoders, the
CORDIC for rotation of a complex phasor, or finite field operations for
block codes.

Complex processing blocks with separate execution control. Processing in such
a block is initiated by a specific instruction and may finish in a known
number of cycles or, for example, indicate completion by a flag or an
interrupt.

Exploration of application-specific parallelism. In particular for high through-
put applications, algorithmic units should be implemented multiple times
to exploit the inherent parallelism of the signal processing algorithms.
Examples are parallel calculation of sections of an FFT, parallel filtering
of parallel signal paths, etc. To avoid the need for dynamic scheduling of
instruction execution (and, thus, additional hardware), the most suitable
instruction set architecture for these ASIPs is VLIW/SIMD.
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3 DSP Architecture Design

3.1 Application-specific architecture design methodology

While DSP applications could be implemented on any processor architecture,
designing an application-specific architecture requires a special methodology
and tools. Only in this way can one achieve an optimal hardware/software
solution that meets all design constraints while minimizing costs. In fact,
the design of application-specific DSPs can be viewed as a problem of hard-
ware/software co-design at the processor architectural level.

While some standard recipes for DSP processor design result from common
properties of the application domain (e.g., multiply-accumulate instructions
for sum-of-products computation or cyclic memory addressing for filter com-
putation), determining the detailed processor features requires a more thor-
ough examination of the target application. Therefore, today’s state-of-the-art
methodology is architecture exploration. As illustrated in Fig. 5, this denotes
an iterative, profiling-based design flow during which a successive refinement
of the architecture is performed.

Fig. 5. Processor architecture exploration

The initial architecture may be a legacy processor, a customizable RISC
core (such as, e.g., Tensilica’s Xtensa), or an “educated guess” based on the
designer’s experience. The most reliable way of evaluating a processor archi-
tecture before fabrication is to simulate the execution of the application with a
virtual prototype of the architecture running on a host machine. This requires
that the application be mapped to executable code via the usual software
development tool chain (see Section 4) including compiler, assembler, and
linker. An instruction set simulator (ISS) with profiling support permits one
to identify execution bottlenecks and promising application-specific machine
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instructions. The designer can accordingly modify the virtual prototype and
iterate the exploration loop until an optimal architecture has been determined.

While the architecture exploration methodology yields highly optimized
results, its potential bottleneck is the need to adapt the software development
tools, including the ISS and profiler, in each iteration to a modified target
architecture. This retargeting usually requires significant manpower, since the
consistency and correctness of all tools involved must be ensured before the
next loop iteration can take place.

3.2 Architecture modeling and design tools

The need for fast software tool retargeting in architecture exploration has
motivated a special class of electronic design automation (EDA) tools that
support application-specific processor design. As an example, we show the
design flow of the LISATek Processor designer (CoWare) in Fig. 6.

Fig. 6. LISATek processor design flow

The key idea is to use an architecture description language (ADL) to model
the target architecture and its instruction set at a high abstraction level. In
the case of LISATek, this is LISA 2.0, a C/C++ based ADL. A LISA 2.0 model
comprises processor resources (including registers, memories, and instruction
pipelines) as well as operations that describe the transitions of the processor
state when executing instructions. Among others, the operations capture the
binary coding, assembly syntax, and abstract behavior of instructions. Fig. 7
shows an example of a LISA 2.0 operation model for a logical shift left (SLL)
instruction.
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OPERATION SLL IN pipe.EX {
DECLARE
{
GROUP rs1, rs2, rd = { reg32 || reg16};

}
CODING { 0b1001 rs1 rs2 rd 0bx[5] 0b110010 }
SYNTAX { "SLL" rd "," rs1 "," rs2 }
BEHAVIOR
{

temp=(unsigned int)rs1;
rd = temp << ( rs2 & 0x0000001f);

}
}

Fig. 7. Excerpt from a LISA 2.0 ADL model

After modeling the target architecture in LISA 2.0, the LISATek gener-
ators can automatically retarget all software development tools. Due to the
use of a single reference ADL processor model, inconsistencies are avoided.
In addition, architecture exploration (left loop in Fig. 6) can be performed
efficiently. In order to enable a path to hardware implementation of the target
processor, LISATek can also generate register-transfer level (RTL) processor
models in hardware description languages (HDLs), such as VHDL, Verilog,
or SystemC. Based on the generated RTL HDL model, a usual VLSI design
flow, including gate-level synthesis and optimization, can be used to finalize
the implementation. The right loop in Fig. 6 indicates that results from hard-
ware synthesis, like cost and performance metrics, can be back-annotated into
the exploration phase. This is required, since accurate metrics are available
only after synthesis, and the architecture can be fine-tuned according to these
metrics.

The software development tool environment generated by LISATek is also
used for application programming on the final processor architecture, either
in assembly or C (see Section 4). Fig. 8 shows a typical setup of the graphical
environment during application code simulation and debugging. It displays C
source code and assembly code, as well as the processor state (memory and
register contents).

4 DSP Programming

4.1 Assembly programming

For efficiency, programming at the machine instruction level is still frequently
used for DSPs. Assembly language is a symbolic machine-level programming
language, where code consists of human-readable acronyms (mnemonics) like
ADD, SUB, LOAD, etc. Each mnemonic represents a single instruction of the
target machine.
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Fig. 8. LISATek Processor Debugger

The translation from symbolic assembly code to binary machine code
is done by an assembler. Besides performing a one-to-one mapping from
mnemonics to binary operation codes (opcodes), the assembler is also responsi-
ble for computing addresses of symbolic labels and reserving memory segments
for data and variables. In order to distinguish user commands, e.g., for mem-
ory reservation, from valid assembly instructions, the assembler makes use of
pseudo-instructions or directives. These are mostly indicated by a leading dot.
For instance, “.ORG” is usually used to specify the start address (“origin”)
of a program in memory. The output of the assembler is object code. Different
object code modules can be assembled independently and are finally glued
together (possibly also using subroutines stored in libraries) by the linker,
which emits executable binary programs.

What makes the use of assembly programming for DSPs different from
other microprocessor families (e.g., RISC) is the fact that DSP machine in-
structions are usually very specific to the application area. Therefore, a large
“semantic gap” exists between general-purpose high-level programming lan-
guages like C (see Section 4.2) and DSP assembly code. In turn, this makes
it difficult to efficiently compile C code into DSP instructions.
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Table 1. FIR assembly code for TI TMS320C25 DSP

address object code mnemonic operand comment
003f 3c8e LT * ,AR6 ; load new sample
0040 389a MPY *-,AR2 ; multiply coefficient
0041 2080 LAC * ; load summation variable
0042 ce15 APAC ; add previous product
0043 60af SACL *+,AR7 ; save summation variable
0044 209d LAC *-,AR5 ; move sample in memory
0045 609a SACL *-,AR2

As an example, Table 1 shows a possible implementation of a finite im-
pulse response (FIR) filter on a Texas Instruments TMS320C25 DSP.3 The
’C25 architecture shows several special-purpose data registers. In contrast to
RISC architectures, these registers are implicitly addressed in the assembly
instructions, e.g., the “LT” instruction loads the T register, while the “APAC”
instruction adds the contents of the P (product) register into the accumulator
register.

The operand fields in the example denote indirect memory access opera-
tions via address registers (ARs). In most DSPs, address arithmetic can be
performed in parallel to the central CPU data path by means of a dedi-
cated address generation unit that supports complex addressing modes. For
instance, the operand field “*-,AR2” denotes (1) a memory access via the
“current” AR, (2) an auto-decrement of the current AR after the memory
access, and (3) a switch to AR number 2 as the pointer for the next mem-
ory access. In order to make the most efficient use of a DSP, the assembly
programmer needs to be aware of the optimal use of all machine registers
for the intended algorithm. Due to the highly irregular application-specific
instruction set, DSP assembly programming is generally considered a very
time-consuming and error-prone task. Software development at the assembly
level requires careful debugging with graphical design environments such as
those shown in Fig. 8.

4.2 C programming and compilation

A compiler translates high-level programming language code into machine-
specific symbolic assembly code. Since the features of the C programming
language still allow for a relatively low-level programming style that may
guide a C compiler to make the right translation choices, C is the preferred
programming language for DSPs. Moreover, C is a very widespread program-
ming language, and a lot of legacy code written in C exists. C may also serve

3Note that this is a non-optimized implementation for illustration purposes.
If programmed optimally, the DSP can perform FIR computation asymptotically
within n cycles per sample, where n is the number of filter taps.
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as a high-level interchange format that enables a path to software implemen-
tation from more abstract architecture-independent DSP design environments
such as MATLAB (MathWorks) or SPW (CoWare).

It is useful for a DSP software developer to understand some foundations
of compiler technology in order to achieve the best results. A C compiler
performs translation by means of a sequence of different passes. The major
steps in compiling C into assembly are as follows [7].4

Source code analysis: The source code is analyzed with respect to correct syn-
tax and semantics according to the rules of the source language. In case
of errors, corresponding messages are emitted. Otherwise, a parse tree is
generated that serves as an intermediate representation (IR) of the input
program. Depending on the compiler, the IR may also be represented in
the form of three address code or data flow graphs.

Machine-independent code optimization: The IR is optimized by means of
standard techniques such as constant folding, constant propagation, com-
mon subexpression elimination, dead code elimination, and others. These
are mostly aimed at removing redundant computations to optimize code
quality before assembly code generation in the backend.

Code selection: This pass translates the machine-independent IR to machine-
specific assembly instructions. Since C code or IR code can be mapped to
assembly in numerous different ways, the code selector has to make sure
that an optimized mapping is found. Code selection is usually performed
by tree pattern matching based algorithms.

Register allocation: The symbolic variables and temporary results of a pro-
gram should be kept in the CPU registers during their lifetime, since
register access is generally much faster than data memory access. It is the
primary task of the register allocator to assign the (usually large number
of) symbolic values to (a small number of) physical registers.

Instruction scheduling: There exist different types of dependencies between
generated machine instructions. For instance, instruction A might com-
pute a value that is used as an argument in instruction B, so that A must
be executed before B. Further dependencies may result from the resource
occupation of instructions. The use of specific CPU resources may result
in mutual exclusion of instructions during certain cycles. The scheduler
has to ensure that instructions are assigned to a minimum number of
execution cycles while meeting all dependency and resource constraints.

While C compiler support initially has been quite poor, resulting in in-
efficient code [8], code optimization technology for DSPs has become more
mature in the past decade. On one hand, DSP-specific code optimization
techniques beyond classical compiler technology have been developed that
contribute to higher code quality in terms of code size and performance. For

4The first two passes are generally denoted as the compiler front end, while the
latter three form the back end.
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instance, address code optimization techniques [9] ensure optimal utilization
of DSP address generation units (see Section 4.1) for pointer arithmetic.

On the other hand, under the recognition that classical DSPs are difficult
compiler targets, DSPs have become more “compiler-friendly,” i.e., they allow
the reuse of well-proven and effective code optimization technology. Recent
very long instruction word (VLIW) DSPs, such as the Texas Instruments
C6x series, are an example of this trend. VLIW architectures usually show
a general-purpose register file that enables the use of graph-coloring based
register allocation [7]. The compiler can exploit instruction-level parallelism
by means of list scheduling for sequential code or more advanced instruction
scheduling techniques like software pipelining for loops [10]. As a result, the
quality of compiled code approaches that of hand-written assembly code.
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1 Introduction

In this chapter we introduce the reader to the fascinating world of micro-
controllers. We assume that the reader has no background in this topic. We
begin by describing what a microcontroller is. We then proceed to describe
the unique niche microcontrollers occupy as compared to the personal com-
puter (PC). We then describe the systems that are commonly available on a
generic microcontroller. We specifically do not discuss a specific brand of mi-
crocontrollers but rather describe systems common to most microcontrollers.
We then discuss advanced microcontroller features such as digital-to-analog
converters (DACs), real-time clock systems, liquid crystal display (LCD) in-
terfaces, and other advanced features. We then discuss how to choose a specific
microcontroller for a given application and the steps involved in developing an
application. We conclude this chapter with an example based on an automated
home control system to unify the system chapter concepts. In the references
section we provide supplemental reading material on specific processors [1–11].

2 What Is a Microcontroller?

Virtually all computers have the same component systems. They are equipped
with a central processing unit or CPU, a memory system, an input/output
system, a clock or timing system, and a bus system to interconnect constituent
systems. The bus system consists of an address bus, a data bus, and a control
bus.

You are probably very familiar with a personal computer or PC. For this
type of computer, the systems are housed within the computer case or are
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connected to the computer via connectors mounted on the case. Some of
the other systems comprising the computer are hosted on the motherboard or
main printed circuit board within the computer enclosure. A microprocessor is
the integrated circuit or chip on the motherboard that contains the computer’s
CPU.

For many applications, a moderate amount of local computer processing
power is required. For example, the gas pump at your local convenience store
needs some local processing power to process keypad inputs from the user
to select the proper grade of gasoline, activate the pumps, calculate total
gasoline cost, etc. A PC would not be a good choice for this type of applica-
tion. This is an ideal application for a microcontroller. A microcontroller is a
self-contained computer in a chip. It contains all of the constituent systems
previously described within the confines of a single chip.

3 Microcontrollers Versus a PC — Why not Use a PC?

Why would anyone want to use a microcontroller when there exists a powerful
PC that can be programmed to perform almost any computer-related task?
Two main reasons for selecting microcontrollers over PCs are the cost and the
size.

Over the years, microprocessors in PCs have received the media’s atten-
tion due to the rapid and amazing technological advancements of the past two
decades. Behind the glamour of the microprocessors, microcontrollers have
had their own equally amazing revolution. Today, microcontrollers are the
best-selling type of processor. Unlike the microprocessors, microcontrollers
are inexpensive (tens of dollars as compared to hundreds of dollars, and most
are under ten dollars). In many applications, a powerful PC that can perform
a variety of tasks is not necessary, but what is needed is a processor that
can carry out one specific job. For those applications, cost effective micro-
controllers are ideal. Microcontrollers are available in 4-bit, 8-bit, 16-bit, and
32-bit varieties. For each type, one can find a number of different clock speeds
with a wide variety of memory configurations and onboard subsystems, which
provide flexibility for design engineers to select the best microcontroller for a
particular task.

The other main reason for selecting a microcontroller over a PC is the at-
tractive compactness of microcontrollers: a computer on a single chip. All mi-
crocontrollers come with built-in on-chip memory and multiple input/output
interface features. Many microcontrollers are equipped with analog-to-digital
converters, pulse width modulated signal generators, a sophisticated interrupt
system, multiple serial and parallel input/output ports, and a flexible timer
system. These microcontrollers are placed in embedded systems to control a
variety of functions. For example, in today’s automobiles, one can find mi-
crocontrollers controlling an anti-lock break system, a fuel injection system, a
cooling/heating system, a cruise control system, shock absorbers, front panel
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displays, a media system, and a navigation system using a global positioning
system (GPS). The single chip computer allows design engineers to incorpo-
rate a computer in any device that requires some computational faculties.
These applications include home appliances, navigational systems, medical
equipment, security systems, and robots.

4 The Generic Microcontroller

In this section we discuss the architecture of a generic microcontroller. The
information we provide is independent of any specific manufacturer. We have
done this on purpose. For manufacturer-specific details, we refer the interested
reader to the textbook selection list provided at the end of the chapter. In
Fig. 1 we have provided the block diagram of a generic microcontroller. We
would like to emphasize that all systems shown in the diagram are contained
within the confines of a single integrated circuit package.

Memory System

RAM

Byte-addressable
EEPROM

Flash EEPROM

Central
Processing Unit

Analog-to-Digital
Converter

System

Precision
Timer

System

Serial
Communications

System

Expansion
System

PORTA PORTB PORTx

Advanced features:
- Distributed Processing System
- Pulse Width Modulation
- Add on features:
  -- Digital-to-Analog Converter
  -- Real Time Clock
  -- LCD Interface
       :

Fig. 1. Microcontroller block diagram
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We discuss each system briefly in a clockwise fashion beginning with the
memory system.

4.1 Memory system

As its name implies, the memory system contained within a microcontroller is
used to remember the algorithm executed by the microcontroller, key program
variables, and also system information.

A microcontroller’s memory system is usually a conglomeration of differ-
ent memory technologies. Most microcontrollers are equipped with a memory
system containing both random access memory (RAM) and read-only mem-
ory (ROM) components. In an upcoming section we describe each type of
memory and common applications for the memory type. However, we begin
by discussing memory terminology.

Memory terminology

Memory capacity is usually expressed in terms of bits or bytes. A single mem-
ory bit has the capability of storing or remembering either a logic “1” or a
logic “0” state. A byte is a collection of eight bits. It is a common method
of expressing memory capacity. A memory that has a capacity of 1,024 bytes
(referred to as a 1 kbyte) contains 8,192 bits of information.

Memory capacity does not give an indication of how the memory system is
configured. For that, we must know the length and width of memory. Memory
length indicates how many separate addressable locations are contained within
the memory system. Memory width indicates the number of bits that may be
stored in each memory location. For example, a 1,024 byte capacity memory
could be arranged with a length of 1,024 locations with the capability to store
a byte of information at each location. A 1,024 byte memory could also be
configured to have a length of 512 locations with two bytes of storage capacity
at each memory location.

The memory system is connected to the CPU by three different buses:
the address bus, the data bus, and the control bus. A bus is a collection
of conductors with a common function. The microcontroller’s address bus
provides a separate and distinct address for each memory location. Using
binary address encoding, the address bus width (m) determines the number
of distinct memory locations that can be accessed by the microcontroller. In
general, 2m specifies the number of separately addressable memory locations
(M). The number of data lines (N) determines the memory width, e.g., one
data line for each memory bit at each memory location.

A memory component is also equipped with various control lines. The
read/write control line determines if the memory will perform a read or write
operation. In the read operation the microcontroller extracts and uses the
contents of a specified memory location. In the write operation, the micro-
controller updates the contents of a specified memory location with new data.
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The chip select line is used to select a specific memory component in a mem-
ory system containing more than one memory component. The output enable
line controls when the memory component is allowed to place data on the
data bus in a memory read operation.

A memory map is a tracking tool to describe the memory components
connected to a microcontroller. As previously described, the number of address
lines specifies the number of distinct, accessible memory locations. It does not
mean that there are actual memory components present at each location. A
memory map provides a visual display of the range of addresses accessible by
the microcontroller and which specific addresses are populated with physical
components. Memory addresses are usually specified in hexadecimal notation.
A “$” sign preceding a number indicates a hexadecimal number. A sample
memory map is provided in Fig. 2.

on-chip registers$0000
$01FF

on-chip
RAM

$0800
$0BFF

on-chip
EEPROM

$1000

$1FFF

$4000 external
RAM

$7FFF
$8000

$FFFF

external
EPROM

CSchip select line
WERead/Write line

N data lines

m address
lines

(2m = M)

OEoutput enable line

M x N
Memory

data

m

Fig. 2. Microcontroller memory map
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Now that we have discussed basic memory terminology, let’s take a closer
look at the different types of memory components found in a microcontroller
system.

“Flavors” of memory: RAM and ROM

As previously mentioned, most microcontrollers are equipped with a mem-
ory system containing both random access memory (RAM) and read-only
memory (ROM) components. The RAM components are considered volatile.
That is, when the memory component loses supply power, it loses its memory
contents. On the other hand, ROM components are considered non-volatile.
When power is lost, the ROM components retain their memory contents. Let’s
take a closer look at each type of memory component.

RAM

RAM configurations are used to hold program variables that might change
during program execution. For example, in a higher order language such as
C, global variables are stored in RAM. Therefore, RAM has the capability to
be read from or written to. Usually RAM is used to store programs during
algorithm development because they can be rewritten many times. This is an
important capability since programs are changed considerably during devel-
opment. Once an algorithm is finalized it is usually stored in some form of
non-volatile ROM.

RAM is also used to host the processor’s stack. The stack is a convenient
storage location to temporarily store program variables during program ex-
ecution. For example, when a function is called in a higher order language,
any local variables within the function are declared on the stack. The return
address to the main program is also stored here. Furthermore, during nor-
mal program execution, if a higher priority event occurs such as an interrupt,
key processor register values are placed on the stack during interrupt execu-
tion and then recalled from the stack when the program returns to normal
processing.

The RAM-configured memories typically have faster access times than
ROM. That is, when the memory component is presented an address by the
CPU, there is a shorter time delay (access time) to write to or read from the
selected memory location.

ROM

ROM configurations are non-volatile, which makes them an ideal location to
store a main program. That way should the microcontroller lose power, it will
not lose its main program. There are many varieties of ROM. The different
types are determined by how the contents of the ROM are originally placed
in the memory. The types are ROM, PROM, EPROM, and EEPROM.
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ROM is usually loaded with its contents at the factory. The programmable
read-only memory (PROM) may have its contents written (“burned”) into
memory once. If the contents must be later updated, a new memory com-
ponent must be used. An erasable programmable ROM (EPROM) may be
programmed in the lab. If its contents need to be changed, the EPROM is
placed in an ultraviolet light bath to zero out memory contents. The contents
may then be rewritten.

The EEPROM, or electrically erasable programmable ROM, is available
in two different varieties: byte-addressable EEPROM and flash EEPROM.
Most microcontrollers are equipped with both types. Byte-addressable EEP-
ROM, as its name implies, allows modification of single bytes of information
during program execution. This type of memory is useful for storing program
constants, security combinations, and fault status. Flash EEPROM may be
rewritten in bulk. It does not allow for updating a single memory location.
Flash EEPROM is used to store the microcontroller’s algorithm.

4.2 Central processing unit

The heart of the microcontroller is the central processing unit or CPU. The
CPU contains two main component parts: the arithmetic logic unit (ALU)
and the control unit. The ALU performs the arithmetic operations (addition,
subtraction, shift right, etc.) and logic operations (AND, OR, exclusive-OR,
etc.) for the microcontroller.

The microcontroller is a synchronous state machine. It performs a sequence
of operations, the fetch-decode-execute cycle of the CPU, in response to a sys-
tem clock. To execute a program contained within its memory, it first fetches
an instruction from memory. The instruction is then decoded to determine
which operation is to be performed. The instruction is then executed. When
the execution of the instruction is complete, the processor fetches the next
instruction from memory and repeats the fetch-decode-execution sequence as
illustrated in Fig. 3. This sequence of events continues until all instructions
in the program have been executed.

An interrupt, as its name implies, is an interruption in normal program
flow. An interrupt is usually associated with a higher priority event. In re-
sponse to an interrupt, a processor temporarily suspends execution of the
program, performs interrupt related instructions, and then returns to normal
program execution.

4.3 Crystal time base

The time base for the processor is usually provided by a quartz crystal or a
ceramic resonator. The quartz crystal provides a more accurate, stable time
base. The typical maximum speed for a microcontroller is on the order of
1–10’s of MHz. Most microcontrollers have the capability to vary system op-
erational speed up to its maximum rated speed. The operational speed of the
microcontroller is adjusted to the specific application.
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fetch decode execute

interrupt
service
routine

Fig. 3. Microcontroller instruction execution cycle

4.4 Analog-to-digital converters

A microcontroller is usually used in an application where it senses external
physical parameters such as temperature, pressure, and light intensity. Based
on the data it gathers it renders an appropriate control action. For example,
a microcontroller could be used to control a fire sensing and alarm system. It
would monitor ambient temperature and also the presence of smoke. Should
a hazardous combination of temperature and smoke be detected, the micro-
controller could activate alarms and sprinklers, and automatically dial the fire
department.

These physical parameters of interest are analog in nature. The microcon-
troller is a digital device. Therefore, most microcontrollers are equipped with
multi-channel analog-to-digital converters (ADCs). The analog input signals
are converted to a weighted binary representation as shown in Fig. 4.

Background conversion theory

To convert an analog sample to a weighted binary value, three steps must be
performed: determining the sample rate, determining the required resolution
of the converter, and encoding the voltage sample into a weighted binary
value.

Sample rate

Determining the sample rate for the converter means simply deciding how
often the analog signal must be sampled to adequately represent the signal.
You probably have an intuitive feel for this already. For example, if we were



www.manaraa.com

Microcontrollers 303

Vref_high

Vref_low

Tsample

fsample >= 2 fhighest

Tsample = 1 / fsample

Resolution = (Vref_high - Vref_low) / 2b

Full Scale (FS) =  (Vref_high - Vref_low)

FS/2
FS/4

FS/8
FS/16

FS/32
FS/64

FS/12
8

FS/25
6

8-bit weighted binary result

Fig. 4. Analog-to-digital conversion

sampling the outdoor temperature it would probably be adequate to sample it
every 15 minutes. However, if you were sampling an audio signal in the range
of 20–20,000 Hz, a much faster sampling rate would be required.

The Nyquist criterion establishes the connection between the sampling rate
and the highest frequency content of a signal. The Nyquist criterion indicates
that the analog sample must be sampled at a rate that is at least twice the
highest frequency in the sampled signal. This can be expressed as

fsample = 2 fhighest.

The highest frequency content of a signal can be determined using various
frequency analysis techniques. The interested reader is referred to the text
by Bracewell listed in the references section at the end of the chapter [12].
Once the highest frequency of the analog signal is determined, a low pass filter
(LPF) should be inserted before the analog input of the processor. The LPF,
with a cutoff frequency equal to fhighest, prevents aliasing effects.
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Basically, determining the sample rate means determining the time reso-
lution of the sample. In a similar manner the voltage resolution of the sample
must also be determined.

Resolution

The voltage resolution describes how finely an incremental change in the ana-
log signal can be detected and recorded in the weighted binary representation
of the sample. To provide a more refined weighted binary representation of
the analog signal, additional binary bits are required. The equation which ties
the different resolution factors together can be expressed as

resolution = (Vref high − Vref low)/2b.

In the equation Vref high and Vref low are the reference voltages provided
to the ADC. The input analog signal must lie between these two reference
values. External conditioning electronics may be required to ensure that this
condition is met. The variable b is the number of bits of resolution provided
by the ADC. Typical microcontrollers commonly are equipped with 8 or 10
bits of ADC resolution.

Encoding

Microcontrollers are equipped with various ADC technologies. We do not dis-
cuss the different varieties here. What they all have in common is that they
convert a single analog sample into a weighted binary representation. The
most significant bit of the result is one-half the full scale voltage, where full
scale voltage is defined as:

full scale voltage = Vref high − Vref low.

The next bit represents one-fourth the full scale voltage and so on. The
least significant bit represents the resolution of the converter. To convert the
weighted binary value to a floating-point (real number) representation, the
following conversion may be used

voltage = (weighted binary result/2b)(full scale voltage).

Data rate

The concepts of sampling rate and voltage resolution may be tied together
with data rate. Data rate indicates the amount of information that is generated
during the analog-to-digital conversion sequence. It is expressed as

data rate = fsample b.

Most microcontrollers are equipped with 8 to 16 channels of ADC conver-
sion capability. In the next section we take a detailed look at the precision
timing system.
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4.5 Timing system

Most microcontrollers are equipped with a multi-channel precision timing sys-
tem. The timing system has a variety of precision timer functions including
measuring the parameters of an incoming digital signal, generating a precision
output signal, or counting events.

Digital signal parameters

The common parameters of a digital signal are its period, frequency, and duty
cycle. These parameters are illustrated in Fig. 5. The period of a repetitive
(periodic) digital signal is determined by measuring the elapsed time between
consecutive rising (or falling) signal edges. The frequency is not measured
directly but may be calculated by taking the reciprocal of the period. The
duty cycle is a measure of the percentage of the total period for which the
signal is logic high. To measure duty cycle, the elapsed time between a rising
edge and the falling edge must be measured as well as the period. The duty
cycle expressed as a percentage may be calculated as

duty cycle = (on time/period)(100%).

The free running counter

The main component of the timing system is a free running binary counter.
The counter increments for each incoming timing pulse. The counter counts
continuously from 0 to 2b − 1 where b is the number of bits in the counter.
When the counter reaches its maximum count, it resets to “0” on the next
incoming counter pulse. At the same time an overflow flag is set to indicate
the counter has rolled over back to “0.”

The free running counter usually has some method of resetting the counter
to “0.” However, this may not be a good idea if multiple timing channels are
simultaneously using the counter. Since it is not advisable to reset the counter,
elapsed time may be calculated using the following formula:

elapsed time = (stop time − start time)+(number of overflows)(2b−1).

The unit of elapsed time will be in “clock ticks.” To convert to seconds
the elapsed time in clock ticks must be multiplied by the period of the free
running counter’s time base.

Precision timer applications

As previously mentioned, a precision timer may be used to measure the pa-
rameters of an incoming signal or signals, generate a precision output signal
or signals, count events, or perform some combination of these parameters.
Each of these functions is briefly described.
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free running counter

0 ... 2b... 0...2b... 0...

overflow
time base
divider

time base
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Generate precision output signal

Measure input signal parameters

Count pulses

on time

period

Fig. 5. Precision timer

Measuring parameters of input signals

The key parameters of an input signal that may be measured are period,
frequency, and duty cycle. The parameters are measured by configuring a
timer channel to log the count of the free running counter when certain signal
parameters (rising and falling edges) occur.

Generating precision output signals

To generate an output signal, the desired signal parameters must be converted
to clock ticks. For example, if a 1 kHz (period = 1 ms) digital signal with a
10% duty cycle is to be generated, the period and high time of the signal must
be converted to clock ticks. If for example, the free running counter’s clock
source has a frequency of 100 kHz (period = 0.01 ms), the period of the 1
kHz signal to be generated will be 100 clock ticks and its high time will be 10
clock ticks. An algorithm may then be written to initially set a timer system
output pin high, wait 10 clock ticks and then set it low, wait another 90 clock
ticks and set it high, and then loop to continue generating the periodic signal.
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Counting events

A precision timing system may also be used to count events. For example,
if we equipped a rotating motor with an encoder that provided “n” number
of pulses per motor revolution, we could develop an algorithm to determine
motor speed in revolutions per minute (rpm).

4.6 Serial communications system

All microcontrollers are equipped with one or more serial ports to communi-
cate with external devices. In fact, a microcontroller uses one of its built-in
serial communication systems to allow a controller designer to communicate
with the microcontroller using a PC. The communication involves download-
ing programs to be executed during system development, uploading data from
a microcontroller to be viewed by a user, and interactively interfacing with
the microcontroller using what are called monitor commands.

Such communication systems are necessary to provide microcontrollers the
capability to transfer data to, monitor the status of, and control the states
of external systems. Time-critical interfaces with external systems are usually
accomplished through the microcontroller’s parallel ports, which we discuss
in an upcoming section. In this section, we confine our discussion to the serial
interface. Typical microcontrollers have two different types of serial commu-
nication subsystems on board: one or more asynchronous communication sys-
tems and one or more synchronous communication systems. We briefly discuss
these systems next.

Asynchronous communications

As the name indicates, an asynchronous communication system uses a strin-
gent protocol to communicate with other serial communication systems. The
most widely used asynchronous communication technique is the RS-232D (RS
stands for Remote Standard) interface. We do not have space to fully describe
the hardware requirements and software protocols here. The interested reader
is referred to the textbook by Horowitz and Hill listed in the references section
at the end of this chapter [13]. Data is transferred using the ASCII (American
Standard Code for Information Interchange) standard or the newer interna-
tional Unicode coding standard between two serial communication equipped
systems.

The serial communication can be performed in the simplex mode, which
allows one direction of communication at a time, or the duplex mode, which
allows two-way communication simultaneously. Microcontrollers may use the
duplex mode to interface with external devices.

To protect the integrity of the data transferred, the software protocol of the
RS-232D method requires data to be transferred in a frame that contains data
bits (8 or 9 bits), a start bit, and a stop bit. It also specifies the communication
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rate, which is called the baud rate (bits per second), to ensure that the bit
transmit rate matches with the bit receive rate. Compared to the synchronous
communication interface, the asynchronous communication interface is slower,
but it offers robust and cost (hardware) efficient communication when two
systems are physically separated by less than 15 meters.

Synchronous communications

Unlike the asynchronous communication systems, a synchronous communi-
cation system requires that the communication parties use the same signal
to synchronize participating parties. The synchronization can be obtained by
issuing a synchronization pulse or, as is typically done, by using a common
clock signal. The use of a common clock allows the data transfer rate to be sig-
nificantly higher than the ones used in asynchronous communication systems.
The synchronous communication system of a microcontroller should be used
when the external device to monitor or control is in close proximity to the
controller or when the demand for data throughput of serial communication is
high. For example, in some applications, additional memory, an LCD display,
or an extra port is needed. Although an asynchronous communication sys-
tem can be used for such tasks, a synchronous communication system is more
suitable for such applications due to its speed. Thus, using the synchronous
communication system, one can program a microcontroller to access external
memory, display status using an LCD or seven segment LEDs, and interface
with external devices through additional ports with a relatively high speed.3

To use synchronous communication systems, a designer must specify which
device is in control and which one is following the lead. The one in control is
called the “master” and the one who follows the order is called the “slave.”
The master designated device is responsible for generating the synchronization
signal or the common clock signal as well as the control signals to transfer
data among the communication parties. Shift registers are used to send and
receive data in synchronous communication systems.

4.7 Expansion system

As mentioned, the microcontroller is a self-contained system on a chip. How-
ever, should we need to add additional memory to the processor or additional
systems not contained within the chip, expansion features are required. Most
microcontrollers are equipped with an expansion port to provide external
components access to the microcontroller’s address, data, and control buses.

3If optimal speed is desired, one should use parallel ports with associated con-
trol signals. If serial communication methods must be used, one should choose the
synchronous communication method if speed is the first priority.
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4.8 Port systems

One of the main reasons for the success of microcontrollers in the processor
market is the versatility of input and output interface options that microcon-
trollers offer. For example, the automobile industry pushed the application
of microcontroller technology for systems employing multiple data collection
sensors to make cars safer, fuel efficient, and robust. Another example can
be seen in the robotics community. The availability of input/output ports is
ideal to connect multiple sensors and actuators to control robot movements.

Typical microcontrollers have serial ports, for an asynchronous system and
a synchronous communication system, and multiple parallel ports. Most of the
ports are programmed to function for specific tasks such as analog-to-digital
conversion or pulse width modulated signal generation. These same ports may
be alternatively programmed to work as general-purpose digital input/output
parallel ports. Fig. 6 shows a diagram of a typical microcontroller with its
port specifications.
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Fig. 6. Input/output ports for typical microcontrollers
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4.9 Advanced features

In this section, we describe features that are designed for advanced appli-
cations. These features are not incorporated in basic, limited feature micro-
controllers. However, due to the increasing number of applications benefiting
from the advanced features, more and more microcontrollers are equipped
with advanced features, some of which we discuss in this section.

Distributed processing

In this section, we present the capabilities of microcontrollers to connect to
and communicate with multiple independent, distributed microcontrollers in
a network. Such networks offer enormous advantages over an isolated system
such as the capacity to share resources and data. In the microcontroller com-
munity, there are two different types of networks: Controller Area Network
(CAN) [14] and a network based on the Byte Data Link Controller (BDLC)
[15] that uses the Society of Automotive Engineers (SAE) J1850 protocol.

Both network architectures and protocols originated from the automotive
industry during the mid-1980’s when multiple microcontrollers were connected
together to enhance automobile performance. Today, the two network archi-
tectures and protocols are found in audio systems, home theaters, communi-
cation systems, military systems, and some home appliances in addition to the
car industry. We briefly point out the two methods and refer the interested
reader to the reference section of this chapter.

The latest CAN protocol used in the CAN network has two different parts:
part A and part B. Part A is made up of the Object Layer, Transfer Layer, and
Physical Layer of Open Systems Interconnection (OSI) Reference Model. The
CAN protocol part B consists of the Data Link Layer and the Physical Layer.
The strength of the CAN protocol is the absence of originating or destination
addresses for each message. Instead, an identifier is embedded in a message
and each controller in the network is responsible for determining the receipt
of messages by deciphering the headers of the messages. The advantages of
such a scheme are (1) one can add a controller to a network without stopping
the operation, and (2) the network allows multi-casting capabilities.

A BDLC-based network is useful for serial data communications at low
speed, i.e., less than or equal to 125 kbps. It uses a variable pulse width bit
format, noise filters, collision detection mechanisms, and cyclical redundancy
checks to accurately transfer messages in a network. Over the years, both
the SAE J1850 protocol and the CAN protocol have competed to dominate
controller area networks. Currently, due to its speed and flexibility, the CAN
protocol is gaining more popularity among industry users, poised to control
the entire field of controller area network applications.
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Pulse width modulation

Pulse width modulation is a method of precisely adjusting the effective voltage
provided to an external component, as illustrated in Fig. 7. This is a common
method of controlling the speed of a DC motor. For example, if we would
like to control the speed of a motor with a required VDC supply voltage, we
can send a signal of different duty cycles to the motor to precisely control its
speed. The effective voltage delivered to the motor will be

Veff = (V DC)(duty cycle).

Using this technique we can linearly adjust the speed of the motor from
0 to VDC. It should be noted that a microcontroller does not have sufficient
voltage or current capability to drive a motor directly. An interface device
must be used between the microcontroller and the motor. Reference Barrett
and Pack [2] for a full treatment of this topic.
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Fig. 7. Pulse width modulation

Add-on features

As mentioned earlier in this chapter, in many applications, the resources on
a single chip microcontroller are not sufficient, requiring the use of external
devices. We present a few such sample devices next.
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Digital-to-analog converter

Many microcontrollers have embedded ADCs which are used to bring in analog
signals for signal processing.4 The digital-to-analog converters (DACs) become
important once digital signals have been processed to generate analog signals
for external devices. DACs are interfaced with microcontrollers in a number
of different ways. The most prominent method used is through the serial port
of a microcontroller. In particular, a microcontroller works as the master and,
through a serial interface, controls and sends the digital signals to a DAC.
Using this technique, multiple DACs may be interfaced to a microcontroller.

Real-time clock

In some microcontroller-based applications, external real-time clocks are con-
nected to microcontrollers to govern the activities of the controllers. The real-
time clock features also allow the microprocessor to easily keep track of events
in standard clock time of hours, minutes, and seconds.

Liquid crystal display (LCD) and seven segment light emitting diode (LED)
interfaces

To display the status of an internal microcontroller state, LCDs are commonly
used. These LCDs contain their own resident microcontroller that controls the
timing and display functions. Again, the system microcontrollers work in a
master mode while the microcontrollers in LCDs run in a slave mode.

Another common add-on device for display purposes is the seven segment
display unit. These units are connected to a parallel port of a microcontroller
that sends explicit signals to turn on a set of LEDs through a set of buffers.
Instead of burdening a microcontroller to find the set of LEDs that correspond
to messages, a decoder chip can be used to turn on appropriate LEDs.

5 Microcontroller Selection

How do you select a specific microcontroller for an application? To get started
you should develop an interface diagram which shows all input and output
components that will be connected to the microcontroller for a specific appli-
cation. The diagram should clearly account for all connections made to the
microcontroller. As part of this exercise you should also decide which specific
microcontroller systems are required by the specific application. This will al-
low you to choose the microcontroller with the features you need. We will
provide an example of the interface diagram later in the chapter.

Here is a summary of questions you should answer to aid in selecting a
specific microcontroller:

4Usually some sort of signal conditioning is done before the analog signal is sent
to an ADC.
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• Which specific microcontroller systems are required by the application?
• What is the time resolution required by the overall system? This will help

determine an appropriate operating frequency for the processor.
• What size of numerical argument will be processed by the microcontroller?

This will help you decide between a 4-bit, 8-bit, or 16-bit processor.
• How many digital input, digital output, analog input, and analog output

channels are required by the specific application?

5.1 Availability — Who manufactures what?

Microcontrollers are produced by a wide variety of international manufactur-
ers. Here is a partial list (in alphabetical order): Advanced Micro Devices, At-
mel, Dallas Semiconductor, EM Microelectronic-Marin SA, Intel, Microchip,
Motorola, National Semiconductor, Parallax, and Zilog. We will not attempt
to describe the microcontroller product lines available from these manufac-
turers. For complete information on a specific product line we recommend
that you visit the website for each manufacturer. You will find a plethora of
up-to-date technical data, applications notes, and other helpful information.
Here we describe how to match a specific processor to a specific application.

6 System Development

In this section, we describe some key issues associated with system design.
The key for good system design is based on structured design methods. Sim-
ply put, structured design implies that the task of creating an embedded
system is systemically divided into organized groups of small, minimal tasks.
To aid such efforts, the design engineering community developed “divide-and-
conquer” techniques such as structure charts, activity diagrams, and top-down
design/bottom-up implementation methods.

These techniques are also referred to as functional decomposition, struc-
tured design, structured programming, and stepwise refinement. By break-
ing a big project into small pieces, these techniques provide designers with
a methodical design approach to convert a number of system requirements
into specific implementation plans to meet these requirements. By adhering
to structured design techniques, one can increase the likelihood of creating
projects that are reliable, flexible, and easy to maintain.

Similar to a flowchart, the structure chart is a graphical description of
all subsystems using hierarchical modules and arrows that describe the re-
lationships among the modules. The structure chart is used to illustrate the
overall components of an embedded system. An activity diagram functions as
a flowchart when we use the Unified Modeling Language (UML). The activity
diagram provides an overall view of program flow. Fig. 8 shows an overall
structured design process using an activity diagram.
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Analyze problem

Develop requirements
and specifications

Design solution
to meet requirements

and specifications

Implement solution
(will involve both

hardware and software)

Test to verify
solutions meet requirements 

and specifications

Place system in
operation

Maintain system
via hardware and software
modifications and updates 

Fig. 8. The structured design process (adapted from the work of [2])
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There are three different approaches to develop an embedded control sys-
tem. The first approach is called the top-down implementation technique. To
use the top-down implementation technique, the top module of a system is im-
plemented first while functions of all the low level modules are simulated. Once
the top module is implemented successfully, each module is implemented from
the top to bottom until all modules are implemented. The second approach,
called the bottom-up implementation technique, uses the opposite direction
for system implementation. For the second approach, first all modules in the
lowest level are implemented individually. Once successful, the modules on
the second lowest level are implemented. The process continues until the top
level module is implemented.

The final approach is a hybrid of the previous two. In this approach, mod-
ules on the top levels and the bottom levels are simultaneously developed and
completed. The complete system implementation is done as modules from the
top and the bottom meet in the middle of a structure chart.

As the overall system is implemented using one of the three approaches
described above, one of the crucial aspects of structured system development
is that each module must satisfy the module specifications. This portion of
system development includes testing, debugging, and verification. In all cases,
an integration and test plan should be made as a part of the overall project
development plan.

In summary, the steps involved in system development are (1) conversion
of requirements to system specifications, (2) partitioning of the entire system
into hierarchical modules,5 (3) display of the relationships among the modules
using a structure chart and program flow using an activity diagram, (4) sub-
system development, (5) subsystem testing, and (6) integration of subsystems
and testing.

7 Example System: Automated Home Control System

In this section we will examine an automated home control system. The system
will control the environmental, security, safety, and health aspects of a generic
home. Our generic home is shown in Fig. 9. Our generic home has three levels.
The first level contains the living room, kitchen, and dining room. The second
level has four bedrooms. The last level is the finished basement area. It has
a utility room equipped with a water heater and an environmental system to
heat and cool the air within the entire home. The basement area also contains
a finished recreation area for playing ping pong, billiards, or watching videos.
The home also has a two-car garage.

The home is on a small parcel of land that is landscaped with shrubs and
trees, as illustrated in Fig. 9. A privacy fence surrounds the backyard. The

5Each module represents a subtask of the system. The hierarchical display of
modules illustrates the relationships between modules.
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lawn is equipped with a water sprinkling system. A “*” indicates the location
of a sprinkler head on the lawn. An “s” indicates the location of a moisture
sensor on the lawn.

Overall, the microcontroller system will monitor multiple channels of data,
assimilate the data via a user-developed control algorithm, and then assert
different activities. Our control system could be rendered with a single pro-
cessor or a distributed system of processors configured in a CAN. We will
investigate a single processor solution.

Here are the different desired system features:

Maintenance. The control system will be equipped with sensors to measure
the moisture content of the soil. When the soil sensors detect a dry lawn
condition as specified by the homeowner, a multi-head sprinkler system
will be activated to water the lawn, trees, and shrubs. Twenty one sprin-
kler heads (*) are required to adequately cover the lawn. The lawn is
divided into three sprinkling zones. Each zone is equipped with six sprin-
kler heads. A separate 24 VAC control signal is required to activate the
pump associated with a sprinkling zone. Twenty one sensors are required
to monitor ground moisture. These sensors provide an analog output volt-
age signal from 0 to 5 VDC to indicate the moisture content of the ground
from one extreme (arid: 0 V) to another (saturated: 5 V).

Environmental. The environmental system consists of a combination heat-
ing/cooling system to maintain different portions of the home at desired
temperatures. Each of the three levels of the home contains four rooms.
Each room contains a single sensor to monitor room temperature. The
sensor provides an analog output voltage from 0 VDC (0 degree Fahren-
heit) to 5 VDC (100 degrees Fahrenheit). The ducting system to deliver
the conditioned air to each room is equipped with a damper control to
adjust airflow to a specific room. Each of the twelve damper controls re-
quires an analog signal from 0 VDC (damper closed) to 5 VDC (damper
fully open).

Security. The home has a total of 24 doors and windows. Each of these
is equipped with a simple magnetic reed switch to indicate if the item is
open (logic “1”) or closed (logic “0”). If the home is equipped with a single
audible alarm, only a single digital output signal is required to activate a
breach of security alarm for the entire home—monitor windows, outdoor
zone security, motion sensors, video cameras, pet monitor.

Safety. The safety system consists of a series of smoke and carbon monoxide
sensors placed throughout the home. Each level of the home is equipped
with four fire alarms. These alarms provide a logic high output to indicate
the presence of an alarm condition within a specific room. When an alarm
condition is detected, a single home-wide fire alarm is activated. This
home alarm requires a single logic high signal. Furthermore, each room
is equipped with a water sprinkler system. The sprinklers are activated
with a single logic high signal. The basement utility room is equipped
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with a carbon monoxide (CO) detector. This detector is equipped with an
analog sensor that provides a 0 VDC signal for no CO present to 5 VDC
for harmful CO levels present. As the CO level approaches a harmful
level a ventilation fan is activated in the utility room and a CO alarm is
activated home-wide. Both require a single digital signal.

Communications. The communications interface provides a link between
the microcontroller and outside agencies (police, fire department, etc.)
via a telephone dial-up system. Telephone-compatible dual tone-multi-
frequency (DTMF) tones are generated using a pulse width modulation
system. The DTMF tones are the audible tones you hear when you depress
telephone pushbuttons.

Central processing. The purpose of the CPU is to assimilate the collected
data, make decisions via the algorithm coded by the user, and execute
activities based on these decisions.

Interface. The homeowner will be able to interact with the control system
via a 16-position keypad and an LCD. The keypad requires an eight-bit
digital port interface while the LCD requires an eight-bit digital port and
two additional digital data control lines. We assume that the user has
options to activate different subsystems with the help of the keypad and
the LCD. The interface allows the user to configure the home control
system.

Backup power. Due to the critical nature of the control system, backup
power will be provided by a standard off-the-shelf uninterruptible power
supply (UPS).

7.1 Hardware interface diagram

The automated home control system may appear a bit overwhelming. We
now provide some development tools to render a design description and list
of requirements into a working prototype. As a start we have developed a
hardware interface diagram, shown in Fig. 10. It illustrates each component
of the home control system interface to the microcontroller. This is a good first
step in choosing a specific microcontroller for the application. The hardware
interface diagram clearly shows how many input and output connections are
required for the specific application and whether they are analog or digital
in nature. The diagram also illustrates any special microcontroller systems
required by the application.

After constructing the diagram, you may not find a specific microcontroller
to meet your needs. For example, the home control system requires digital in-
puts (44), digital outputs (28), analog inputs (31), and analog outputs (12).
With this number of inputs and outputs, additional external circuitry will be
required to multiplex the inputs into the limited number of pins on the micro-
controller. Also, specially configured DACs that interface to the synchronous
communication system may be required to provide multiple DAC channels.
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7.2 System design

In this section, we design our home control system using activity diagrams.
Fig. 11 and 12 show the corresponding diagrams for the main program and
supporting interrupt service routines. We can implement the software based on
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User Input
Complete ?
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Sensors

Adjust?

Adjust
Damper

Yes

No

Check Moisture
Sensors

Dry?
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Turn On
Garden Sprinkler

Time Delay

Turn Off
Garden Sprinkler

Time Delay

No

Main Program

Fig. 11. Software design of the home control system main program
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polling techniques or interrupt-based methods. We chose a hybrid approach
where non-critical tasks (indoor temperature and watering the garden) are
polled and the critical tasks (responding to high CO levels, a high smoke
level, and a security breach) are driven by interrupts.

Security Sensor
Interrupt Service Routine

CO Sensor Interrupt
Service Routine

Smoke Sensor Interrupt
Service Routine

Turn On
Security Alarm

Call Police

Wait For
Reset

Turn On
CO Vent Fan

Turn On
CO Alarm

Wait For Reset 

Turn on
Fire Alarm

Call Fire
Department

Turn On
Indoor Sprinklers

Wait For
Reset

Fig. 12. Software design of the home control system supporting interrupt service
routines

After initial configuration of the system, the polling portion of the software
starts. We put the indoor temperature control at a higher priority than the
watering of the garden. If an interrupt occurs, indicating that the system must
service a task immediately, the system halts the current task and executes one
of the three interrupt service routines selected. The time delay module shown
in the polling portion of the software determines the time duration of dampers
or garden sprinklers being turned on. The time duration is programmed during
the initial configuration by a user.

To respond to a situation when more than one interrupt occurs, the in-
terrupt priority should be programmed. Once an interrupt occurs based on
sensor values, appropriate actions (turn on a fire alarm, a security alarm, a CO
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alarm, etc.) are executed and the system waits for an operator to intervene.
Once an interrupt occurs, the operator must restart the entire system.

Now that the activity diagrams and the hardware diagram are complete,
designers can use the top-down or bottom-up approach to implement the
system using a selected microcontroller. For implementation issues, we refer
readers to the references section.
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1 Introduction

In this article we explore systems on programmable chips (SOPCs), that is,
the concept of designing and implementing entire digital systems (processor,
memory, and I/O, plus special functions and software) on the desktop, using
inexpensive programmable chips and freely available tools. Before embarking
on an SOPC test design, we first review the characteristics of the two main
lines of programmable devices, field programmable gate arrays (FPGAs) and
complex programmable logic devices (CPLDs), in the context of their relative
advantages for different types of SOPC designs. We then give a brief overview
of the primary enabling force for SOPC design, the design framework.

SOPC design encompasses the following elements:

• Device: usually classified under the major heading FPGA or CPLD, which
in the pure forms can be thought of as arrays of logic elements with config-
urable interconnects, but which may also include devices with hardwired
hardware functions such as central processing units (CPUs) or random
access memory (RAM);

• Tools: an integrated design environment (IDE) that organizes the elements
of a design; a set of point-tools that process different aspects of a design;

• Intellectual property (IP): component designs that will be interconnected
to form the system design and may include such things as a CPU, numer-
ical transform unit, memory, I/O devices, and also software such as op-
erating systems and specialized algorithms. Such IP, whether open source
or proprietary, is usually considered as black-box components to be inte-
grated into the system design;

• Software: application programs running on the SOPC CPU;
• Platform: a circuit board, power supply, buffer chips, and whatever else is

required to connect the SOPC to its environment.
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2 Chips for SOPC Design

The selection of a programmable device for SOPC applications sometimes de-
pends on external factors (e.g., tools, available IP, and platforms), but there
are a number of inherent characteristics of the devices themselves which make
them suitable or unsuitable for particular applications. Some of these charac-
teristics flow from basic architectural features, while others reflect the intent
of the device manufacturers to optimize their products for particular segments
of the market.

The primary choice to be made in SOPC design is between FPGA and
CPLD. Dividing the choice into just these two categories oversimplifies things
a bit, as there are other devices such as antifuse FPGAs1 which may be used
for SOPC designs. Furthermore, a fair amount of architectural convergence
has occurred between FPGA and CPLD. Thus, the clean division of FPGA
and CPLD characteristics present in the early history of the device types has
been replaced by mixtures of features in which an FPGA or CPLD flavor
may dominate but a significant amount of silicon is used to add features of
the competing type. Vendors of FPGA and CPLD devices suitable for SOPC
design have narrowed down to the following short list: Actel Corp. [2], Altera
Corp. [4], Lattice Semiconductor Corp. [5], QuickLogic Corp. [9], and Xilinx
Inc. [18].

Bearing in mind the caveat on the ongoing convergence of FPGA and
CPLD types, we will now describe the dimensions on which FPGAs and
CPLDs are generally thought to differ.

2.1 FPGA

Fig. 12 shows a section of the block diagram for the Xilinx Inc. Spartan-IIE
series of FPGAs [16]. Visible in the figure are:

• Input/output blocks (IOBs): latching, buffering, and level-translation for
signals entering or leaving the chip;

• Configurable logic blocks (CLBs): fundamental building blocks for logic
designs;

• Delay-locked loops (DLLs): clock scaling and phase control;
• Block RAMs: configurable (width and depth) dual port RAMs;
• Programmable routing: interconnect for all of the above.

1Antifuse or other one-time programmable (OTP) technologies are not consid-
ered here. OTP devices are available in high densities and speeds appropriate for
SOPC, and may have distinct advantages in military and space applications requir-
ing increased device hardening and reliability, but their lack of reprogrammability
makes them an expensive choice for initial development of large scale SOPCs.

2Fig.1, Fig.2, and Fig.4 are based on or adapted from figures and text owned by
Xilinx, Inc., courtesy of Xilinx, Inc. c©Xilinx, Inc. 1990-2005. All rights reserved.
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Fig. 1. Xilinx Spartan-IIE FPGA block diagram fragment with CLBs

The high-level view of an FPGA is that of an array of small logic blocks
embedded in a grid of horizontal and vertical interconnection paths. Almost
every hardware element in an FPGA has associated with it one or more bits
of configuration RAM which is loaded when the chip is powered up or reset.
Collectively, these bits store all aspects of the FPGA’s operation; specifically,
what logic function each element performs and how the elements are inter-
connected.

Individual logic blocks in the FPGA will contain several small (16 or so
bits) RAM-based lookup tables (LUTs) which can provide any general logic
function (4-in/1-out for a 16-bit LUT). The inputs of each LUT are connected
through a RAM-configured connection array to local tap points on the inter-
connect grid. The LUT outputs are typically connected first through a RAM-
configured arithmetic transform block which supports specialized functions
such as “carry” for use in counters or adders, then through or around a RAM-
configured flip-flop storage device which provides edge- or level-triggered stor-
age of the LUT outputs or of the arithmetic transform, and finally, through
a selection multiplexer to tap points on the interconnection grid.

The interconnection grid of the FPGA consists of a hierarchy of horizontal
and vertical interconnects of different spans and connectivity. RAM-configured
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connection arrays lying at the crosspoints of this grid provide the means for
densely connecting signals to or from an associated local logic block and its
immediately adjacent neighbors, using single-length connection paths. A sec-
ond level of connection at the grid crosspoints provides for fanning signals
out to a larger neighborhood, using connection paths originating at the con-
nection array and continuing (with tap points) through several neighboring
connection arrays to the wider neighborhood. The ultimate level of connection
at the grid crosspoints provides the capability of driving or receiving signals
from global lines which span the entire width and height of the chip.

Clock signals in FPGAs follow special paths paralleling the interconnec-
tion grid. They originate at a small number of specialized clock-input pins of
the device, are extensively buffered for driving large fan-outs with minimum
propagation delays, and have configurable connections to the storage device
clocks of every logic cell.

The external interfaces of the FPGA usually consist of a ring of I/O cells at
the periphery of the interconnection grid. I/O cells resemble the FPGA’s logic
cells but without the LUT logic. In addition to the I/O cell’s connections to
the FPGA’s interconnection grid, there will be a collection of buffers with pro-
grammable pullups, pulldowns, keepers, level shifters, delays, and protection
devices, etc., for making the I/O characteristics of the external pins com-
patible with a wide variety of different signaling standards and application
requirements.

2.2 CPLD

Fig. 2 shows the component hierarchy of Lattice Semiconductor Corporation’s
5000MX series of CPLDs [6]. Visible in the figure are:

• Chip-level structure
– Global routing pool (GRP): global signal connection matrix;
– Output sharing array (OSA): augments signal connection for very wide-

input logic functions;
– Multifunction block (MFB): multipurpose logic/RAM array;
– System input/output blocks (sysIO): latching, buffering, and level-

translation for signals entering or leaving the chip;
– Phase-locked loop blocks (sysClock): clock scaling and phase control;

• Multifunction block (MFB) level—SuperWIDE Logic Mode (shown)
– AND-gate array: 164, 68-input AND-gates;
– OR-gate array: 64, 5-input (expandable) OR-gates at the AND-gate

array outputs;
– Macrocell array: 32 flip-flops and signal steering and conditioning logic

at the OR-gate array output;
– Alternative function modes (not shown): Single or dual-port RAM,

first-in first-out (FIFO), content addressable memory (CAM).
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• Macrocell slice—horizontal section through MFB in SuperWIDE Logic
Mode
– AND-gates: 5, 68-input AND-gates;
– OR-gates: 2, 5-input OR-gates with expansion and carry inputs and

outputs;
– Flip-flop: D-flip-flop with preset, reset, clock enable, and input and

output steering logic.
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The high-level view of a CPLD is that of a very large crossbar switch
array (the GRP) with logic cells around the perimeter. The connection paths
of the crossbar and the configuration of each logic cell are stored in electrically
erasable programmable read-only memory (EEPROM) or flash memory cells
when the device is programmed and are immediately available at power-on.

Individual logic cells of the CPLD typically contain a relatively small num-
ber of very large sum-of-products arrays which can receive their inputs from
most or all of the crossbar outputs, that is, from most of the rest of the chip.
At the outputs of the logic cell’s product array are several stages of arithmetic
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or logic transform and storage which resemble those following the LUT in an
FPGA cell. The cell’s outputs are steered through its output stages in a fash-
ion similar to that of the FPGA cell, and the signal which finally emerges is
sent back into the crossbar array and optionally to the device outputs.

CPLDs follow the same policies for clocks and I/Os that FPGAs do, that
is, their clocks are treated as special signals and are carried on dedicated and
highly buffered paths to the individual logic cells. CPLD I/O cells have spe-
cialized configurable pin drivers and receivers for interfacing to a variety of
external signaling standards. One noticeable difference between CPLDs and
FPGAs is that CPLDs usually employ an additional routing array between
their internal logic cells and the output cells. This may arise from the CPLD’s
application advantage in the area of wide logic functions and reflect the need
for an enhanced ability to collect the signals from a broader set of pins, or it
may just be that the CPLD manufacturers are already very good at imple-
menting crossbar switches.

2.3 Choosing a device type for SOPC design

The underlying architectural differences between FPGAs and CPLDs and our
own priorities or those of the application may guide our choice of the most
appropriate device. Some factors we should consider when comparing devices
from different vendors are:

• Fine-grained versus wide fan-in;
• Onboard RAM;
• Special functions;
• Overall implementation cost;
• Startup latency;
• Power consumption;
• Design security;
• Dynamic reconfigurability;
• Architectural enhancements.

Fine-grained versus wide fan-in

Because FPGAs have a relatively large number of low fan-in3 combinatorial
logic and storage components distributed over a two-dimensional field which
is rich in local interconnects, fine-grained design elements such as register ar-
rays and counters are easily and efficiently implemented in FPGAs. However,
whenever high fan-in logic such as an address decoder is to be implemented
in an FPGA, it must be constructed from a “tree” of smaller structures. This
both consumes additional resources to connect the tree structure and adds
layers of propagation delay to the logic function. Conversely, the much higher

3The number of inputs to a logic device.
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fan-in capability for the CPLD cell will usually eliminate the need to use more
than one logic cell or require more than one layer of propagation delay in a
decoder design, but the CPLD’s relatively low number of storage elements
will be quickly exhausted by a register-intensive design.

The makers of FPGAs and CPLDs attempt to reduce the penalties in-
herent in particular features of their respective architectures in their newer
products by adding convergence features, such as the following:

• FPGA: richer sets of global and intermediate distance signal paths; special-
ized helper functions (carry, etc.) which better combine logic cell outputs
in common high fan-in situations; specialized routing arrays around the
routing array perimeter, for more flexible I/O pin placement.

• CPLD: increasing the ratio of logic and storage cells to crossbar switch
area by partitioning the device into crossbar subarrays; connecting cross-
bar subarrays with higher-level crossbar arrays; adding specialized helper
functions and routing arrays for connecting I/O pins.

Overall implementation cost

For reasons of history and technology, FPGAs generally, but not always,4

require an external configuration subsystem which provides the configuration
bits to be loaded into the FPGA’s RAM configuration bits on power-up, while
CPLDs typically hold their configurations in on-chip EEPROM cells which
are immediately active when the chip powers up. The cost of the SOPC must
include the cost of configuration. In the case of the CPLD this cost is zero, but
in the case of a modern multimillion gate-equivalent FPGA a large and fairly
expensive configuration ROM will be required. However, because SOPCs are
rarely standalone despite their name, opportunities may exist for lower-cost
configuration methods for the FPGA, such as loading configuration data over
a network or from disk.

Onboard RAM

FPGA device technology traditionally confers a built-in advantage over CPLDs
in implementing medium-size blocks of onboard RAM. This is a distinct ben-
efit for most SOPC designs in terms of necessity (for local storage), speed (of
onboard RAM versus external RAM), and cost (for lowered parts counts).

Special functions

Most vendors of devices suitable for SOPC designs have added special-function
components to their high-end devices. In some cases the added components

4Actel Corporation’s ProASIC devices are exceptions here, but Actel’s architec-
ture, although termed FPGA, is also quite different from the classical CPLD or
FPGA architectures.
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have wide applicability, for example, CPUs and arithmetic functions. In other
cases the vendor is pursuing a specific market such as telecom with extremely
specialized devices (e.g. ATM switches) which are not likely to be useful in
unrelated design areas.

Startup latency

The time required by the FPGA for loading its configuration may be a sub-
stantial fraction of a second, while a CPLD typically becomes operational at
power-on. This is another disadvantage of the FPGA’s volatility. This distinc-
tion may be unimportant, as in the case where the SOPC is starting up in
parallel with other elements in a larger system and is not the slowest starter
in the group. In certain cases, however, such as when the SOPC provides the
startup conditions for the larger system and is thus on the startup critical
path, startup latency may become an issue. In some cases such as ultra low-
power systems, where chip power is switched to extend battery life, startup
latency may rule out the use of an FPGA entirely.

Power consumption

All other things being equal, the power consumption of the configuration bit
(an EEPROM cell) in a CPLD will be lower than the power consumption
of the configuration bit (a static RAM cell) of an FPGA. However, since
there is almost nothing else equal, either in terms of the device architectures
or the SOPC design’s implementation in them, the power consumption of
a particular chip can at best only be roughly approximated from the basic
information on the chip datasheet. The most accurate result will be obtainable
by fully implementing the design on both chip types and measuring power
consumption on the bench. A less expensive approach will be to simulate
the designs as implemented on either chip type to obtain power consumption
estimates from the design tools.

Design security

Security issues encompass the prevention of design replication by simple copy-
ing, the protection of trade secrets and proprietary hardware designs in the
chip from reverse engineering, and the protection of data traversing the chip
when employed to implement encryption algorithms and the like.

The fact that the FPGA’s configuration is loaded from an external de-
vice means that the device configuration is exposed to anyone with simple
tools such as logic analyzers, and that the design may be copied simply by
writing the captured bit stream to another device. A CPLD’s configuration
may also be read; however, this feature can be turned off when the CPLD is
programmed and cannot be reversed unless the entire device is erased, thus
protecting the CPLD configuration’s security.
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FPGA manufacturers address the security issue in several ways. First, they
provide security against reverse engineering through obscurity—the location,
arrangement, and functions of configuration bits in FPGA devices are usually
proprietary and very difficult to deduce by casual data inspection and explo-
ration. Second, FPGAs may include integral decryption engines which allow
the configuration bit stream to be stored in the external device in encrypted
form.

Dynamic reconfigurability

The fact that a CPLD’s configuration is stored in EEPROM cells means that
erasing and reprogramming its configuration bits will typically take a rela-
tively long time (milliseconds), whereas the RAM configuration bits in an
FPGA can be rewritten in nanoseconds. Furthermore, the CPLD’s erasure is
typically a bulk process determined by device economics and occurs over the
entire chip at once. In contrast, the FPGA’s design is not greatly changed if a
means is provided to allow individual elements in the chip to be reprogrammed
while preserving the configuration of the remainder of the chip. Device man-
ufacturers have added reconfigurability to their chips in several ways. One
method is to associate several stored bits with each configuration point, and
select which is to control the configuration by an external signal to select
different sets of configuration bits. This method is applicable to both CPLDs
and FPGAs and may be attractive for certain specialized applications, such
as those which switch between several hardware algorithms nearly instanta-
neously, but has the defect of increasing the device cost almost linearly with
the degree of reconfigurability. A different approach, which favors FPGAs
over CPLDs, is to allow reprogramming of subareas of the device, and to map
SOPC subsystem elements which must be changed entirely within such sub-
areas. Reconfiguration can then be relatively fast due to the smaller portion
of the design which must be reloaded, and the mechanism for loading the new
configuration is the FPGA’s existing configuration support, which has already
been paid for.

An application for the dynamic reconfigurability of SOPCs which does not
involve the SOPC’s functionality but is a useful aid during debug is the ability
to insert (virtual) probes into the SOPC hardware. Traditional debugging of
board-level digital systems involves observing intermodule signals with logic
analyzers and oscilloscopes. SOPC designers may attempt to substitute simu-
lation for much of this, but often the device does not do what the simulation
says it should, and it becomes necessary to investigate intermodule signals
on-chip. This can be done quickly and flexibly in the design environment by
dedicating a few external pins as probe pins and connecting them to conven-
tional instruments, and then connecting various on-chip signals to the probe
pins by reconfiguring the device.
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Architectural enhancements

Several trends dominate in new generations of products from traditional man-
ufacturers of FPGAs and CPLDs. The first is the convergence of the logic
architectures of the two main device types. As mentioned earlier, FPGAs are
adding special functions and connections to address their deficiencies for fan-in
intensive problems, while CPLDs are becoming more fine-grained to address
their deficiencies for register-intensive problems.

3 Tools for SOPC Design

Since it encompasses every aspect—from concept to implementation—of a
system’s design, SOPC design requires a large variety of disparate tools. Mas-
tering the tool chain for SOPC design is often the most difficult aspect of
SOPC development.

Some problems of SOPC design tools are listed as follows.

• Much of the information about the essential component of SOPC design,
the CPLD or FPGA, is secret and proprietary to the device’s manufac-
turer.

• Many of the algorithms behind a tool’s operation are in a state of theo-
retical development and academic research.

• Many of the best tools for particular aspects of SOPC design belong to
third parties, were developed for other tasks, and have idiosyncratic user
interfaces and non-standard or proprietary data interfaces.

The recognition of the problems inherent in mastering this tool chain has led
to the development of design frameworks for SOPC design. The primary func-
tions of a typical design framework are design input, organization, simulation,
analysis, translation (to configuration files), and programming of the FPGA
or CPLD.

3.1 Design framework approaches

Two major approaches arose in the early days of presenting a design in a de-
sign framework: 1) the design-structure presentation and 2) the design-process
presentation. The first approach solved the problem that a design had a large
number of components which were intricately interrelated in a hierarchy, by
presenting the design as a tree structure that mimicked the component hi-
erarchy. The second approach solved the problem that a design had to go
through a complex series of steps between concept and device programming,
by presenting the design by its location in the process flowchart.
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3.2 Chip-vendor supplied design frameworks

The current state of design frameworks is exemplified by Xilinx Inc.’s In-
tegrated Synthesis Environment (ISE) [17], which currently has the largest
following in the electronic design automation (EDA) market for FPGAs [24].
Xilinx’s ISE provides a typical contemporary FPGA design framework which
recognizes that neither the structure nor the process view alone is adequate
and therefore presents both. A version of the ISE provided by Xilinx in their
free “Webpack” design environment will be used in the SOPC design example
that follows.

Other FPGA and CPLD vendors have their own proprietary approaches
to design frameworks—Altera Corp. has their Quartus II [3]; Lattice Semi-
conductor Corp. has ispLEVER [7]. Each recognizes in different ways that
complex designs must be viewed simultaneously from a number of different
perspectives. Since each realizes that requirement in a distinct way, the issue
of skills and design portability is introduced—a vendor’s design environment
is tightly bound to the vendor’s chips. It is impossible to change one without
changing the other.

3.3 Third-party design frameworks

Another approach, which may alleviate the portability problem, and which is
the only approach available for vendors not having proprietary design frame-
works, is to use a general-purpose third-party design framework such as those
available from Cadence Design Systems [27], Mentor Graphics Corp. [8], or
Synplicity Inc. [13]. A possible added benefit to this approach is that these
vendors’ tools often can provide a path to the development of application-
specific ICs (ASICs); hence, designs may be migrated from FPGA to ASIC as
considerations of volume, speed, and cost change.

4 Design Framework Example: Xilinx’s Integrated
Synthesis Environment (ISE)

Fig. 3 shows a screen shot (annotations added) of the SOPC example to be
developed subsequently, taken from the Project Navigator (PN) interface of
Xilinx’s Webpack 6.2i [17]. PN is the main interface into all of the functions
of the ISE. The interface is divided into four “views” of a project: “Sources”
(upper left), “Processes” (middle left), “Console (dialog)” (bottom), and “Re-
ports/Edit” (upper right). These different aspects of the project presentation
in the PN are described in the following paragraphs.

4.1 Sources window

Every element which is an explicit part of the design project will be linked to
it in the Sources window. This includes not only the components of logic de-
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Fig. 3. Xilinx ISE Project Navigator

sign (marked as “Design top”, “2nd-level modules” in the screen shot) but also
the identification of the target chip (“Chip”), testing procedures for the de-
sign (“System test”), constraints (“Design constraints”), and any supporting
documents associated with the design (“Design documents”). Tiny icons next
to each of the files in the Sources window indicate the source type (hardware
description language, schematic, user constraint, etc.)

The design hierarchy presented in the Sources window resembles the folder
view in most graphical file-system browsers. The top-level folder is the “Chip”
folder, under which all design, constraint, and test elements are attached, and
the “Documents” folder for items such as readme’s which are not directly
incorporated into the design.

The Chip folder’s tree-structured organization is provided automatically
by the ISE, which “understands” the relationships between everything stored
there and depicts those relationships in the subfolder tree. The primary type
of relationship depicted in the Chip folder is the hierarchy of modules of
the design. The ISE inspects each design source file to see if it contains the
definition of some module that has already been referenced in the design.
If so, it attaches the new module under the referring module. If a newly
added module references submodules that are already in the design, then
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those positions under the new module are populated as well; otherwise, they
are displayed as unfilled dependencies.

For single-chip designs there can only be one top-level design module under
the Chip folder, much as there can only be one main() function in a C program.
Under this top-level design module are to be found design constraints and
system-level tests in addition to the lower level design submodules.

Design constraints typically contain additional information for processes
that translate a design into a device configuration. Some constraints are ap-
plied directly, for example, configuration of external pins to an appropriate
signaling standard. Others are less direct, for example, constraints on de-
vice fitters which must evaluate and balance many competing trade-offs for
the speed, density, and power consumption of the fitted design. These can
be given rules and cost functions in the constraints to guide them toward a
design meeting overall goals.

System-level testing with simulation “test benches” is an important re-
quirement in SOPC design. Given SOPC system complexity, it’s a good idea
to test at every stage, from individual module design, through system integra-
tion, to the fitted device. These test benches are usually written in hardware
description languages (HDLs) such as Verilog [23] or VHDL [1] and provide
descriptions of signal waveforms that drive the (simulated device) inputs, or
monitors which observe and verify the outputs of a model of the (system or
component) unit under test (UUT). The test benches will either be for func-
tional testing , in which the logic of a module is exercised by waveform inputs
operating in “unit time”, or for post-route testing , where time-accurate mod-
els provided by the chip vendor for all of the actual components of the fitted
design within the FPGA or CPLD, including gate delays, storage setup- and
hold-time requirements, fan-out, and path delays, help in predicting whether
the design will work in the real world.

4.2 ISE Processes window

The content of the Processes window changes according to which design com-
ponent is highlighted in the Sources window. When a particular design element
is highlighted, the Processes window will display in a tree structure all of the
operations which the ISE can perform on that component. When these op-
erations are compilation functions, they are organized in the order in which
they must be performed, and marked with a small “spin” icon. For example, in
Fig. 3, schematic Stage2Step2.sch (“Design top”) is highlighted in the Sources
window, hence the Processes window shows the first two major steps (“Trans-
late” and “Map”) required to implement the Stage2Step2 design. Within each
major process step there may be a sequence of supporting processes that are
necessary to complete the primary step—these are shown attached below the
primary step in the tree structure and also marked with spin icons.

Other items attached in the Processes tree and marked with their own icons
are reports (links to detailed reports on the results of the current process) and
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optional services and utilities (which may be invoked to assist, improve, or
analyze the operation of the related processing step). When the item in the
process window is a link, selecting it will typically take the user out of the
ISE window and into a specialized design environment for doing something
such as creating constraints for the current component, generating schematic
symbols of it, generating test fixtures for it, or any other capability the ISE
provides for the component-type.

The current state of design compilation for the components processes is
marked by icons next to each process, with <nothing> indicating that a
process has not yet been run, “✔” indicating successful completion with no
warnings, “!” indicating completion with warnings, “X” indicating failure to
complete (errors) and “?” indicating “completed but stale” (design source has
changed).

4.3 ISE Console window

The ISE console window provides narrative from the design processes as they
operate. Most of the scripts that the ISE runs and messages that are emit-
ted by the various processes can be seen as a running display in the Console
window—watching it while a design is being processed can be quite informa-
tive. Occasionally, some message will flash by and trigger an insight into a
design’s characteristics or defects. When the processing of a design has fin-
ished or aborted, the “Warnings” or “Errors” tab will filter all of the process
dialog down to the important details.

4.4 ISE Reports/Edit window

This provides a viewer for the various reports generated in the Processes
window. It also becomes a very useful syntax-coloring editor for Verilog and
VHDL sources in the Sources window.

5 SOPC Test and Sample Design

To illustrate the current state of SOPC design on FPGAs using widely avail-
able tools and devices we used the Xilinx Webpack tools to implement a
small microprocessor system on a Xilinx 200K gate FPGA. A primary goal
of the investigation was to verify the ability of the Xilinx tools to integrate
non-proprietary IP components with different formats into a working whole.
Other goals were to evaluate the ease of combining the results of the logic
design tools with software design to achieve an integrated system develop-
ment environment, and to test our ability to do system-level testing in the
simulation environment.

The system to be constructed for the example consists of:
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• MC6801 8-bit microprocessor;
• 2 kbyte program/data memory;
• inter-IC (I2C) serial communications controller;
• asynchronous communications interface adapter (ACIA);
• 1-bit input and output ports.

The target application connects a light-emitting diode (LED) to a switch
using two microprocessor systems with a serial communications link between
them. One system polls the switch and communicates the switch state to the
other system, which turns the LED on or off accordingly. All components
except switch and LED are implemented in a single FPGA.

5.1 Design tools for the SOPC test

The Xilinx ISE Webpack version 6.2i used for the test case is a recent (2004)
version of Xilinx’s free integrated software environment for CPLD and FPGA
design downloaded from the Xilinx website [17] and installed on the test ma-
chine (Windows XP with 1.8 GHz CPU and 128 Mbytes of memory).

Webpack tools used in the project were as follows.

• ISE Project Navigator (PN): the main interface to the sources and tools
for a design. PN presents the design’s sources and their positions in the
project structure, as well as their processing options. It also provides access
to helper functions and resources.

• ISE Text Editor: a syntax-coloring text editor for Verilog, VHDL, and
ABEL hardware description languages.

• Engineering Capture System (ECS): schematic editor for logic design.
Linked to Xilinx component libraries and ISE processes.

• Xilinx Synthesis Technology (XST): compiles the FPGA programming
configuration from design source files.

• logic simulator (Modelsim): provides logic simulation and results presen-
tation for Webpack designs. The Modelsim XE simulator is not part of
the Webpack but is obtained by a free download from the Model Technol-
ogy division of Mentor Graphics (www.model.com). When installed it is
tightly integrated with the PN to provide simulation for FPGA designs.

• BitGen: converts the compiled FPGA design into the .bit file used for
programming the FPGA.

• iMPact: device programming interface; downloads the FPGA configuration
to the FPGA.

• data2mem.exe: command-line utility provided in the Webpack for convert-
ing file types.

Additional tools available in the Webpack but not used for this project are:

• Constraints Editor: allows timing constraint specification;
• Pinout and Area Constraints Editor (PACE): allows hand-editing of FPGA

pinout;
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• State Machine Editor (StateCAD): allows specifying sequential logic as
bubble diagrams;

• HDL Bencher: allows specifying test stimulus as waveforms;
• Floorplanner: allows hand-modification of component placement in the

placed design;
• FPGA Editor: allows hand-modification of routing in the routed design.

Other tools used in the project:

• Dunfield ASM01 assembler: part of a package of cross-assemblers for var-
ious microprocessor targets. Found in xasm220.zip and available as free-
ware from various sites on the web. Dunfield Development Services [25],
the originators, also have inexpensive updated versions of this product as
well as the well-regarded Micro/C cross-compiler.

• hex2mem.exe: homebrew conversion routine for translating (assembler out-
put) .hex files to .mem (Xilinx memory constraint) files.

• miscellaneous DOS command-line .bat scripts for converting assembler
outputs into Xilinx FPGA configuration information.

5.2 Information resources for the SOPC test

A rich source of information concerning the Xilinx Webpack ISE is available
at Xilinx’s support website [15]. This provides an exhaustive look at and
reference for the current ISE. Additionally, the ISE help menu provides access
to hundreds of documents installed with the Webpack and hundreds more
on Xilinx’s website. Somewhat more accessible tutorials may be found both
at Xilinx and at related vendors such as XESS Corp. (see, for example, [10]).
Finally, the Webpack ISE itself has more than thirty built-in tutorial examples
accessible from the file menu (File>Open Example. . . ).

5.3 Design components for the SOPC test

All IP used in the system design except that from the Xilinx Spartan-IIE
schematic symbol libraries was downloaded from www.opencores.org. The
OpenCores group’s mission statement is “to design and publish core designs
under a license for hardware modeled on the Lesser General Public License
(LGPL) for software”, and it has become one of the best locations on the web
for finding user-contributed designs. Design components for the project were
selected on the basis that a) a Wishbone bus interface or buswrapper existed
for them, and b) both Verilog and VHDL hardware description languages were
represented in the mix of components.

Design components from opencores.org which were used in the project:

• cpu01.vhd/wb cpu01.vhd: cpu01.vhd is a synthesizable VHDL model of
the Motorola 6801 CPU written by John Kent. wb cpu01 is the Wishbone
buswrapper for it, written by Michael L. Hasenfratz, Sr.
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• i2c master top.v: synthesizable Verilog model by Richard Herveille for the
I2C (inter-IC) serial communications protocol promoted by Philips Elec-
tronics and others. This design builds the Wishbone bus directly into the
top-level component in the design.

• miniuart.vhd/wb acia.vhd: miniuart.vhd is a synthesizable VHDL model
of a simple asynchronous serial communications interface written by
Ovidiu Lupas. wb acia.vhd is a Wishbone buswrapper for it, written by
Michael L. Hasenfratz, Sr.

Design components from Xilinx which were used in the project:

• RAMb4 s8: 512x8 block RAM schematic symbol from the Xilinx “mem” li-
brary for the Spartan-II FPGA series. Four of these were used to construct
the wb 4xRAMb4 s8.sch memory subsystem of the design.

• miscellaneous gates, decoders and multiplexers from the schematic symbol
libraries for Spartan-II.

5.4 Target hardware for the SOPC test

The target hardware for the design was the D2SB FPGA prototyping board
available from Digilent Inc. [12] for under $100. The D2SB board contains a
200K-gate Xilinx Spartan-IIE XC2S200E FPGA. All of the chip I/Os are
brought out to 0.1-inch-center 40 pin headers around the board’s periphery,
and the FPGA can be programmed directly from the PC through a JTAG
cable (∼$20 from Digilent), or indirectly through an (optional) on-board flash
ROM. Several compatible accessory cards plug directly into the board’s head-
ers and add memory, digital or analog interface, and probing.

5.5 The SOPC design implementation sequence

The design was developed in several stages due to the uncertainties attached
to the heterogeneous selection of components involved. The overarching phi-
losophy was to first confirm the realizability of each component in the Xilinx
FPGA, and then to integrate each component into the design in order of
expected difficulty and/or importance to the final design.

Design realizability

Realizability is an important consideration for the use of untested components.
Some problems which may arise are as follows.

• The HDL design may provide an accurate simulation of the desired ele-
ment but may not be synthesizable, e.g., it may contain elements which a
particular vendor’s tools cannot translate into the FPGA configuration.
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• Non-standard vendor-specific components that are not visible on initial
inspection may be included in the design at a lower level. These compo-
nents may not have direct correlates in the libraries for the target chip,
a situation which can usually be worked around with a “roll-your-own”
substitution, but at the cost of added design effort.

• The component may be too large for the intended FPGA target. This may
be due to the component’s natural complexity or to an inappropriate use
of the target device’s resources, for example, by casting memory into logic
design when the target FPGA contains special-purpose memory arrays in
addition to random logic.

For the first-stage test for component realizability we created separate designs
for each of the components. As we do not require a practical result in terms of
I/Os (as long as there are fewer I/Os than the chip permits), each component
is made the top level of its individual design in the ISE, and the ISE “Map”
and “Place & Route” processes are run. The .mrp (map report) and .par
(place and route report) for each design gave the results shown in Table 1.

Table 1. Xilinx fitter reports

wb cpu01 i2c master wb acia tot.available
#errors 0 0 0 n.a.
#warnings 3 0 0 n.a.
#slice flipflops 206(4%) 132(2%) 91(1%) 4704(100%)
#LUTs 1411(29%) 237(5%) 148(3%) 2532(100%)

The results indicate that each of the components will compile in the
Xilinx environment without many problems, and that chip size should eas-
ily be adequate for the design. Not including system memory, we should
expect that roughly 10% (∼4%+2%+1%) of the chip’s flip-flops and 40%
(∼29%+5%+3%) of its logic resources (4-input LUTs) will be used by the
system design.

5.6 System integration:

For the current design, many of the problems of system integration were as-
sumed to have been solved at the component selection stage through the use
of the Wishbone [22] standardized bus interface between components. Addi-
tionally, our desire was to maximize the efficient use of the Spartan-II FPGA’s
device resources through use of its special-purpose block RAM. Therefore, we
needed to establish early in the design cycle whether we would be able to do
the kind of program modification and testing that is important in the software
development phase of an embedded system design. Hence, our next develop-
ment priority was the test-integration of the Wishbone bus CPU with the
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Spartan-II block RAM (BRAM). This step required the simultaneous devel-
opment of our program-loading procedures, to prove that we could also meet
our software development goals.

CPU/memory integration

We chose the Webpack’s ECS schematic environment for the CPU-memory
component integration over an HDL-based approach, as it was anticipated
that the top level of the finished design would be in the form of a schematic,
e.g., after proving the CPU-memory subsystem, the overall system design
would be completed merely by adding the other components to it. Our pref-
erence for using schematics as the top level of the design stems in part from
the use of multiple source languages in the project—the schematic provides a
painless way to integrate different source types with the important bonus of
allowing non-specialists to understand the overall system architecture without
knowing the HDLs.

Our CPU-memory integration design is shown in Fig. 4, which was taken
from the ECS schematic drawing for the design.
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Fig. 4. SOPC CPU-memory design core

The device on the left in Fig. 4 is an automatically generated symbol
for the VHDL-specified CPU design tested earlier. The Webpack ISE can
generate schematic symbols for any component in the design hierarchy while
maintaining links to the component’s logic definition, thus providing a painless
path to the incorporation of almost anything (including other schematics) into
an overall design schematic. The ECS environment provides an editing facility
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for such symbols which allows the designer to reorganize bus locations, text,
or graphics on symbols to enhance their use in the design. This was used for
symbols in the schematic to clean up connection paths of some of the major
buses and control signals.

The memory device on the right in Fig. 4 is a symbol generated from a
lower-level schematic “wb 4xramb4 s8.sch” containing four instances of the
RAMB4 s8 512x8 byte BRAM component from the Xilinx component sym-
bol library. Additionally, the lower-level memory schematic contains a minor
amount of internal glue logic to translate the Wishbone bus interface to the
RAMB4 s8 control interface, and to route the data bus signals in and out of
the BRAM array.

Compilation of the above design was uneventful; however, the map report
surprisingly showed a decrease in the amount of LUT logic required for the
design. This caused some concern until it was noted that in the top-level design
many of the CPU interrupt inputs were disabled, causing any circuits attached
to them to be optimized out of the design, thus providing a net reduction in
logic. (The gate count, which does not differentiate between gates used for
logic and those used for memory, increases from around 10,000 for the CPU
alone to around 65,000 for the CPU plus memory.)

Memory initialization

The next critical step of CPU-memory integration was to test our ability to
install test software in the system memory. This proved to be the most difficult
phase of the entire design sequence.

An essential fact of the Spartan-II FPGA chip architecture is that all
of the storage elements of the FPGA (logic configuration, connection, and
memory data) are loaded from an external source on startup. We like to take
advantage of this fact by pre-placing the CPU’s program data in the FPGA’s
BRAMs at startup. Some advantages of this approach are: 1) lower system
parts count (versus a separate ROM memory for the microprocessor) and 2)
software test early in the system development cycle, using the the hardware
simulation environment.

Solving the BRAM startup configuration problem required understanding
the meaning Xilinx attaches to the word “constraint” when used in the con-
text of their FPGA design tools. Usually, constraints reflect instructions to
the various compilation tools (mapping, placing, routing) and reflect the de-
signer’s requirements for speed, density, and I/O characteristics. Xilinx also
takes constraints to mean the startup states of volatile storage elements in
the design, as differentiated from the logic configuration and connection in-
formation stored in the FPGA’s configuration array. There are a number of
constraints which can be specified through the ISE menus, but alternative
methods of constraint specification through input files are also provided. In
particular, the BRAM’s initializations can be specified through VHDL or Ver-
ilog source files when the design is described in one of those languages, or by
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using Xilinx’s proprietary .ucf (user constraint file) format for any source
format, including schematics.

In theory, BRAM initialization constraints, including the compiled code
for our microprocessor, can be edited into the .ucf file by hand to provide
the system’s software programming. However, we wanted to automate the
conversion of software into FPGA programming files to allow normal code
development methods to be used when the focus shifted from hardware to
software development.

Xilinx provides a command-line utility, data2mem.exe, which can be used
to generate the required .ucf files automatically. Unfortunately, the inputs
which data2mem requires for this task (the .bmm file, a non-standard format
containing a description of the BRAM memory instantiations in the design,
and the .mem file, a non-standard format for representing binary data to be
loaded into the BRAM) are not available from the standard set of tools in the
ISE.

We solved the BRAM initialization problem by:

• constructing a .bmm file for the design “by hand.” The .bmm file format
[14] is obscure but straightforward, and the file only needs to be built once
for a given hardware design.

• automating the translation of the .hex (Intel hex ASCII) output format
of the assembler into the .mem format. To do this required that we write
hex2mem.c, a simple (<100 lines including comments) program for the
purpose.

• automating the loading of the above-produced .bmm and .mem files into
the design via the data2mem.exe utility by writing several DOS scripts,
asm2ucf.bat and asm2bin.bat. The asm2ucf script produced a .ucf file
which was added to the design hierarchy in the ISE. There it became
part of the instructions to the logic compiler, e.g., each time the code was
changed and the design was recompiled, the updated assembly language
binary of the microprocessor code was included in the logic specification
of the BRAM. This provided the major benefit that even early simula-
tions of the design demonstrated not only the design logic but also the
software running on it. The asm2bin script uses the .bmm file and a gen-
erated .mem file through data2mem to edit an existing version of the .bit
file containing a final FPGA programming configuration. The .bit file is
the final output of the FPGA compilation processes and is usually sent
directly to the FPGA or burned into a bootup memory device. However,
Xilinx has also provided the capability, through the data2mem utility, for
editing the contents of the BRAM entries (only) in the .bit file. There-
fore, revisions of the onboard software stored in the BRAM can be made
without disturbing the device logic design. Identifying this capability and
using it will be our route to easy software development after hardware
development is completed.



www.manaraa.com

344 W. M. Hawkins

With our (presumed) solution of the software loading problem in hand,
the next step was to run a test program in simulation on the CPU-memory
subsystem design. To prepare for this we first used the Webpack ISE to au-
tomatically generate a Verilog “test fixture” for our design. The generated
test fixture is a Verilog source file which conceptually sits “above” our design,
e.g., it contains our entire design as a UUT instance, defines the set of signals
into and out of the UUT, and initializes the values on the inputs to the UUT.
Into this provided template we edited simple behaviors for the system RESET
(active pulse at startup) and CLK (1 mHz oscillation), and then requested a
simulation of the placed and routed design from the ISE.

Requesting a simulation in the Webpack ISE launches the Modelsim logic
simulator, a separate product and interface. When the Webpack launches
Modelsim it has prepared a great deal of information about the design—the
view that Modelsim sees of the design is primarily taken from translations
of the original design into the primitives (usually Verilog) from which the
design realization will be constructed inside the FPGA. The Webpack sends
a set of initial instructions to Modelsim in a .ndo script file for setting up the
simulation displays and running the simulation. It then turns control over to
the Modelsim console.

When the Modelsim console opens up it interprets the .ndo script and
runs an initial test fixture simulation. If simulation is successful (not always
the case, for a variety of reasons), then additional windows displaying the
simulation’s signals and waves pop up, and control is turned over to the user
at the Modelsim console prompt.

The Modelsim simulator is an extremely complex, extremely powerful, and
useful tool, worthy of an entire separate study. Good tutorials exist for it [20],
but for our current purpose we merely need to use it as a logic analyzer for
viewing program execution on our design. A wave view of the system signals
is part of the initial default presentation. After editing the simulation presen-
tation in the wave window (changing binary to hex bus displays, rearranging
signal order) and saving the new format for future use in a wave.do file, we ran
the simulation from the console for a few more microseconds of simulated time
and then inspected the wave display to verify that the startup behaviors were
as expected, i.e., that the RESET pulse caused the processor to read the reset
vector from address FFFE, and that program execution then began at F900,
the location of the reset label in the original source code. With this initial
reassurance, we opened the list window, added and formatted the processor’s
bus signals, then set filters to limit the data displayed, in the same way we
would choose clocks and qualifiers for using a logic analyzer in state mode.
Fig. 5 shows fragments from a listing of the original source code, along with
the associated wave and list displays from Modelsim’s post-place and -route
simulation of the system design.

Our conclusion, after examining a few dozen execution steps of the sample
program, was that the CPU-memory subsystem is functional and, at least for
the instructions tested, correct.
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    1 1 00      f900     00 
    1 1 00      ffff     00 
    1 1 00      ffff     00 
    1 1 00      ffff     00 
    0 1 00      ffff     00 
    0 1 ff      fffe     00 
    0 1 fe      ffff     f9 
    0 1 00      f900     00 
    0 1 00      f901     86 
    0 1 aa      f902     aa 
    0 1 aa      f903     b7 
    0 1 f8      f904     f8 
    0 1 aa      f800     00 
    0 1 aa      f905     aa 
    0 1 aa      f906     b7 
    0 1 fa      f907     fa 

                            10 ORG $F900
                            11  COLD
                            12  *
                            13  *   usually set things up here--stack, e
  00                        14  *
F900  86 AA                 15 ldaa #$AA *initialize AccA
F902                        16  again
F902  B7 F8 00              17 staa $F800 *write to first b
F905  B7 FA 00              18 staa $FA00 * ..
F908  B7 FC 00              19 staa $FC00 * .. 
F90B  B7 FE 00              20 staa $FE00 * ..
  0E                        21
      F6 F8 00              22 ldab $F800 *read each
         FA 00              23 ldab $FA00 * ..
             0              24 ldab $FC00 * ..
                            25 ldab $FE00

f9 00 86 aa

ff fe 00

fffe ffff f900 f901

f9 00 86 aa

ff fe 00

fffe ffff f900 f901

Code source

Modelsim list
    display

  Modelsim
wave display

Fig. 5. CPU code execution on SOPC

Integrating the remaining components of the SOPC

The addition of the asynchronous serial port (ACIA) and I2C interface bus to
the core CPU-memory design was straightforward due to the presence of the
Wishbone bus interface on each component. A few additional decoders and
multiplexers were required for selecting and routing data back to the CPU, but
little more than connecting wires and buses were required, and the work was
completed in less than an hour. The fitter map report indicated that about
one-third of the device LUT logic was used for the single system design. Only
a miniscule amount (∼6% of the device flip-flops) was used, which along with
the four BRAM blocks gave an equivalent gate count of 77,000 for the entire
design.

SOPC target application design

By creating a schematic symbol for the entire SOPC system and then placing
two instances of the SOPC symbol connected by their serial ports in a new
schematic, we provided the design for the target application (LED connected
to switch by communicating microprocessor systems). Each copy of our SOPC
in the new design was a complete standalone system, with one of them (CPU1)
connected to the pushbutton input and the other (CPU2) to the LED. CPU1
monitors the pushbutton and sends its ASCII value (“0” or “1”) over the
serial link. CPU2 interprets the value received on the serial link and switches
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the LED on or off accordingly. Pressing/releasing the pushbutton and seeing
the LED turn on and off demonstrates the system operation.

SOPC application test

For those who lack access to sophisticated printed-circuit fabrication facilities,
the Digilent D2SB FPGA prototyping board used for testing is an inexpensive
way to plug an FPGA into a design; the board is little more than a platform
to support the 208 pin plastic quad flat package (PQFP) FPGA and to bring
its leads out to several rows of 0.1-inch socket headers. The Spartan-IIE on
the Digilent board can be initialized either by downloading the programming
.bit file using the programming cable from the PC or by programming an on-
board flash ROM, also using the same cable but with a different configuration-
jumper setting. We chose the former method (PC download) approach for
quick results, and on downloading our application test, were rewarded by
seeing the LED turn on and off when pressing/releasing the pushbutton.

6 After Action Report: Using the Xilinx Webpack for
SOPC Design

The tools in the Webpack are almost unbelievably powerful, particularly in
comparison to similar tools of only a few years ago. Through improvements in
algorithms, increases in the computational power of desktop computers, and
improvements in the chip architectures, the complexity of potential designs
and the speed with which they can be realized have improved by orders of
magnitude. However, there are sometimes mystifying failures of the ISE in-
terface, the algorithms behind it, or the results it produces. Xilinx provides
an excellent search engine [19] for its Answer Database—a compendium of
questions and answers about issues experienced by users of the various Xilinx
tools. The 20,000 or so entries in the Answer Database indicate Xilinx’s seri-
ousness in finding solutions to user’s problems, but the number of problems
stored there is probably just the tip of the iceberg in terms of actual diffi-
culties in the field (for example, the thousands of users of the free Webpack
cannot post their questions to Xilinx).

Over the course of several months’ experience with the current version
of the Webpack, certain recurring themes appeared regarding the types of
problems which continually occurred, leading to an impression of fragility of
the software. These were:

• path problems;
• hidden configuration values;
• failure reporting;
• SOPC software development.
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6.1 Path problems

Path problems come in several flavors. One is that, even though SOPC designs
will tend to accumulate components and complexity almost ad infinitum, the
Webpack seems to prefer the “one big directory” form of design organization;
that is, every tool expects to look in the common pool of files for its inputs and
to leave its results there on completion of processing. Attempts to counter this
tendency by creating component and version directories must be very carefully
crafted and strictly followed to avoid problems of losing or using the wrong
components. The Webpack itself attempts to address this issue in several ways,
by providing archiving (all design components to a .zip file), creating libraries
(one big file rather than one big directory), and “snapshots” (project “saveas”
to a different directory), but none of the built-in approaches address issues of
incremental design, portability, and reuse very well.

A second path problem seems to flow from the operating system heritage
of various tools in the package—the hand-off between different tools often
seems to involve (at least by inspecting error messages) conversions between
UNIX, Windows network, and DOS conventions for file path descriptions, or
even a mix of the various types, occasionally leading to some files hiding in
plain sight: we can add them to the design, but the tools can’t see them.

6.2 Configuration mysteries

To the credit of the Webpack’s designers, almost every facet of the system
behavior is controlled by a configuration value, and it seems that many con-
figuration values are kept in ASCII text files which, if found, can be edited to
modify the ISE behavior in a desired way. However, it also seems that some
configurations, once set, have no path for being changed in an existing design
(the design has to be restarted from scratch), some are capriciously changed
as unremarked side effects of other operations, some are only conditionally
effective and can be overruled by other (unidentified) settings, and some are
only accessible via improbably unrelated menu paths or activity sequences.
While information about how and where configurations are set can often be
found in the Answer Database, the fact that the observed behavior was re-
lated to a configuration problem in the first place is usually obscure. Thus,
solutions for this type of problem rely on good luck as much as good research.

6.3 Failure reporting

Occasionally, a process will fail with an error identification which leads di-
rectly to the solution in the Answer Database. Frequently, a process will fail
while reporting something unrelated to the actual cause of failure, as is seen
with software compiler error cascades. Once in a while, a process will report
some problem but apparently does not fail; however, the expected output will
also not be produced. Sometimes the exact diagnosis of the failure and its
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recommended solution are reported, but the designer must look for the asso-
ciated line in the hundreds of lines of reports and transcripts generated by
one pass of the tools. On the plus side, and consistent with all of the other
mysteries which surround us (Windows, Word, etc.), after a while the designer
will develop a sixth sense about where things have gone wrong, and how to
fix them (click here and type “Bob”).

6.4 SOPC software development

The fact that we had to “roll our own” point tools to allow incorporation of
software for the MC6801 processor used in the example into the hardware de-
sign and simulation cannot be held against Xilinx. This capability is present
in their (non-free) Embedded Development Kit (EDK), which integrates soft-
ware development functions into the ISE for their proprietary MicroBlaze
soft-processor architecture. At a (much) higher level, Xilinx provides com-
plete tools for development with the PowerPC 405 core embedded as “hard
IP” (e.g., conventional custom logic) immersed in the fabric of their very large
Virtex-II series of FPGA devices.

7 How To Learn More

The best introduction to SOPC design is to install one of the cited design
environments ([3], [27], [7], [8], [13], [17]) or any of a number of others and
embark on one’s own SOPC design. The interested reader may also wish to
investigate:

• an introductory text on Verilog and VHDL: Smith’s HDL Chip Design
[26];

• an in-depth VHDL text for design: Ashenden’s The Designer’s Guide to
VHDL [1];

• an in-depth Verilog text for design: Palnitkar’s Verilog HDL, a Guide to
Design and Synthesis [23];

• a thorough introductory Webpack tutorial: XESS Corporation [10];
• the free-IP organization: Opencores.org [21]
• an on-line journal: FPGA and Programmable Logic Journal [28];
• a conference: Embedded Systems Conference [11].
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1 Introduction

Digital controllers are increasingly designed and built using commercial off-
the-shelf (COTS) hardware and software components. This is a result of the
availability of high-performance, low-cost microcontrollers, specialized embed-
ded processors, and various real-time operating systems (RTOSs). The wide
selection of RTOSs does not necessarily translate into an increased availabil-
ity of systems that are capable of facilitating the construction of controllers
meeting the performance and stability requirements demanded by the mecha-
tronics applications. A primary contributing factor to that disparity is that
the design goals of many RTOSs focus on the overall system response time
and may neglect other timing constraints in the controller.

Control engineers have made design assumptions about the capabilities of
the RTOS that may not necessarily have been realized or supported by the
actual software components. Control engineers often assume that the under-
lying software platform is fully capable of facilitating precisely time-triggered
sampling of the controlled system, with deterministic, constant computation
delay [27]. Some of the typical RTOS design goals are bounded context switch
time, bounded response time to external interrupts, and preemptive priority-
based scheduling, which result in good average system response time. These
objectives point to an event-driven model that may be inadequate in address-
ing many of the timing attributes of the discrete-time model of the digital
control system. The time variations in the control system due to sampling
jitter, computation delay, and transient errors are not always accounted for
by the RTOS.

Therefore, implementing control applications “on top” of an RTOS, which
meet performance and stability requirements demands close collaboration be-
tween control engineering and computing science. There exist an overlapping
problem space and complementary solutions between control engineering and
the real-time computing branch of computer science. A digital controller im-
plemented using an RTOS in an embedded processor can be classified as either
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a real-time system or a real-time embedded system. The definition of a real-
time system is a system in which overall correctness depends on both logical
correctness and timing correctness [8], i.e., a real-time system produces the
correct computation results in the defined time bound. A related attribute of
real-time systems is predictability. An embedded system is defined as a sys-
tem with tightly integrated hardware and software components, constructed
to perform a dedicated function. Embedded systems are characterized by the
choice of processor, level of application awareness, and the hardware and soft-
ware codesign model used in system development. These concepts fit well in
the control engineering domain.

The typical RTOS is comprised of a real-time kernel, a scheduler, the
I/O subsystem, the memory subsystem, and application level programming
support in terms of library functions. The kernel provides services, such as
the timer services, and synchronization and communication primitives. The
scheduler executes the scheduling algorithm for a task set. The I/O subsys-
tem provides services to access the system I/O devices. The memory subsys-
tem provides memory allocation, reclamation, and virtual-to-physical address
mapping services. Each RTOS component has direct impact on the controller
design and its performance; most notable are the scheduling algorithms and
the synchronization primitives.

Fig. 1 illustrates a typical sampled-data feedback control system. Imple-
menting this controller in an RTOS involves an iterative process. The first step
is the decomposition of the controller components into corresponding RTOS
tasks, for example, mapping the sampler into a periodic task. The next step
in the implementation involves assigning task parameters such as period, exe-
cution time, and deadline to the various tasks. Then a scheduling algorithm is
chosen for the task set followed by a schedulability analysis. Results obtained
from the schedulability analysis can indicate that modifications may be neces-
sary to the parameters of certain tasks. The schedulability analysis may also
indicate that the controller decomposition is not optimal. Therefore, the de-
composition is refined; adjustments are made to the parameters of tasks that
still exist in the task set, followed by a subsequent schedulability analysis.

Control
Algorithm

Sampler

Actuator
Controlled

System

Observer

Reference
signal

Fig. 1. Sampled-data control system block diagram

The choice of scheduling algorithm is crucial to the controller’s perfor-
mance. Computer scientists have made assumptions about the digital con-



www.manaraa.com

Fundamentals of RTOS-Based Digital Controller Implementation 355

troller design that have resulted in computing algorithms that produce sub-
optimal control performance in the end controller. The scheduling algorithms
research community has assumed, as noted in [3], that a control algorithm can
be modeled as a periodic task having a fixed period, that the control task has
a hard deadline, and that its worst-case execution time (WCET) is known a
priori. These assumptions do not apply to the types of controllers that are, for
example, non-periodic, with alternating sampling periods and with a degree
of tolerance for sampling delay and controller response time. The WCET of
a task is difficult to obtain in general due to factors such as execution se-
quence dependencies and resource synchronization. Task synchronization and
inter-task communication can cause variations in the time it takes to execute
the control loop. The nature of synchronization, such as access to shared re-
sources, can cause problems such as priority inversion, which is another source
of sampling jitter. Priority inversion is described in Section 3.1. RTOS kernel
context switch overhead can also trigger sampling jitter. The kernel context
switch is described in Section 2.2. Scheduling overhead is a direct function of
task partition. Therefore, control engineers can benefit greatly from detailed
knowledge of the underlying RTOS by accounting for the characteristics of
the RTOS in the controller design. For example, increasing the sampling rate
up to a limit can increase the controller performance but may reduce task
schedulability depending on the scheduling algorithm.

This chapter examines the major components of an RTOS and the imple-
mentation of the controller using those components from a computing science
perspective. By introducing the various operating system concepts and the
way in which these concepts affect the digital controller design, this chapter
aims to aid control engineers in better understanding an RTOS. With this
knowledge, design decisions can be made to compensate for the deficiencies
in the underlying software platform. This chapter also provides a survey of
the results of the various research topics in the field of computer-controlled
systems design. The contribution of this chapter is its synthesis of topics from
control engineering theory with concepts from real-time systems in the RTOS
context. We thus aim to help the control engineer to develop a systematic ap-
proach to the implementation of control systems using either a COTS RTOS
or an open source-based research RTOS.

The main objective of this chapter is to assist the control engineer in
architecting the controller implementation while taking into consideration the
issues that are present in the underlying supporting RTOS, thus creating an
optimal design.

The remainder of this chapter is organized as follows. Section 2 defines the
types of tasks, outlines task partition strategies, discusses the various schedul-
ing algorithms, and introduces schedulability analysis. Section 3 introduces
the common RTOS synchronization primitives, discusses the priority inver-
sion problem, and describes the various solutions formulated for the priority
inversion problem. Section 4 investigates the RTOS deficiencies that impact
controller performance, stability, and reliability, and then discusses research
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results that address those deficiencies. Section 5 enumerates several research
RTOS that are useful for digital controller implementation.

2 Tasks, Scheduling Algorithms, and Schedulability
Analysis

A task is a set of code that is scheduled and executed by the operating sys-
tem. The RTOS kernel creates and maintains a data structure called the task
control block (TCB) for each task. The TCB contains task-specific state in-
formation such as the address of the next instruction to execute, the stack
pointer, a copy of the processor registers, and the I/O states of the task. A
context switch refers to the kernel action of saving the execution state of one
task into its TCB and replacing the processor states with the information
from the TCB of another task.

During its execution a task competes with other concurrently executing
tasks for system resources such as CPU time and system memory. Each sched-
uled invocation of a task is referred to as a job [2]. The time at which a job is
ready for execution is referred to as its release time. A task is classified as a
periodic task if the interval between job release times is constant. The sampler,
shown in Fig. 1, is implemented as a periodic task. A task is classified as an
aperiodic task if its release time is unpredictable. An event-driven task, such
as a task created for handling device I/O, is an example of an aperiodic task
because the interval between device interrupts is unknown. A task is classified
as a sporadic task if its release time is unpredictable, but there is a guarantee
of a minimum separation between jobs. A sporadic task can be considered as
a special aperiodic task. In general, the minimum interval between the release
times of successive jobs is called the period of the task.

2.1 Control application decomposition

Decomposing a control application into a task model involves a partition strat-
egy. Partition by functionality implies mapping the elementary functions [27]
of the control system into a task graph that identifies both the task set and
the synchronization dependencies among these tasks. For example, the con-
trol system shown in Fig. 1 may include a task that samples the controlled
system, a task that generates the reference signal, a task that perform the
computation of the control algorithm, and an output task that communicates
with the actuator, which results in the task graph [19] of Fig. 2.

In Fig. 2, each τi node represents a task, each rectangle denotes a resource,
and each arrow represents a dependency relation between the adjacent nodes.
For example, the task that performs the control-law computation depends
on the data generated by the sampler task. This input data may also be
modified by an operator. The output task that transmits the result to the
actuator depends on the controller task to produce the output first.
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Fig. 2. Control system task graph
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Fig. 3. Iterative design technique

Assigning periods and deadlines to the control tasks obtained from the ap-
plication partition involves mapping the control system performance specifica-
tions into system-level timing constraints, translating the system-level timing
constraints into task-level timing constraints (i.e., period and deadline), sub-
sequently conducting task-level schedulability analysis, and then performing
model refinement. Fig. 3 depicts this iterative derivation technique, which is
described in [20].

The performance of a single-input single-output control system [19] can be
characterized by the following features of its response to a step input: maxi-
mum overshoot, the rise time, the settling time in the transient state, and the
steady-state error. The maximum overshoot Mpeak is defined as the difference
between the reference input and the maximum value of the response curve.
The rise time Trise is defined as the time required for the output response to
reach a desired range with respect to the reference input. The settling time
Tset is defined as the time required for the output response to reach a certain
percentage, e.g., 95% of its steady-state value. The steady-state error Ess is
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defined as the limit as t → ∞ of the difference between the reference input
and the actual output.

The system-level timing constraints include sampling period and input-
output latency. The mathematical model devised in [19] expresses Mpeak,
Trise, Tset, and Ess as functions of sampling period and latency. Solving these
functions results in values for the period and latency that satisfy the system
performance specifications. In this model, a continuous-time feedback con-
troller is converted into a discrete-time system by introducing the zero-order
hold (ZOH) block and a delay block between the controller and the plant. The
delay block models the input-to-output delay that exists between the sensor
and actuator. Using the z-transform method, Mpeak, Trise, Tset, and Ess can
be derived as increasing functions of period TLoop and latency LLoop from a
closed-loop transfer function:

Ess = fE(T loop, Lloop)
Mpeak = fM (T loop, Lloop)
Tset = fs(T loop, Lloop) (1)
Trise = fr(T loop, Lloop).

Applying the actual response specifications to the equations in (1) gives
the inequalities in (2), where M ′

peak, T ′
rise, T

′
set, and E′

ss denote the given
constraints. The solutions to these inequalities are the values of TLoop and
LLoop that meet the performance constraints.

fE(T loop, Lloop) ≤ E′
ss

fM (T loop, Lloop) ≤ M ′
peak

fs(T loop, Lloop) ≤ T ′
set (2)

fr(T loop, Lloop) ≤ T ′
rise.

In a single-rate system, mapping the sampling period TLoop and latency
LLoop into task periods and deadlines of a control loop is rather straight-
forward. However, the solution to deriving periods and deadlines of tasks of
multiple control loops is both an optimization and an NP-complete problem.
Assuming a multirate system that consists of {C1, C2, . . . , Cn} control loops,
an algorithm is given in [19] for solving such a multirate system. The algorithm
can be summarized as follows: for each control loop i, where 1 ≤ i ≤ n,

1. Equate TLoop
i and LLoop

i to eliminate L from inequalities (2), and then
solve (2) to obtain the maximum value for TLoop

i .
2. Substitute the computed T back into (2) and then solve for L.
3. Once all of the TLoop

i and LLoop
i have been computed, derive the task

periods and deadlines of the tasks from all of the control loops using the
Periodic Calibration Method (PCM) [10].
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4. If the PCM fails to find a period and deadline for each task such that the
overall system satisfies the schedulability constraints, then identify the
bottleneck control loop K, increase the TLoop

k value, and go back to Step
2.

The above algorithm focuses on the problem space where the controller
delay is less than the sampling period, which is the case in the majority of
practical control systems. It is a much more complex problem to model a
system where the delay is larger than the period. Also, this algorithm does
not address the problem of timing variations that may be present in actual
execution times.

Once the execution period and the deadline of a control task have been
determined, it is then the responsibility of the RTOS scheduler to release a
task for execution according to that period and to allow enough execution
time for the task to complete before its deadline. A typical control system
may include both sporadic and aperiodic tasks other than the periodic tasks.
Therefore, the choice of the scheduling algorithm at the implementation phase
determines the actual system schedulability in operation.

2.2 Scheduling algorithms

A static scheduler has the complete knowledge of the task set and the prop-
erties of each task for the lifetime of the system. The task properties include
the task period, the deadline, the WCET, the resource requirements, and the
execution dependency, which is also known as the precedence constraint. The
arrival time of each task is also known a priori. Once the scheduler produces
a feasible schedule, that schedule does not change during the lifetime of the
running system.

A dynamic scheduler has complete knowledge of the task set and the at-
tributes of these tasks at the time when a feasible schedule is produced. How-
ever, new task arrivals and the properties of these tasks are unknown to the
scheduler. The dynamic scheduler makes a best effort to estimate the con-
straints of the newly arrived tasks at runtime, and to produce a new feasible
schedule while continuing to satisfy the execution constraints of the existing
task set. Therefore, the dynamic scheduler changes the schedule over time
according to the current system state.

This scheduler classification [24] can be interpreted in the context of four
scheduling paradigms summarized in [17]. These scheduling paradigms are
static table-driven scheduling, static priority-driven preemptive scheduling,
dynamic planning-based scheduling, and dynamic best-effort scheduling.

Static table-driven scheduling is most suitable for scheduling a set of pe-
riodic tasks. This scheduling approach produces a schedule table containing
the task release times, finish times, and the order of execution, which takes
into account the various constraints imposed on each task. The table is of-
ten derived from the WCETs of the tasks. Therefore, each task is guaranteed
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to meet its timing, resource, and precedence constraints. A system that de-
ploys the static table-driven scheduling paradigm has the highest degree of
predictability, which is why such a scheduling paradigm is the most practiced
approach in real-time control systems. A schedule table guarantees that every
task can meet its deadline while satisfying its other constraints. On the other
hand, the static table-driven scheduling scheme can produce a suboptimal
schedule in the presence of non-periodic tasks.

Given a task set T with N periodic tasks, each task having a period Ti, the
least common multiple (LCM) of periods of a task set is defined as the smallest
value possible such that there exist N integers and the following equation is
satisfied:

LCM = niTi, 1 ≤ i ≤ N. (3)

In the context of the scheduling paradigm discussion, the value of the LCM
represents a schedule length called the scheduling horizon in [18]. In (3), the
value ni represents the number of jobs of task i. In other words, the scheduler
executes each job τi ni times within each schedule period of the LCM, and the
release times of these jobs and the order of execution are repeated every LCM
units of time. Therefore, a feasible schedule derived for the LCM schedule
period is a feasible schedule for the lifetime of the system.

Deriving a feasible schedule in the LCM scheduling horizon for a task
set while satisfying the various types of dependencies and constraints is an
NP-complete problem. The algorithms used for solving this problem have
many attributes of the branch-and-bound class of search algorithms. The
computation-intensive nature of the algorithms favors the off-line computa-
tion of the schedule, and this is one of the reasons why a subset of the static
schedulers is classified as the off-line schedulers.

In preemptive priority-based scheduling methods, each task is assigned an
importance level or priority, and at any point in time the executing task is
the task with the highest priority among all existing tasks. If another task
is created and has a higher priority, then the currently executing task is pre-
empted, a context switch takes place, and the new task begins its execution. In
a static, priority-driven preemptive scheme, a priority assignment algorithm
specifies how priorities are assigned to tasks. The priority of a task, once as-
signed, does not change for the lifetime of the task. Schedulability analysis
is performed offline, but no explicit schedule is produced. Instead, each task
executes according to its priority at runtime.

Rate-monotonic scheduling is an example of the static priority-driven pre-
emptive scheduling paradigm. Tasks are assigned priories using the rate-
monotonic (RM) algorithm. The rate at which the jobs of a task are released
is the inverse of the task period, i.e., the shorter the period, the higher the
rate becomes. The task priority is directly proportional to its rate in the RM
assignment scheme. For example, having two tasks A and B, the task with
the higher rate will be assigned the higher priority of the two. It should be
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clear from the context that task properties such as period and execution time
must be known a priori in order to apply the RM scheduling algorithm.

The RM priority assignment policy will assign a low priority to a task that
has a low job rate but a short deadline associated with urgent actions. Such
a task will perform poorly with the basic RM algorithm. A variation of the
RM policy called the deadline-monotonic (DM) assignment policy addresses
this problem by assigning the task priority based on its deadline, i.e., higher
priorities are assigned to tasks with shorter deadlines.

In the dynamic planning-based scheduling paradigm, the scheduler per-
forms on-line schedule calculations when new tasks arrive in the system. The
new schedule must guarantee that all those tasks from the old schedule can
still meet their timing constraints, or else the new task is rejected by the
system. An example algorithm of this category is given in [25].

In dynamic best-effort scheduling, a priority assignment algorithm assigns
each task a priority. The scheduler selects the task with the highest priority
for execution. The scheduler tries to satisfy each task’s constraints; however,
such a schedule is not guaranteed to exist. If that is the case, a schedule that
maximizes the number of tasks that can run to completion while meeting
their deadlines serves as the guideline for the scheduler. As such, the priority
of a task may change during its lifetime, but each task is not guaranteed to
meet all of its constraints. Many commercial RTOSs deploy the dynamic best-
effort scheduling paradigm. Dynamic best-effort scheduling is the most flexible
scheduling paradigm that accommodates the dynamics of the runtime system.
However, this paradigm has the lowest degree of predictability. An example
algorithm in this category is the Earliest Deadline First (EDF) algorithm.
With EDF the task with the shortest remaining time to its deadline gets the
highest priority. A newly arriving task can preempt an executing task if the
newly arrived task is closer to its deadline and thus given a higher priority.

2.3 Handling sporadic and aperiodic tasks

A control system may contain non-periodic tasks to handle activities such as
the device I/O and the operator interactions. The main objective in handling
sporadic and aperiodic tasks is to have a fast response time without interfer-
ing with the periodic tasks. A common approach is to schedule non-periodic
tasks during the idle times when there are no running periodic tasks. Another
approach is to steal the slack time (also known as the laxity) of the periodic
tasks when a non-periodic task arrives. If the deadline of the running periodic
task is d, and the time at which the non-periodic task arrived is t, and the
amount of time required to complete the job is x, then the slack time s is
defined as s = (d − t) − x. Stealing the slack time may result in a better
response time of the arriving aperiodic task.

One class of solutions models a special periodic task called a server to im-
prove the aperiodic task response time. Examples of the various server designs
are the sporadic server, the deferrable server, and the bandwidth server. The
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server has a specific period and execution time and it is scheduled similarly to
other periodic tasks. The execution time of the server is known as the server
capacity or budget [4]. The server processes the aperiodic activities during its
scheduled execution time slot. The constant bandwidth server (CBS) and the
total bandwidth server (TBS) algorithms are discussed in Section 4 of this
chapter.

2.4 Schedulability analysis

Schedulability analysis determines the feasibility of a schedule and evaluates
the system timing behavior of a task set based on the characteristics of each
task and the scheduling algorithm. Rate-monotonic analysis (RMA), devel-
oped by Liu and Layland in 1973, serves as the basis of hard real-time system
analysis. There exists a set of standard assumptions about the system in order
to apply RMA. These assumptions are given in [16] and are summarized in
[8] as follows:

(a) The tasks in the system are all periodic.
(b) The tasks are independent of each other.
(c) The deadline of each task equals its period, i.e., D = T .
(d) Each task has constant execution time.
(e) Non-periodic tasks may exist but do not have hard deadlines.

The RMA with the above assumptions is called basic RMA. With basic
RMA a set of tasks is schedulable if the following equation is satisfied:

U =
n∑
1

Ci

Ti
≤ n(21/n − 1). (4)

The processor utilization factor U is defined as the fraction of time the proces-
sor spends to execute the entire task set. In (4), Ci is the WCET and Ti is the
period of task i. The right-hand side of the inequality is called the theoretical
upper bound, and it converges to 0.69 as the number of tasks increases, i.e.,

lim
n→∞n(21/n − 1) = ln 2 ≈ 0.69. (5)

[16] proves that a task set using the EDF algorithm is schedulable if the
following inequality holds:

n∑
i=1

Ci

Ti
≤ 1. (6)

The assumptions made in basic RMA are too restrictive to be applied in
practical real-time systems. As shown in Fig. 2, the tasks created for a control
system will generally have some form of dependencies among them. These
include communication, data, execution, and other types of synchronization
dependencies. A low priority task may block a higher priority task in an RTOS
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with preemptive priority-based scheduler. Therefore, the schedulability analy-
sis needs to relax the second assumption and alter equation (4) by introducing
the blocking factor:

C1

T1
+
C2

T2
+ · · ·+ Ci

Ti
+
Bi

Ti
≤ i(21/i − 1), 1 ≤ i ≤ n. (7)

In (7), Bi is the worst-case blocking time that can be experienced by
task τi. The fact that one task may block another task is the result of task
synchronization.

The RM priority assignment is optimal when D = T as stated in the
third assumption for RMA. Instead, DM priority assignment is optimal when
D ≤ T . With DM priority assignment, the task with the shortest deadline
has the highest priority. The response-time model is more appropriate for
schedulability verification in this case. The worst-case response time of a task
is given by an iterative equation [4],

Ri = Ci +
∑

k∈hp(i)

⌈
Ri

Tk

⌉
Ck, (8)

where hp(i) represents the tasks that have higher priorities than task i. In
other words, the response time of task i is the sum of its computation time
and the time of interference incurred on task i by tasks with higher priorities.
Based on (8), a set of tasks is schedulable if for each task i, Ri ≤ Di.

3 Task Synchronization

Cooperating control tasks, as exemplified in Fig. 2, must synchronize their
activities. Tasks that share data must synchronize their access to memory to
ensure data integrity. This type of synchronization is referred to as resource
synchronization. Related to resource synchronization are the concepts of mu-
tual exclusion and critical section. As stated in Li [8]:

“Mutual exclusion is a provision by which only one task at a time can
access the shared resource. A critical section is a section of code from which
the shared resource is accessed. A mutual exclusion algorithm ensures that
one task’s execution of its critical section is not interrupted by the competing
critical sections of other concurrently executing tasks.”

The precedence constraint of a control task implies that the task must wait
for one or more other tasks to complete before it can begin its execution. This
type of synchronization is referred to as sequence control [8]. A task may need
to transfer information to other tasks and wait for acknowledgement to arrive
before resuming. This type of synchronization is referred to as communication.

A typical RTOS provides a set of synchronization primitives for the various
synchronization needs in different applications. The implementation details of



www.manaraa.com

364 Q. Li

these primitives directly impact the performance of the control application.
Of interest to the discussion in this section are the resource synchronization
primitives: semaphore, mutex, preemption lock, and interrupt lock.

3.1 Synchronization primitives and the priority inversion problem

A semaphore is a mutual exclusion primitive used to serialize access to shared
resources. A task acquires the semaphore before it enters its critical section,
and releases the semaphore when it exits the critical section. A semaphore
has a number of tokens associated with it. A semaphore with a single token is
called a binary semaphore. A semaphore with more than one token is called
a counting semaphore. The operations that can be performed on a semaphore
are acquire and release. A mutex is similar in nature to a binary semaphore
but differs from the latter in that there is ownership information associated
with a mutex. The owner of a mutex is the task that is currently holding that
mutex. The operations that can be performed on a mutex can be lock and
unlock. Only the current owner of a mutex can unlock that mutex. However,
any task can release a semaphore (binary or counting) even when that task
has not previously acquired the semaphore. As such, using binary semaphores
for serializing access to shared data is more prone to programming errors.

Some RTOSs implement a primitive called the preemption lock. A pre-
emption lock allows a task to disable the scheduler so that higher priority
tasks cannot preempt it while it executes. The biggest issue with using a pre-
emption lock for synchronization is that the preemption lock can disrupt a
totally unrelated higher priority task from executing, thus rendering preemp-
tive priority-based scheduling ineffective.

A task synchronizes access to shared data with an interrupt handler
through the interrupt lock. Depending on the system hardware architecture, a
task disables either the overall system interrupt or the device interrupt while
accessing the shared data. The scheduler could possibly be affected by the ma-
nipulation of the system interrupt. In this case the interrupt lock has similar
issue to those of the preemption lock. When tasks of varying priorities share
common resources, situations arise in which a lower priority task can execute
while a higher priority task is blocked and waiting to gain access to the shared
resource. Such a situation is abnormal in an RTOS deploying a preemptive
priority-based scheduling algorithm because there is a priority inversion in
terms of order of execution. Priority inversions can be either bounded or un-
bounded. Timing anomalies as a result of an unbounded priority inversion
must be avoided in a controller implementation.

Fig. 4 illustrates a bounded priority inversion situation. There exist two
tasks τ1 and τ2 with priorities P1 and P2, respectively. Task τ1 has a lower
priority than task τ2. τ1 locks the mutex at time T1. At time T2 task τ2 becomes
ready to run and preempts τ1 due to its higher priority, P2. However, τ2 is
unable to access the shared resource because it cannot lock the mutex, which
is held by τ1. Therefore, τ2 blocks at T3 when τ1 resumes execution. Priority
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Fig. 4. Bounded priority inversion

inversion occurs at T3. τ1 unlocks the mutex at T4 when it completes its access
to the shared resource. This duration of the priority inversion is bounded by
the access time of τ1. The tasks τ1 and τ2 are said to have competing critical
sections.
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Fig. 5. Unbounded priority inversion

Fig. 5 illustrates a case of unbounded priority inversion. Task τ2 has a
higher priority than τ1 but a lower priority than τ3. Because τ2 does not have
a competing critical section, it preempts τ1 and begins execution immediately
at T4 when τ2 is ready to run. The interval between [T4, T5] is unbounded
because the execution time and runtime behavior of the unrelated task τ2
cannot be determined.

Estimating the WCET of a controller task is nearly impossible when un-
bounded priority inversion can occur in a control system. Many controller
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implementation algorithms break down without the WCET of the controller
tasks. Implementing resource access control protocols as part of the synchro-
nization primitive is one of the solutions to the unbounded priority inversion
problem. Note that priority inversion cannot be eliminated altogether. How-
ever, the inversion time can be minimized.

3.2 Resource access control protocols

The well-known resource access control protocols are the priority inheritance
protocol (PIP), ceiling priority protocol (CPP), and the priority ceiling protocol
(PCP). Li [8] states:

“Resource access control protocol is a set of rules that define the conditions
under which resource can be granted to a requesting task, and govern the
execution scheduling property of the task holding the resource.”

With the PIP when a task A of higher priority attempts to access a shared
resource being held by a lower priority task B, the priority of B is raised to
the priority of A temporarily until the time when B releases the resource.
Referring to Fig. 5, the priority of task τ1 is raised to P3 at time T3 until
τ1 completes its operation on the shared resource, at which time τ1 assumes
its previous priority P1. The result is that at time T4 the task τ2 will not be
able to preempt τ1, thus allowing τ1 to finish as soon as possible so that τ3
can begin its execution. The PIP algorithm is a dynamic algorithm and has
the transitive priority inheritance property, i.e., the priority of a task will be
raised each time when a higher priority task arrives.

The CPP requires the priorities of all of the tasks to be known a priori. The
resource requirements of each task are also known off-line, as is the highest
priority task that will access each resource. This highest priority value is
known as the priority ceiling of the resource. With CPP, each time a task gains
access to a shared resource, its priority is temporarily raised to the priority
ceiling of that resource. At any given time a task executes at the highest
priority ceiling of all of the resources being held by that task. When a task
releases a resource, its priority is lowered to the next highest priority ceiling,
or the task resumes its original priority if it no longer holds any resource.

The PCP also requires advance knowledge of the priorities of all tasks
and the resource requirements of each task. The current priority ceiling is the
highest priority ceiling among all of the resources that are currently in use by
different tasks. A requesting task τ1 is granted the resource if that task has
a higher priority than the current priority ceiling, or if the current priority
ceiling belongs to a resource currently being held by that task. Otherwise,
if the current priority ceiling belongs to a resource currently held by task
τ2, then τ2 inherits the priority from τ1 if τ1’s priority is higher. In general,
the PCP guarantees that a task such as τ1 will be blocked for at most one
critical section. This property of the PCP is of special importance to controller
implementation because each task can obtain a good estimate of its WCET.
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Another property of the PCP is that no deadlock can ever occur in the running
system, which is an essential attribute in safety-critical controller designs.

The resource access control protocols cannot be applied to the preemption
lock and the interrupt lock mechanisms. Therefore, in situations where deploy-
ing such synchronization primitives is unavoidable, the period of deployment
must be as short as possible.

4 RTOS Extensions for Control Engineering

The timing problems [28] that are present in control systems can be a combi-
nation of the control delays, jitter, and transient errors. Control delays include
control-law computation time, and communication time if the control loop is
closed over a network. Jitter includes sampling jitter, control computation
start time jitter, and actuation jitter. Transient errors are the results of hard-
ware errors and errors in the communication channel. Examples of transient
errors include vacant sampling and temporary blackout. Task scheduling and
synchronization can be direct sources of jitter. Another source of jitter is the
arrival of non-periodic tasks. The majority of the well-known commercial and
open source RTOSs are general-purpose RTOSs that evolve slowly and lack
the solutions developed for control engineering. Many algorithms developed
for the digital implementation of controllers can be found in research-grade
RTOSs such as Asterix and S.Ha.R.K, or as extensions to existing RTOSs
such as real-time (RT) Linux. These algorithms include task overrun manage-
ment and jitter compensation through control loop decomposition, and these
features are summarized next.

4.1 Task overrun management

The presence of aperiodic and sporadic tasks can overload a system, caus-
ing job overruns in periodic controller tasks. Section 2.3 discussed strategies
of deploying a special type of periodic server task to handle aperiodic tasks.
Job overruns may still exist depending on the controller design. The typical
controller implementation assigns both fixed priorities and frequencies to the
controller tasks. However, as controller designs grow more complex, such fixed
frequency assignments based on WCETs produce suboptimal controller per-
formance. Therefore, using the average execution time of the control loop to
determine the task frequencies can achieve better resource utilization, lead-
ing to more optimized controller performance. The averaging approach can,
however, cause a controller task to experience its WCET. Such a task is then
considered an overrun task with respect to other controller tasks that are run-
ning within range of their average execution times. One solution [5] for task
overrun management is to localize the overrun task by postponing its deadline
and reducing its frequency to a lower bound necessary for guaranteeing the
minimum acceptable controller performance. The formulation of the solution
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in [5] is based on the work done by Seto et al. [21], which presents an algo-
rithm that can compute and adjust the task frequencies according to the level
of computing bandwidth utilization.

The fundamental principle behind the algorithm in [21] is that the higher
the sampling frequency, the closer the digitized control-law implementation
can approximate the continuous-time control algorithm. The corresponding
task frequencies, however, must be chosen such that control performance op-
timization is subject to the overall system schedulability constraint. The im-
plication is that the sampling frequency should be allowed to vary within
a range, with the lower bound being the minimum frequency permissible in
maintaining the system stability, and the upper bound being a multiple of the
characteristic frequencies of the system. Since the control system performance
is measured by the performance index, usually taken to be a function, J , of
the sampling frequency, optimizing the system performance means minimizing

∆J(f) = JD(f)− J∗, (9)

where ∆J(f) is the difference between the PI of the continuous-time con-
trol JD(f) and its discrete-time implementation J∗ at sampling frequency
f . Approximating ∆J(f) by an exponential decay function, where α is the
magnitude coefficient and β is the decay rate, gives

∆J(f) = αe−βf . (10)

The control performance optimization problem then becomes [21]

min
(f1,...,fn)

∆J =
n∑

i=1

wi∆Ji =
n∑

i=1

wiαie
−βifi (11)

subject to the utilization constraint

n∑
i=1

Cifi ≤ A, 0 < A ≤ 1 (12)

fi ≥ fmi, i = 1, ..., n,

where fi are the execution frequencies of the controller tasks. The term wi is
a weighting factor assigned to each task according to its relative importance
in the task set. A is the available CPU bandwidth, fmi is the minimum task
frequency, and Ci is the computation time for a given task. Solving for the fi

in (11) yields [21]

fi = fmi, i = 1, ..., p (13)

fj =
1
βi

(lnΓj −Q), j = p+ 1, ..., n,

where
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Γj =
wjαjβi

Cj
, Q =

1∑n
i=p+1

Ci

βi

⎛⎝ p∑
i=1

Cifmi +
n∑

i=p+1

Ci

βi
lnΓi −A

⎞⎠ . (14)

The value p is chosen such that

p∑
i=1

Cifmi +
n∑

p+1

Ci

βi

(
βpfmp + ln

Γi

Γp

)
≥ A. (15)

This algorithm is applicable to the class of control systems where each
∆J(f) is a monotonically decreasing convex function. The convexity property
guarantees a unique solution for the optimization problem.

The condition A < 1 is true when some task frequencies are close to their
minimums. This condition holds when the digital controller implementation
includes non-control-related tasks. Allowing the value of A in (12) to vary
implies the algorithm can compute optimal task frequencies in accordance
with the changing bandwidth conditions at runtime. One of the sources for
variations in A can be the arrival of aperiodic tasks. The computation time Ci

is the WCET of a given task, which means that the system typically performs
at a suboptimal level. A better solution would be to substitute the normal
execution time Cn

i into the constraint equation (12) and obtain an optimal
frequency for the normal execution state. Task overrun management is then
necessary to ensure that task deadlines are met with the optimal scheduling
frequency fopt

i obtained from (13). The task overrun management algorithm
presented in [5] assigns each task a processor bandwidth,

Ui = fopt
i cni . (16)

The TBS algorithm [23] assigns a deadline to the aperiodic request when it
arrives at the server task,

dk = max(rk, dk−1) +
Ck

Us
, (17)

where rk is the kth aperiodic job arrival time, dk is the deadline, dk−1 is
the deadline of the (k − 1)-th job, Ck is the computation time of job k, and
Us is the server bandwidth. Adopting this deadline assignment model in the
periodic task overrun management algorithm results in

dk = max(rk, dk−1) +
1
fopt

i

. (18)

This deadline dk is postponed by a factor of WCETi−Cn
i

Ui
when a task ex-

ceeds its normal execution time Cn
i . This postponement assumes a maximum

overrun due to the use of WCET in the calculation. The algorithm represented
by (13) can ensure that each task is scheduled at a frequency that is at least
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fmi; however, missing one or more job deadlines will degrade the system per-
formance. Therefore, the lower bound frequency must be modified to account
for the overrun, thus giving a new minimum permitted frequency f ′

mi given
by

f ′
mi = fmi

WCETi − Cn
i

Ui
. (19)

The task set can be scheduled using the EDF algorithm and executes according
to the CBS algorithm [1], which can provide better response time for the
overrun task. In the original CBS algorithm, a server is assigned to handle each
task. When a task overruns its allocated bandwidth, its deadline is postponed
by an amount equal to the server period, and the server is replenished with
its maximum allocated bandwidth. Such a new deadline assignment scheme
for the overrun task can exceed the hard deadline of a periodic control task.
In the modified CBS algorithm, called the CBShd algorithm, the server is
replenished with the remaining execution time Cr

i if the remaining execution
time is less than the maximum allocated bandwidth. In addition, the new
deadline of the overrun task is postponed by Cr

i

Ui
, which results in a deadline

that will not exceed the hard deadline threshold.

4.2 Jitter compensation

As shown in Fig. 2, one method of reducing jitter is to decompose a con-
troller into several essential entities: the data collection task, the control-law
calculation task, and the output and update state task. The latter is respon-
sible for transmitting the computation output to the actuator and updating
the system state for the next sampling interval. The motivation behind such
decomposition is to alleviate the problems encountered in the single-task con-
troller implementation. The typical control loop can be modeled as a sequence
of functions [6]:

LOOP
WaitFor(Periodic-Clock-Interrupt)
A/D Conversion
CalculateOutput
D/A Conversion
UpdateState

END

In a single-task implementation, one task priority assignment determines
the degree of all types of jitter. If the priority is not assigned sufficiently high,
then other system tasks, both related and unrelated, with higher priorities
can preempt the control loop in the midst of sampling or can prevent it from
being scheduled in time; both situations result in sampling jitter. Similarly,
preemption can occur during the CalculateOutput function, causing compu-
tation delay. As can be seen, in a single-task implementation, the occurrence
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of jitter or delay in any function can trigger cascading jitter and delay effects
throughout the control loop. On the other hand, if the control task is given
a high priority to accommodate the sampling function, such a priority may
cause a computation delay in control tasks belonging to other control loops.

Therefore, decomposing the control loop into subtasks facilitates the
scheduling of elementary functions according to different priorities and dead-
lines. The A/D and D/A conversions are assumed to be negligible and are
excluded from the scheduling analysis. The data collection task is given a
high priority and has a short execution period in which limited workload is
performed. The task has a small context to reduce the context switch over-
head. Such a high priority but low cost task ensures that fixed interval periodic
sampling has negligible jitter. The last two tasks are referred to as the Cal-
culateOutput (τCO) task and the UpdateState (τUS) task, respectively, in [6].
These two tasks have different deadlines. In general, the τCO task should com-
plete as early as possible, while the τUS task must complete before the start of
the next sampling interval. The constraints on the deadlines can be expressed
as [6]

DUSi
= Ti (20)

CCOi ≤ DCOi
≤ Ti − CUSi

,

where CCOi and CUSi are the computation times of the subtasks τCO and τUS ,
respectively, and Ti is the period of the overall control loop. The DM priority
assignment algorithm is the optimal method for assigning task priorities once
the deadlines DCOi , DUSi are determined. Since the τCO is the more critical
task, Cervin [6] presents heuristics in finding the optimal deadlines for the
τCO subtasks while maintaining schedulability:

1. Let DCOi
= Ti − CUSi

.
2. Assign DM priorities, i.e., shorter deadlines map to higher priorities.
3. Calculate the task response time Ri from (8).
4. Set DCOi

= Ri.
5. Go back to Step 2 until no more improvements can be made to DCOi .

5 Survey of Control-Oriented RTOS

The characteristics of a typical RTOS stated by Stankovic and Ramamritham
in 1991 [25] are still largely true today in the majority of the RTOSs, both
commercial and open source. These characteristics include

• multitasking with preemptive priority scheduling
• efficient context switching
• efficient interrupt service facility
• flat memory model without support for virtual memory
• synchronization and communication primitives
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• application level timing services
• small memory footprint.

An RTOS with the above characteristics is event driven, ensures fair shar-
ing of the system resources and CPU time, and has little or no knowledge of
the nature of any task that executes in it. The event-driven model measures
the success and the applicability of the RTOS by the overall average sys-
tem response time. The previous sections have shown that the response-time
measurement neglects many timing constraints found in control applications,
e.g., the deadline constraint of a control task. Commercial and open source
general-purpose RTOSs may evolve slowly; however, results from the state-
of-the-art research in RTOS design are visible in many research RTOSs, most
notable are the Spring kernel [25], the Asterix real-time kernel [7], [13], the
S.Ha.R.K RTOS [9], [22], and the Fiasco µ-kernel for Linux [14], [15]. These re-
search kernels may have little commercial support but do include features such
as non-blocking synchronization methodology, various scheduling algorithms,
aperiodic servers, and new resource access control protocols. A research-grade
RTOS can be considered as a control-oriented or control-enabling RTOS.

An RTOS supporting control applications must have a facility that allows
a control application to specify the deadline of each task and the hardness of
each deadline. The hardness of the deadline is not determined by the tight-
ness of the deadline, but is determined by the level of tolerance in the system
in dealing with the missed deadline. Consequently, an RTOS must have the
ability to classify a task and account for that classification in the scheduler.
For example, the Spring kernel classifies tasks into critical, essential, and
non-essential tasks; the Asterix kernel classifies tasks into hard periodic, soft
periodic, hard aperiodic, and soft aperiodic tasks. The S.Ha.R.K kernel clas-
sifies a task according to its criticality, which can be one of hard, soft, firm,
and non-real-time. A control-enabling RTOS maintains other task parame-
ters such as periodicity and resource requirements in the TCB. For example,
the Asterix kernel maintains task period, deadline, best-case execution time
(BCET), and WCET.

The previous sections have shown that many of the algorithms presented
should be implemented as part of the underlying RTOS. Any rate adapta-
tion solution requires the RTOS to support the measurements of actual task
execution times. Online statistics-gathering and feedback are necessary for
implementing the task overrun management algorithm. Such features are typ-
ically missing from commercial RTOSs. On the other hand, the Asterix kernel
measures the execution time of each task and facilitates the implementation
of deterministic replay for debugging real-time applications [26].

A typical commercial RTOS may implement the PIP but may lack any sup-
port for the PCP. The S.Ha.R.K RTOS comes with modules that implement
the PIP, the PCP, and the Stack Resource Policy. The Spring kernel allows
a task to make resource reservations. Once granted, the task is guaranteed
to have exclusive access to reserved resources for its scheduled interval. The
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non-blocking synchronization algorithms, e.g., the wait-free locking with help-
ing [12], [11] are implemented in Asterix, S.Ha.R.K, and Fiasco. The Asterix
kernel implements an immediate inheritance protocol [7] for resource access
control. It also implements the wait and lock-free channel for inter-task com-
munications. In addition, the Asterix kernel minimizes execution time jitter
using dummy paths and dummy code.

These research kernels support the various priority assignment and schedul-
ing algorithms such as EDF and RM scheduling. The S.Ha.R.K kernel allows
pluggable modules for scheduling aperiodic tasks. These modules implement
the different types of servers, e.g., the Sporadic Server, the CBS, and the TBS.
The Spring kernel implements admission control, which determines whether
a new task can be created and scheduled without jeopardizing any existing
critical tasks.

These RTOSs are designed with control applications in mind and are freely
available. The attractive attributes of these systems are that a researcher can
either develop new algorithms, or improve upon the works done by others,
and immediately put these works into action. The participants of these RTOS
project communities have similar research interests; therefore, assistance and
valuable insights are always readily available. The trade-offs of using a public
open source research RTOS for digital controller implementation, however,
are the limited support of hardware platforms, the limited development and
debug tools, and the limited runtime analysis tools. For example, the non-
blocking synchronization primitives found in the research RTOSs rely on the
processor to have the atomic compare-and-swap instruction. This type of in-
struction is missing from many processor architectures such as the Intel x86
processor family. A broader issue is the lack of board support packages (BSPs)
that typically provide a suite of drivers and system software for a wide variety
of hardware devices and processors. A commercial RTOS such as VxWorks
fills those gaps in the BSP and tools areas. A considerable amount of time
may be spent in producing working bootstrapping code. Having a commer-
cially available on-chip debugging (OCD) solution can dramatically reduce
that development effort.

6 Concluding Remarks

The research field for digital controller implementation is vast and diverse.
This chapter has attempted to synthesize the relevant results of various re-
search works from both control engineering and RTOS designs into a system-
atic approach applicable in RTOS-based control design and implementation.
The challenge was in selecting the topics and presenting the information in a
succinct fashion. The main focus of this chapter was on single-processor and
single-rate digital controller architecture. As such, topics in controller imple-
mentation on multiprocessor architectures and distributed controller design
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where the loop is closed over a network have been mostly excluded from the
discussions.
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1 Introduction

The current pervasive and ubiquitous computing trend has increased the em-
phasis on embedded and networked computing within the engineering commu-
nity. Today embedded computers already by far outnumber desktop comput-
ers. Embedded systems are often found in consumer products and are therefore
subject to hard economic constraints. Some examples are automotive systems
and mobile phones. The pervasive nature of these systems generates further
constraints on physical size and power consumption. These product-level con-
straints give rise to resource constraints on the computing platform level, for
example, limitations on computing speed, memory size, and communication
bandwidth. Due to economic considerations, this is true in spite of the fast
development of computing hardware. In many cases, it is not economically
justified to add an additional CPU or to use a processor with more capacity
than what is required by the application. Cost also favors general-purpose
computing components over specially designed hardware and software solu-
tions.

Control systems constitute an important subclass of embedded computing
systems—so important that, for example, within automotive systems, comput-
ers commonly go under the name electronic control units (ECUs). A top-level
modern car contains more than 50 ECUs of varying complexity. Most of these
ECUs implement different feedback control tasks, for instance, engine control,
traction control, anti-lock braking, active stability control, cruise control, and
climate control.

At the same time, control systems are becoming increasingly complex
from both the control and computer science perspectives. Today, even seem-
ingly simple embedded control systems often contain a multi-tasking real-
time kernel and support networking. Many computer-controlled systems are
distributed, consisting of computer nodes and a communication network con-
necting the various systems. It is not uncommon for the sensor, actuator, and
control calculations to reside on different nodes. This gives rise to networked
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control loops. Within individual nodes, controllers are often implemented as
one or several tasks on a microprocessor with a real-time operating system.
Often, the microprocessor also contains tasks for other functions, such as com-
munication and user interfaces. The operating system typically uses multi-
programming to multiplex the execution of the various tasks. The CPU time
and the communication bandwidth can hence be viewed as shared resources
for which the tasks compete.

By tradition, the design of computer-based control systems is based on the
principle of separation of concerns. This separation is based on the assump-
tion that feedback controllers can be modeled and implemented as periodic
tasks that have a fixed period, T , a known worst-case bound on the execu-
tion time (WCET), C, and a hard deadline, D. The latter implies that it is
imperative that the tasks always meet their deadlines, i.e., that the actual ex-
ecution time (response time) is always less or equal to the deadline, for each
invocation of the task. This is in contrast to a soft deadline, which may oc-
casionally be violated. The fixed-period assumption of the simple task model
has also been widely adopted by the control community and has resulted in
the development of the sampled computer-control theory with its assump-
tion of deterministic, equidistant sampling. The separation of concerns has
allowed the control community to focus on the pure control design without
having to worry about how the control system eventually is implemented. At
the same time, it has allowed the real-time computing community to focus on
development of scheduling theory and computational models that guarantee
that hard deadlines are met, without any need to understand what impact
scheduling has on the stability and performance of the plant under control.

Historically, the separated development of control and scheduling theories
for computer-based control systems has produced many useful results and
served its purpose well. However, the separation has also had negative effects.
The two communities have become partially alienated. This has led to a lack
of mutual understanding between the fields. The assumptions of the simple
model are also overly restrictive with respect to the characteristics of many
control loops. Many control loops are not periodic, or they may switch between
a number of different fixed sampling periods. Control loop deadlines are not
always hard. On the contrary, many controllers are quite robust to variations
in sampling period and response time. Hence, it is questionable whether it is
necessary to model them as hard-deadline tasks.

The main drawbacks of the separation of concerns are that it does not al-
ways utilize the available computing resources in an optimal way, and that it
sometimes gives rise to worse control performance than what can be achieved
if the designs of the control and real-time computing parts are integrated.
This is particularly important for embedded control applications with limited
computing and communication resources, demanding performance specifica-
tions, and high requirements on flexibility. For these types of applications,
better performance can be achieved if a codesign approach is adopted, where
the control system is designed taking the resource constraints into account
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and where the real-time computing and scheduling is designed with the con-
trol performance in mind. The resulting implementation-aware control sys-
tems are better suited to meet the requirements of embedded and networked
applications.

2 The Codesign Problem

The control and scheduling codesign problem can be informally stated as fol-
lows in the uniprocessor case:

Given a set of processes to be controlled and a computer with lim-
ited computational resources, design a set of controllers and schedule
them as real-time tasks such that the overall control performance is
optimized.

An alternative view of the same problem is to say that we should design and
schedule a set of controllers such that the least expensive implementation
platform can be used while still meeting the performance specifications. For
distributed systems, the scheduling is extended to also include the network
communication.

The nature and the degree of difficulty of the codesign problem for a given
system depend on a number of factors:

• The real-time operating system. What scheduling algorithms are sup-
ported? How is I/O handled? Can the real-time kernel measure task exe-
cution times and detect execution overruns and missed deadlines?

• The scheduling algorithm. Is it time driven or event driven, priority driven
or deadline driven? What analytical results regarding schedulability and
response times are available? What scheduling parameters can be changed
on-line? How are task overruns handled?

• The controller synthesis method. What design criteria are used? Are the
controllers designed in the continuous-time domain and then discretized
or is direct discrete design used? Are the controllers designed to be robust
against timing variations? Should they actively compensate for timing vari-
ations?

• The execution-time characteristics of the control algorithms. Do the algo-
rithms have predictable worst-case execution times? Are there large vari-
ations in execution time from sample to sample? Do the controllers switch
between different internal modes with different execution-time profiles?

• Off-line or on-line optimization. What information is available for the off-
line design and how accurate is it? What can be measured on-line? Should
the system be able to handle the arrival of new tasks? Should the system
be re-optimized when the workload changes? Should there be feedback
from the control performance to the scheduling algorithm?
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• The network communication. Which type of network protocol is used? Can
the protocol provide worst-case guarantees on the network latency? How
large is the probability of lost packets?

Codesign of control and computing systems is not a new topic. Control
applications were one of the major driving forces in the early development of
computers. At that time, limited computer resources was a general problem,
not only a problem for embedded controllers. For example, the issues of limited
word length and fixed-point calculations and their results on resolution were
well known among control engineers in the 1970s. However, as computing
power has increased, these issues have received decreasing attention. A nice
survey of the area from the mid-1980s is given in [14].

3 Temporal Determinism

Computer-based control theory normally assumes equidistant sampling and
negligible, or constant, input-output latencies. However, this situation can
seldom be achieved in practice or is too costly for a particular application.
In a multi-threaded system, tasks interfere with each other due to preemp-
tion and blocking from task communication. Execution times may be data
dependent or vary due to the use of caches. In networked control loops, where
the sensors, controllers, and actuators reside on different physical nodes, the
communication gives rise to latencies that can be more or less deterministic,
depending on the network protocols used. The result of all this is jitter in
sampling intervals and non-negligible and varying latencies.

3.1 Timing parameters

The basic timing parameters of a control task are shown in Fig. 1. It is assumed
that the control task is released (i.e., inserted into the ready queue of the real-
time operating system) periodically at times given by tk = hk, where h is the
nominal sampling interval of the controller. Due to preemption and blocking
from other tasks in the system, the actual start of the task may be delayed for
some time Ls. This is called the sampling latency of the controller. A dynamic
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scheduling policy will introduce variations in this interval. The sampling jitter
is quantified by the difference between the maximum and minimum sampling
latencies in all task instances,

Js
def= max

k
Lk

s −min
k
Lk

s . (1)

Normally, it can be assumed that the minimum sampling latency of a task is
zero, in which case we have Js = maxk L

k
s . Jitter in the sampling latency will

also introduce jitter in the sampling interval h. From the figure, it is seen that
the actual sampling interval in period k is given by

hk = h− Lk−1
s + Lk

s . (2)

The sampling interval jitter is quantified by

Jh
def= max

k
hk −min

k
hk. (3)

We can see that the sampling interval jitter is upper bounded by

Jh ≤ 2Js. (4)

After some computation time and possibly further preemption from other
tasks, the controller will actuate the control signal. The delay from the sam-
pling to the actuation is called the input-output latency, denoted Lio. Varying
execution times or task scheduling will introduce variations in this interval.
The input-output jitter is quantified by

Jio
def= max

k
Lk

io −min
k
Lk

io. (5)

It is well known that a constant input-output latency decreases the phase
margin of the control system, and that it introduces a fundamental limita-
tion on the achievable closed-loop performance. The resulting sampled-data
system is time invariant and of finite order, which allows standard linear
time-invariant (LTI) analysis to be used (see, e.g., [3]). For a given value of
the latency, it is easy to predict the performance degradation due to the de-
lay. Furthermore, it is straightforward to account for a constant latency in
most control design methods. From this perspective, a constant input-output
latency is preferable over a varying latency.

The scheduling-induced input-output latency of a single control task can
be reduced by assigning it a higher priority (or, alternatively, under deadline-
based scheduling, a shorter deadline). Of course, this approach will not work
for the whole task set.

Another option is to use non-preemptive scheduling. This will guarantee
that, once the task has started its execution, it will continue uninterrupted
until the end. The disadvantages of this approach are that the scheduling
analysis for non-preemptive scheduling is quite complicated (e.g., [19, 27]),
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and that the schedulability of other tasks may be compromised. However,
as computing speed increases, and, hence, C ! T , it becomes increasingly
interesting to execute the tasks with hard deadlines non-preemptively.

A standard way to achieve a short input-output latency in a control task
is to separate the algorithm calculations in two parts: Calculate Output and
Update State. Calculate Output contains only the parts of the algorithm that
make use of the current sample information. Update State contains the update
of the controller states and precalculations for the next period. Update State
can therefore be executed after the output signal transmission, hence, reducing
the input-output latency. Further improvements can be obtained by scheduling
the two parts as subtasks with different priorities, see [6].

A control system with a time-varying input-output latency is quite difficult
to analyze, since the standard tools for LTI systems cannot be used. If the
statistical properties of the latency are known, then theory from jump linear
systems can be used to evaluate the stability and performance of the system
(in the mean sense), see [25]. Often, it is not possible to have exact knowledge
of the input-output latency distribution. A simple, sufficient stability test
for systems where only the range of the latency is known is given in [18].
Assuming zero sampling jitter, the test can guarantee stability for any input-
output latencies in a given interval (whether they are time-varying, dependent,
etc.).

4 Design Approaches

The temporal non-determinism caused by the implementation platform can
be approached in two different ways:

• the hard real-time approach, or
• the soft, control-based approach.

The hard real-time approach strives to maximize the temporal determin-
ism by using special-purpose hardware, software, and protocols. This includes
techniques such as static cyclic scheduling, time-triggered computing and
communication [20], synchronous programming languages [4], and comput-
ing models such as Giotto [17]. This approach has several advantages, espe-
cially for safety-critical applications. For example, it simplifies attempts at
formal verification. The approach also has drawbacks. It has strong require-
ments on the availability of realistic worst-case bounds on resource utilization,
something which is very difficult to obtain in practice. A result of this could
be underutilization and, possibly, poor control performance due to sampling
intervals that are too long. The approach also makes it difficult to use general-
purpose implementation platforms. This is particularly serious, since it is these
systems that have the most advantageous price-performance development.

The soft, control-based approach instead views the temporal non-deter-
minism caused by the implementation platform as an uncertainty or dis-
turbance acting on the control loop and handles it using control-based ap-
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proaches. This can be done using a number of techniques. The simplest way
is to rely on the inherent robustness of feedback. It is well known that feed-
back increases the robustness towards plant variations. The same holds for
variations caused by the implementation platform, i.e., temporal robustness.
Another approach to deal with jitter in the control design is to explicitly
design the controller to be robust, i.e., treat the delay as a parametric uncer-
tainty. Many robust design methods are available, such as H∞, quantitative
feedback theory (QFT), and µ-design. The majority of these methods are de-
veloped for plant uncertainties. Although parts of the results carry over to
temporal robustness, it is likely that there is room for much more research
here.

It is also possible to let the controller actively compensate for the delay in
each sample. This can be compared to traditional gain-scheduling and feedfor-
ward from disturbances. An optimal, jitter-compensating controller was devel-
oped in [25]. The controller compensates for time-varying delays in a control
loop, which is closed over a communication network. The setup is shown in
Fig. 2. The sensor node samples the process periodically, sending the measure-
ments over the network to the controller node. The controller node is event
driven and computes a new control signal as soon as a measurement arrives.
The control signal is sent to the event-driven actuator node, which outputs
the signal to the process. The linear-quadratic (LQ) state feedback control
law has the form

u(k) = −L(τk
sc)

[
x(k)

u(k − 1)

]
, (6)

where the feedback gain L depends on the sensor-to-controller delay τk
sc in

the current sample. The computation of the gain vector L is quite involved
and requires that the probability distributions of τsc and τca be known. The
state feedback can be combined with an optimal state observer that takes the
actual delays into account.
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The above approach cannot be directly applied to scheduling-induced de-
lays. The problem is that the delay in the current sample will not be known
until the task has finished, and by then it is too late to compensate. A sim-
ple scheme that compensates for delay in the previous sample is presented in
[21]. The compensator has the same basic structure as the well-known Smith
predictor, but allows for a time-varying delay.

Many other heuristic jitter compensation schemes have been suggested;
see, e.g., [1,13,24]. What the approaches have in common is that they require
language or operating system support for instrumenting an application with
measurement code.

In order to fully apply these techniques, it is necessary to increase the
understanding of how temporal non-determinism affects control performance.
This requires new theories and tools that are now beginning to emerge. An im-
portant issue that is still lacking is a theory that allows us to determine which
level of temporal determinism a given control loop really requires in order to
meet given control objectives on stability and performance. Is it necessary to
use a time-triggered approach, or will an event-based approach perform sat-
isfactorily? How large are the input-output latencies that can be tolerated?
Is it OK to now and then skip a sample in order to maintain the schedula-
bility of the task set? Ideally, one would like to have an index that decides
the required level of temporal determinism through a single quantitative mea-
sure. One possible name for such an index would be the schedulability margin.
This measure would need to combine both a margin with respect to input-
output latency and jitter and a margin that decides how large a sampling
jitter the loop can tolerate. For constant input-output latencies the classical
phase margin can be applied.

An extension of the classical delay margin to time-varying delays is pro-
posed in [10]. The jitter margin Jm(L) is defined as the largest input-output
jitter for which closed-loop stability is guaranteed for any time-varying latency
∆ ∈ [L,L+Jm(L)], where L is the constant part of the input-output latency.
The jitter margin is based on the stability theorem defined in [18]. The jitter
margin can be used to derive hard deadlines that guarantee closed-loop sta-
bility, provided that the scheduling method employed can provide bounds on
the worst-case and best-case response times of the controller tasks.

What is still missing in order to be able to define a reasonable analyti-
cal concept for a schedulability margin is a simple sampling jitter criterion.
The criterion should ideally tell the size of the variations around a nomi-
nal sampling interval that the process can tolerate, maintaining stability and
acceptable performance.

4.1 Functional robustness

In addition to being temporally robust, it is also important for a control
system to be robust towards faults. Numerous theories and methods have
been developed for fault detection, diagnosis, and fault tolerance within the
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control community. However, the majority of this work concerns faults that
occur within the plant, sensors, or actuators. As most software engineers are
sadly aware, faults in the software system are far more common than faults
in the plant under control. In spite of this, the amount of work that considers
robustness against these types of faults, i.e., functional robustness, is very
small. In [12] a method is presented that renders a control system more robust
to computer-level faults leading to data errors. The method is based on the
introduction of artificial signal limits in combination with an anti-windup
scheme. Related to this, in [2], a methodology is developed for analyzing the
impact that these types of data errors have on control system dependability.

5 Codesign Tools

In order for codesign of control and computing systems to become feasible,
it is necessary to have software tools that allow the designers to analyze and
simulate how timing affects control performance. Such tools have recently
begun to emerge, e.g., [11,23,26]. Here, two such tools will be briefly described:
Jitterbug (http://www.control.lth.se/˜lincoln/jitterbug) and TrueTime
(http://www.control.lth.se/˜dan/truetime).

5.1 Jitterbug

Jitterbug [8,9,22] is a MATLAB-based toolbox that computes a quadratic per-
formance criterion for a linear control system under various timing conditions.
The tool can also compute the spectral density of the signals in the system.
Using the toolbox, one can easily and quickly assert how sensitive a control sys-
tem is to delay, jitter, lost samples, etc., without resorting to simulation. The
tool is quite general and can also be used to investigate jitter-compensating
controllers, aperiodic controllers, and multi-rate controllers. The main contri-
bution of the toolbox, which is built on well-known theory (linear quadratic
Gaussian (LQG) theory and jump linear systems), is to make it easy to apply
this type of stochastic analysis to a wide range of problems.

Jitterbug offers a collection of MATLAB routines that allow the user to
build and analyze simple timing models of computer-controlled systems. A
control system is built by connecting a number of continuous- and discrete-
time systems. For each subsystem, optional noise and cost specifications may
be given. In the simplest case, the discrete-time systems are assumed to be
updated in order during the control period. For each discrete system, a random
delay (described by a discrete probability density function) can be specified
that must elapse before the next system is updated. The total cost of the
system (summed over all subsystems) is computed algebraically if the timing
model system is periodic or iteratively if the timing model is aperiodic.

To make the performance analysis feasible, Jitterbug can only handle a
certain class of system. The control system is built from linear systems driven
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by white noise, and the performance criterion to be evaluated is specified as
a quadratic, stationary cost function. The timing delays in one period are
assumed to be independent from the delays in the previous period. Also, the
delay probability density functions are discretized using a time-grain that is
common to the whole model.

Even though a quadratic cost function can hardly capture all aspects of
a control loop, it can still be useful when one wants to quickly judge several
possible controller implementations against each other. A higher value of the
cost function typically indicates that the closed-loop system is less stable (i.e.,
more oscillatory), and an infinite cost means that the control loop is unstable.
The cost function can easily be evaluated for a large set of design parameters
and can be used as a basis for the control and real-time design.

Jitterbug models

In Jitterbug, a control system is described by two parallel models: a sig-
nal model and a timing model. The signal model is given by a number of
connected, linear, continuous- and discrete-time systems. The timing model
consists of a number of timing nodes and describes when the different discrete-
time systems should be updated during the control period.

An example is shown in Fig. 3, where a computer-controlled system is
modeled by four blocks. The plant is described by the continuous-time system
G, and the controller is described by the three discrete-time systems H1, H2,
andH3. The systemH1 could represent a periodic sampler,H2 could represent
the computation of the control signal, and H3 could represent the actuator.
The associated timing model says that, at the beginning of each period, H1
should first be executed (updated). Then there is a random delay τ1 until H2
is executed, and another random delay τ2 until H3 is executed. The delays
could model computational delays, scheduling delays, or network transmission
delays.

The same discrete-time system may be updated in several timing nodes. It
is possible to specify different update equations in the various cases. This can
be used to model a filter where the update equations look different depending
on whether or not a measurement value is available. It is also possible to make
the update equations depend on the time since the first node became active.
This can be used to model jitter-compensating controllers, for example.

For some systems, it is desirable to specify alternative execution paths (and
thereby multiple next nodes). In Jitterbug, two such cases can be modeled (see
Fig. 4):

(a) A vector n of next nodes can be specified with a probability vector p. After
the delay, execution node n(i) will be activated with probability p(i). This
can be used to model a sample being lost with some probability.

(b) A vector n of next nodes can be specified with a time vector t. If the
total delay in the system since the node exceeds t(i), node n(i) will be
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Fig. 3. A simple Jitterbug model of a computer-controlled system: (a) signal model
and (b) timing model. The process is described by the continuous-time system G(s)
and the controller is described by the three discrete-time systems H1(z), H2(z),
and H3(z), representing the sampler, the control algorithm, and the actuator. The
discrete systems are executed according to the periodic timing model.
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Fig. 4. Alternative execution paths in a Jitterbug execution model: (a) random
choice of path and (b) choice of path depending on the total delay from the first
node.

activated next. This can be used to model time-outs and various compen-
sation schemes.

Example. The Jitterbug commands used to define the control system of Fig.
3 are given in Fig. 5. The process is modeled by the continuous-time system

G(s) =
1000

s(s+ 1)
,

and the controller is a discrete-time PD controller implemented as

H2(z) = −K
(

1 +
Td

h

z − 1
z

)
.

The sampler and the actuator are described by the trivial discrete-time sys-
tems

H1(z) = H3(z) = 1.
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G = 1000/(s*(s+1)); Define the process
H1 = 1; Define the sampler
H2 = -K*(1+Td/h*(z-1)/z); Define the controller
H3 = 1; Define the actuator
Ptau1 = [ ... ]; Define delay probability distribution 1
Ptau2 = [ ... ]; Define delay probability distribution 2
N = initjitterbug(delta,h); Set time-grain and period
N = addtimingnode(N,1,Ptau1,2); Define timing node 1
N = addtimingnode(N,2,Ptau2,3); Define timing node 2
N = addtimingnode(N,3); Define timing node 3
N = addcontsys(N,1,G,4,Q,R1,R2); Add plant, specify cost and noise
N = adddiscsys(N,2,H1,1,1); Add sampler to node 1
N = adddiscsys(N,3,H2,2,2); Add controller to node 2
N = adddiscsys(N,4,H3,3,3); Add actuator to node 3
N = calcdynamics(N); Calculate internal dynamics
J = calccost(N); Calculate the total cost

Fig. 5. This MATLAB script shows the commands needed to compute the per-
formance index of the control system defined by the timing and signal models in
Fig. 3.

The delays in the computer system are modeled by the two (possibly ran-
dom) variables τ1 and τ2. The total delay from sampling to actuation is thus
given by τ1 + τ2.

Using the defined Jitterbug model, it is straightforward to investigate, e.g.,
how sensitive the control loop is to slow sampling and constant delays (by
sweeping over suitable ranges for these parameters) and random delays with
jitter compensation. For more details and other illustrative examples (includ-
ing multi-rate control, overrun handling, and notch filter implementations),
see [9].

5.2 TrueTime

TrueTime [8,15,16] is a MATLAB/Simulink-based tool that facilitates simu-
lation of the temporal behavior of a multi-tasking real-time kernel executing
controller tasks. The tasks are controlling processes that are modeled as or-
dinary continuous-time Simulink blocks. TrueTime also makes it possible to
simulate simple models of communication networks and their influence on
networked control loops.

In TrueTime, kernel and network Simulink blocks are introduced, the in-
terfaces of which are shown in Fig. 6. The kernel blocks are event driven and
execute code that models, e.g., I/O tasks, control algorithms, and network in-
terfaces. The scheduling policy of the individual kernel blocks is arbitrary and
decided by the user. Likewise, in the network, messages are sent and received
according to a chosen network model.
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Fig. 6. The TrueTime block library. The Schedule and Monitor outputs display the
allocation of common resources (CPU, monitors, network) during the simulation.

The level of simulation detail is also chosen by the user—it is often nei-
ther necessary nor desirable to simulate code execution on instruction level
or network transmissions on bit level. TrueTime allows the execution time of
tasks and the transmission times of messages to be modeled as constant, ran-
dom, or data dependent. Furthermore, TrueTime allows simulation of context
switching and task synchronization using events or monitors.

TrueTime can be used as an experimental platform for research on dynamic
real-time control systems. For instance, it is possible to study compensation
schemes that adjust the control algorithm based on measurements of actual
timing variations (i.e., to treat the temporal uncertainty as a disturbance and
manage it with feedforward or gain scheduling). It is also easy to experiment
with more flexible approaches to real-time scheduling of controllers, such as
feedback scheduling, see [7]. There the available CPU or network resources
are dynamically distributed according to the current situation (CPU load,
the performance of the different loops, etc.) in the system.

The kernel block

The kernel block is a MATLAB S-function that simulates a computer with
a simple but flexible real-time kernel, analog-to-digital (A/D) and digital-to-
analog (D/A) converters, a network interface, and external interrupt channels.
The kernel executes user-defined tasks and interrupt handlers. Internally, the
kernel maintains several data structures that are commonly found in a real-
time kernel: a ready queue, a time queue, and records for tasks, interrupt
handlers, monitors, and timers that have been created for the simulation.

An arbitrary number of tasks can be created to run in the TrueTime kernel.
Tasks may also be created dynamically as the simulation progresses. Tasks are
used to simulate both periodic activities, such as controller and I/O tasks, and
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aperiodic activities, such as communication tasks and event-driven controllers.
Aperiodic tasks are executed by the creation of task instances (jobs).

Each task is characterized by a number of static (e.g., relative deadline,
period, and priority) and dynamic (e.g., absolute deadline and release time)
attributes. In accordance with the Real-Time Specification for Java (RTSJ)
[5], it is furthermore possible to attach two overrun handlers to each task:
a deadline overrun handler (triggered if the task misses its deadline) and an
execution time overrun handler (triggered if the task executes longer than its
worst-case execution time).

Interrupts may be generated in two ways: externally (associated with the
external interrupt channel of the kernel block) or internally (triggered by user-
defined timers). When an external or internal interrupt occurs, a user-defined
interrupt handler is scheduled to serve the interrupt.

The execution of tasks and interrupt handlers is defined by user-written
code functions. These functions can be written either in C++ (for speed) or
as MATLAB m-files (for ease of use). Control algorithms may also be defined
graphically using ordinary discrete Simulink block diagrams.

Simulated execution occurs at three distinct priority levels: the interrupt
level (highest priority), the kernel level, and the task level (lowest priority).
The execution may be preemptive or non-preemptive; this can be specified
individually for each task and interrupt handler.

At the interrupt level, interrupt handlers are scheduled according to fixed
priorities. At the task level, dynamic-priority scheduling may be used. At each
scheduling point, the priority of a task is given by a user-defined priority func-
tion, which is a function of the task attributes. This makes it easy to simulate
different scheduling policies. For instance, a priority function that returns a
priority number implies fixed-priority scheduling, whereas a priority function
that returns the absolute deadline implies earliest-deadline-first scheduling.
Predefined priority functions exist for rate-monotonic, deadline-monotonic,
fixed-priority, and earliest-deadline-first scheduling.

The network block

The network block is event driven and executes when messages enter or leave
the network. When a node tries to transmit a message, a triggering signal
is sent to the network block on the corresponding input channel. When the
simulated transmission of the message is finished, the network block sends a
new triggering signal on the output channel corresponding to the receiving
node. The transmitted message is put in a buffer at the receiving computer
node.

A message contains information about the sending and the receiving com-
puter node, arbitrary user data (typically measurement signals or control sig-
nals), the length of the message, and optional real-time attributes such as a
priority or a deadline.
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Fig. 7. The execution of the code associated with tasks and interrupt handlers is
modeled by a number of code segments with different execution times. Execution of
user code occurs at the beginning of each code segment.

The network block simulates medium access and packet transmission in
a local area network. Six simple models of networks are currently supported:
carrier-sense multiple access/collision detection (CSMA/CD) (e.g., Ethernet),
carrier-sense multiple access/arbitration on message priority (CSMA/AMP)
(e.g., CAN), Round Robin (e.g., Token Bus), frequency-division multiplexed
access (FDMA), time-division multiplexed access (TDMA) (e.g., time-triggered
protocol (TTP)), and switched Ethernet. The propagation delay is ignored,
since it is typically very small in a local area network. Only packet-level simu-
lation is supported, i.e., it is assumed that higher protocol levels in the kernel
nodes have divided long messages into packets.

Configuring the network block involves specifying a number of general
parameters, such as transmission rate, network model, and probability for
packet loss. Protocol-specific parameters that need to be supplied include the
time slot and cyclic schedule in the case of TDMA.

Execution model

The execution of tasks and interrupt handlers is defined by code functions. A
code function is further divided into code segments according to the execution
model in Fig. 7. The code can interact with other tasks and with the envi-
ronment at the beginning of each code segment. This execution model makes
it possible to model input-output latencies, blocking when accessing shared
resources, etc. The number of segments can be chosen to simulate an arbitrary
time granularity of the code execution. Technically, it would be possible to
simulate very fine-grained details occurring at the machine instruction level,
such as race conditions. However, that would require a large number of code
segments.

The simulated execution time of each segment is returned by the code
function, and can be modeled as constant, random, or even data dependent.
The kernel keeps track of the current segment and calls the code functions
with the proper argument during the simulation. Execution resumes in the
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function [exectime, data] = Pcontroller(segment, data)
switch segment,
case 1,
r = ttAnalogIn(1);
y = ttAnalogIn(2);
data.u = data.K*(r-y);
exectime = 0.001;

case 2,
ttAnalogOut(1, data.u);
exectime = 0.001;

case 3,
exectime = -1; % finished

end

Fig. 8. Example of a standard code function written in MATLAB code. The lo-
cal memory of the controller task is represented by the data structure data. This
stores the controller gain and the control signal between invocations of different code
segments.

next segment when the task has been running for the time associated with the
previous segment. This means that preemption by higher-priority activities
and interrupts may cause the actual delay between execution of segments to
be longer than the execution time.

Fig. 8 shows an example of a code function corresponding to the time
line in Fig. 7. The function implements a standard P controller. In the first
segment, the plant is sampled and the control signal is computed. In the
second segment, the control signal is actuated and the controller states are
updated. The third segment indicates the end of execution by returning a
negative execution time.

The data structure data represents the local memory of the task and is
used to store the control signal and measured variable between calls to the
different segments. A/D and D/A conversion is performed using the kernel
primitives ttAnalogIn and ttAnalogOut.

Note that the input-output latency of this controller will be at least 2 ms
(i.e., the execution time of the first segment). However, if there is preemption
from other high-priority tasks, the actual input-output latency will be longer.

6 Conclusion

This chapter has discussed the relationships between control design and the
real-time scheduling, and how implementation-level timing variations can be
handled in the control design. For embedded applications with limited com-
puting resources, this type of implementation-aware control is especially im-
portant. Designing a real-time control system is essentially a codesign prob-
lem. Choices made in the real-time design will affect the control design and
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vice versa. For instance, deciding on a particular network protocol will give
rise to certain delay distributions that must be taken into account in the
controller design. On the other hand, bandwidth requirements in the control
loops will influence the choice of CPU and network speed. Using an analysis
tool such as Jitterbug, one can quickly assert how sensitive the control loop is
to slow sampling rates, delay, jitter, and other timing problems. Aided by this
information, the user can proceed with more detailed, system-wide real-time
and control design using a simulation tool such as TrueTime.
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2. Örjan Askerdal, Magnus Gäfvert, Martin Hiller, and Neeraj Suri. Analyzing
the impact of data errors in safety-critical control systems. IEICE Transac-
tions on Information and Systems, E86-D(12), December 2003. Special Issue on
Dependable Computing.
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feedforward scheduling of control tasks. Real-Time Systems, 23(1–2):25–53, July
2002.

8. Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, and Karl-Erik Årzén.
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The jitter margin and its application in the design of real-time control systems.
In Proceedings of the 10th International Conference on Real-Time and Embedded
Computing Systems and Applications, Göteborg, Sweden, August 2004.
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394 K.-E. Årzén, A. Cervin, and D. Henriksson

13. Tore Hägglund. A predictive PI controller for processes with long dead times.
IEEE Control Systems Magazine, 12(1):57–60, 1992.

14. H. Hanselmann. Implementation of digital controllers—A survey. Automatica,
23(1):7–32, 1987.

15. Dan Henriksson and Anton Cervin. TrueTime 1.1—Reference manual. Technical
Report ISRN LUTFD2/TFRT--7605--SE, Department of Automatic Control,
Lund Institute of Technology, October 2003.

16. Dan Henriksson, Anton Cervin, and Karl-Erik Årzén. TrueTime: Simulation of
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1 Introduction

This article discusses what we consider one of the central aspects of embedded
systems: the realization of control systems by software. Although computers
are today the most popular medium for implementing controllers, we feel that
the state of understanding of this topic is not satisfactory, mostly due to the
fact that it is situated in the frontier between two different cultures and world
views (control and informatics) which are not easy to reconcile. The purpose
of this article is to clarify these issues and present them in a uniform and,
hopefully, coherent manner.

The article is organized as follows. We start with a short high-level dis-
cussion of the two phenomena involved, control and computation. In Section 2
we explain the basic issues related to the realization of controllers by software
using a simple proportional-integral-derivative (PID) controller as an exam-
ple. In Section 3 we move to more complex multi-periodic control loops and
describe various approaches for scheduling them on a sequential computer.
Section 4 is devoted to discrete-event (and hybrid) systems and their software
implementation. Finally, in Section 5 we briefly discuss distributed control
and fault tolerance.

1.1 Control

A controller is a mechanism that interacts with part of the world (the “plant”)
by measuring certain variables and exerting some influence in order to steer
it toward desirable states. The rule that determines what the controller does
as a function of what it observes (and of its own state) is called the feedback
function. In early days of control, the feedback function was “computed” me-
chanically: for example, in the famous Watt governor, analyzed mathemati-
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cally by Maxwell, the angle of the governor was determined by the angular
velocity by purely mechanical means.

With the advent of electronics, the process of computing that function was
decoupled from measurement and actuation. Physical magnitudes of different
natures were transformed into low-power electric signals. These signals were
fed into an analog computer whose output signals were converted into physical
quantities and fed back to the plant. From a mathematical standpoint, this
architecture posed no conceptual problems. The underlying model of the plant
and of the analog computer were of the same nature. The former was a con-
tinuous dynamical system with evolution defined by the differential equations
of the corresponding physical theory (mechanics, thermodynamics, etc.), and
the latter consisted of an electrical circuit with dynamics governed by simi-
lar types of laws. Schematically, we can define the evolution of the plant by
the equation ẋ = f(x, d, u) with x being the state of the plant, d some ex-
ternal disturbance and u the control signal. The dynamics of the controller
implemented by an analog circuit can be likewise written as u̇ = g(u, x, x0),
with x0 being a reference signal, and the evolution of the controlled plant is
obtained by the composition of these two equations. This is the conceptual
framework underlying classical control theory, where the feedback function is
“computed” continuously at each and every time instant.

The introduction of digital computers changed this picture completely. To
start with, the computation of a function by digital means is an inherently
discrete process. Numbers are represented by binary encoding rather than
by physical magnitudes. Consequently, sensor readings should be transformed
from analog to digital representation before the computation; conversely, the
results of the computation should be transformed back from digital to analog
form. The computation is done by a sequence of discrete steps that take
time, and the electrical values on different wires are meaningless until the
computation terminates. Thus it makes no sense to connect the computer
to the plant in a continuous manner. The transition from physical to digital
control is illustrated in Fig. 1.

Computer

Digital control

Digital

DA

AD

Actuator

Sensor

PlantAnalog

Computer

Actuator

Plant

Sensor

Analog control

Controller Plant

Direct physical control

Fig. 1. From physical to analog to digital control
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To cope with these changes a comprehensive theory of digital “sampled”
control has been developed [2]. Within this theory, the interaction of the
controller and the plant is restricted to sampling points, a (typically periodic)
discrete subset of the real-time axis. At these points sensors are read, and the
values are digitized and handed over to the computer, which computes the
value of the feedback function, which is converted to analog and fed back to
the plant via the actuators. From the control point of view, the sampling rate
is determined by the dynamics of the plant, with the obvious intuition that
a faster and more complex dynamics requires more frequent sampling. The
sampling period is determined by the desired level of approximation and by
the properties of the signal.

The role of the computer in this collaboration is to be able to compute the
value of the function (including the analog-to-digital (A/D) and digital-to-
analog (D/A) conversions) fast enough, that is, between two sampling points.
Once this is guaranteed, the control engineer can regard the computer as yet
another (discrete-time) block in the system and ignore its “computerhood.”
This is certainly true for simple single-input-single-output (SISO) systems, but
becomes less and less so when the structure of the control loops becomes more
complex. Before discussing these issues, let us take a look at computation.

1.2 Computation

In the early days of digital computers, their interaction with the outside world
was rather limited. A typical batch program for producing a payroll or for per-
forming an intensive numerical computation did not interact with the external
world during execution. Such systems, termed “transformational” systems by
Harel and Pnueli [12], read their input at the beginning, embark on the com-
putation process and output the result upon termination. The fundamental
theories of computability and complexity are tailored to this type of “autistic”
computation. They can say which types of function from input to output can
be computed at all, and for those that can, how the number of computation
steps grows asymptotically with the size of the problem.

If we insist on philosophical rigor, we must admit that even computations
of this type are “embedded” in some sort of a larger process. The batch nu-
merical computation could have been, for example, a finite element algorithm
to determine the stability of a building. Such a computation is part of the
construction process and should be invoked each time a new building is de-
signed or when a change is initiated by the architect. The computation time
of such a program, even in the early days when it was measured by hours and
days, was still reasonable with respect to the time scale of a typical construc-
tion project. Likewise, a payroll program is part of the “control loop” of an
organization which reads the time sheet of the employees and prints checks
at the end of the month. If the execution time of such a program were on the
order of magnitude of weeks, it could not fulfill its role in that control loop. So
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the difference with respect to the progressively more interactive computations
that will be described in the sequel is also a quantitative matter of time scales.

With the development of time-sharing operating systems, the nature of
computation became more interactive. A typical example would be a text
editor, a command shell or any other program interacting with one or more
users via keyboards and screens.1 What is the function that such an interactive
program “computes”? People familiar with automata theory can see that it is
a sequential function, something that transforms sequences of input symbols
(commands) to sequences of output symbols (responses). The important point
in such functions is that the process of computation is no longer isolated from
the input/output process but is rather interleaved with it: the user types
a command, the computer computes a response (and possibly changes its
internal state) and so on. These are called “reactive” systems in [12].

While such interactive systems differ considerably from batch programs
that operate within a static environment which does not change during com-
putation, they still operate under certain restricting assumptions concerning
their environment, which is typically a human user or a computer program
that follows some protocol. The implicit assumption is that the environment
behaves in a manner similar to a player in a turn-based game like chess; that
is, the user waits for the response of the computer before entering the next
input. As in the case of batch systems, this metaphor is valid as long as the
computer is not slower than the external environment against which it works.
When a person’s typing speed exceeds the reaction speed of the text editor,
or when a transmitter transmits faster than a receiver receives, everything
breaks down.

Digital implementations of continuous control systems, the subject of this
chapter, interact with the physical world, a player which is assumed to be gov-
erned by differential equations, and which evolves independently of whether
the computer is ready to interact with it. Of course, in the same way as a text
editor may ignore characters that are typed too fast, a slow computer may
ignore sensor readings or not update actuator values fast enough. However, in
many “time-critical” systems, the ability of the computer to meet the rhythm
of the environment is the key to the usefulness of the system. Failing to do
so may lead in some cases to catastrophic results, and in others, to severe
degradation in performance. Such systems are often called real-time systems
to distinguish them from the types of programs previously described and to
indicate the tight coupling between the internal time inside the computer
and the time of the external world.2 In the next section we discuss various
differences between such programs and the control loops that they realize.

1Today it is hard to imagine how computing could be otherwise, but the passage
from batch- to terminal-based computation was revolutionary at the time, and the
authors are old enough to remember that.

2Sometimes the terms online versus offline are used for similar purposes.
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2 From Mathematical Descriptions to Programs

Programs implementing control systems differ from their corresponding discrete-
time recurrence equations in several aspects, the first of which is not particular
to control systems but is concerned with different levels of abstraction in which
algorithms can be described. For instance, algorithms for searching directed
graphs may be defined in terms of the abstract structure of the graph, the
mathematical G = (V,E), without paying attention to the way the graph
is stored in memory. An abstract algorithm may contain statements such as
“for each successor of a vertex v do” without being explicit about the way
the successors of a node are retrieved from the data structure representing
the graph. More concrete programs, written in languages such as C, need to
specify these details. Between these levels and the actual physical realization
there are many intermediate levels (assembly and machine code, microcode,
architecture, etc.) and one of the great achievements of computer science and
engineering is that most of the transformations between these levels are done
automatically using computer programs.

As an illustrative example we consider one of the most popular forms of
control, the PID controller, and see how it is transformed into a program.
An important feature of feedback functions is that they are typically dynam-
ical systems by themselves, admitting a state which influences their output
and future behavior. Fig. 2 shows the Simulink diagram of a typical sampled-
data PID controller. The annotation of the Simulink blocks is written in the
z-transform formalism, which is a discrete version of a frequency-domain rep-
resentation of systems, where delay and memory are expressed using the 1/z
operator. An explanation of this formalism can be found elsewhere in the
handbook, and we focus here on a more “mechanical” state-space description
of the controller. What a PID controller essentially does is to take the input
signal I, compute its derivativeD and integral S and then compute the output
O as some linear combination of I, S and D. The state variables of the system
include the integral S and the previous value of the input J , which is needed
for computing the derivative. The following system of recurrence equations
defines the semantics of the controller as a set On of output sequences whose
relation with the input sequence In is defined by

S−1 = I−1 = 0.0
Sn = Sn−1 + 0.1 · In
On = 5.8 · In + 4 · Sn + 3.8 · 10.0 · (In − In−1).

(1)

The first line defines the initial values of state variable S and the second line
defines its subsequent value for every n ≥ 0. The last line determines the
output, using In−In−1 as the derivative. Since old values of the input are not
typically kept in memory, we will need to store this information in an auxiliary
state variable J satisfying Jn = In, and replacing In−1 in the definition of On

by Jn−1.
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Fig. 2. A PID controller represented by a Simulink block diagram

Before showing the corresponding program, let us note that since (1) in-
volves memory that has to be maintained and propagated between successive
invocations of the program, the corresponding programming construct is bet-
ter viewed as a class in an object-oriented language such as C++ or Java.
However, since this point of view is probably not so familiar to most readers,
we will realize it as a C program with global variables. These variables con-
tinue to exist between successive invocations of the program (like latches in
sequential digital circuits when the clock signal is low). The program shown
in Table 1 is a result of a rather straightforward transformation of (1).

/* memories */
float S = 0.0, J = 0.0;

void dispid cycle (){
float I,O;
float J 1,S 1;

I = Input();

J 1 = I;
S 1 = S + 0.1 * I * 4.0;
O = I * 5.8 + S 1 + 10.0 * 3.8 * (I-J);
J = J 1;
S = S 1;

Output(O);
}
Table 1. A program realizing a PID controller
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The first part of the program in Table 1 is the declaration and initialization
of the global variables J and S. The second part, the dispid cycle procedure,
describes the computation to be performed at each invocation of the program.
It uses auxiliary variables J 1 and S 1 into which the new state is computed.
The procedure presupposes two auxiliary functions Input and Output pro-
vided by the execution platform, which take care of bringing (digitized) sensor
inputs into I and writing O onto the actuators. The implementation details of
these functions are outside the scope of this article. The computational part
of the procedure consists of taking the input and propagating it through a
network of computations to produce the output. We first compute the next
values of the state variables, then compute the output, write the new state
values into the global variables and finally write the output and exit.

Upon closer inspection one can see that we do not really need the auxiliary
variable S 1 because only the new value of S is used while computing O. Con-
sequently, we can replace the computation of S 1 by direct computation of S,
use S in the computation of O and discard the assignment statement S = S 1.
In fact, we can do similar things with J, by putting the statement J=I after
the computation of the output, to obtain the optimized program in Table 2.

/* memories */
float S = 0.0, J = 0.0;

void dispid cycle (){
float I,O;

I = Input();

S = S +0.1 * I * 4.0;
O = I * 5.8 + S + 10.0 * 3.8 * (I-J);
J = I;

Output(O);
}

Table 2. An optimized program for the PID controller

Saving two variables and two assignment statements is not much, but
for complex control systems that should run on cheap micro controllers, the
accumulated effect of such savings can be significant.

The reader can easily appreciate that the process of writing, modifying and
optimizing such programs manually is error prone and that it would be much
safer to derive it automatically from the high-level Simulink model. We have
derived a program similar to the program in Table 2 from the Simulink model
of Fig. 2 in two steps. First, the Simulink-to-Lustre translator [6] was used to
transform the model into a program in Lustre, a language [11] which provides
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rigorous syntax and semantics for expressing data-flow equations such as (1).
Then the Reluc Lustre-to-C code generator [9] produced the program after
automatic analysis of state variables, dependencies and other optimizations.

The story does not end with the generation of machine code by the C com-
piler, as there are some additional conditions associated with the execution
platform that need to be met. To begin with, the platform should support the
I/O functions and be properly connected to all the machinery for conversion
between digital and analog data. Second, the proper functioning of the pro-
gram depends crucially on its being invoked every T time units, where T is the
sampling period of the discrete-time system according to which the parame-
ters of the PID controller were derived. Not adhering to this sampling period
may result in a strong deviation of the program behavior from the intended
one. This is a very particular (and rather unexpected) class of software errors
inherent in control applications.

To ensure the correct periodic activation of the program we need access
to a real-time clock that will trigger the execution every T time units. But
this is not enough due to yet another important difference between an ab-
stract mathematical function and a program that computes it: the former is
timeless while the latter takes some time to compute. For a program such
as dispid cycle to function, the condition C < T should hold, where C is
its worst-case execution time (WCET). If this requirement is not met, the
program will not terminate before its next invocation (see the timing diagram
in Fig. 3). Measuring and estimating the WCET of a program on a given
architecture is not an easy task, especially for modern processors, and it is
subject to extensive ongoing research [25].

Read Compute Idle Read Compute

C

T

. . .IdleWriteWrite

Fig. 3. The execution of a control program with a period T

Once these conditions are fulfilled, several implementation techniques can
be used. Historically, such controllers were first implemented on a bare ma-
chine, without using any operating system (OS). The real-time clock acts as
an interrupt that transfers control to the program. If the scheduling condition
C < T is satisfied, this interrupt occurs after the program has terminated and
the computer is idle. Hence, unlike preemptive scheduling, there is no need for
context switching and complex OS services. This implementation technique
is thus both simple and safe and does not need to rely on a complex piece
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of software like an OS, which is difficult to validate. Much progress has been
made in real-time OS (RTOS) technology, and today commercial systems are
available that have been exercised and debugged by a large number of users
and can be considered quite safe. Hence the role of monitoring the real-time
clock and dispatching the program for execution can be delegated to an OS.

This concludes the discussion on the implementation of simple control
programs, where we have tried to touch upon the key relevant computational
aspects. In the next section we focus on the timing-related aspects of imple-
menting more complex control loops.

3 Complex Periodic Controllers

In many control applications, systems have several degrees of freedom that
must be controlled simultaneously. Mathematically each controller ci is just
another recurrence equation that coexists with the other equations. Compu-
tationally, these loops should be realized on a sequential computer that can
do one thing at a time. The problem of how to “sequentialize” and schedule
these parallel processes is one of the major topics in real-time systems. It is
important that each invocation of a controller has its relevant inputs ready
before it starts executing and that the computation of all its outputs and
their transmission to the outside world terminate in due time. This is the ba-
sic functional requirement from real-time control software, a fact sometimes
obscured by details of operating systems and scheduling policies.

3.1 Single period

We start with the simple case where all controllers share the same sampling
period T . This means that all of them should be invoked at every cycle of the
system. A necessary condition for realizing these controllers sequentially on a
given architecture is that all the computations (including input and output)
should fit inside the cycle or, in other words, the condition

∑
Ci < T is

satisfied where each Ci is the WCET of controller ci on that architecture.
In this setting, the code of each controller can be generated separately as

described in Section 2. The sequential implementation of the whole control
program can be achieved by a simple scheduler that invokes the controllers
one after the other. However, a somewhat less modular but more efficient
method consists of gathering all the controllers into a single program and
using an optimizing compiler to generate the code of the global controller.
By analyzing the structure of the controllers and their data dependencies, a
smart code generator can find out that some parts of the computation are
shared by several controllers and need not be computed more than once. Such
optimizations may reduce the number of operations and a slower computer can
be used to achieve the required sampling rate. With the progress of these code
generators, this technique is becoming more popular. Verifying the correctness
of such optimizing compilers is, by itself, an active research topic.
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3.2 Multiple periods

When a system has to control several variables, it is often the case that the
variables follow dynamics of different speeds and need to be controlled at
different sampling rates. The specification of such a multi-rate system can be
given by a collection of pairs {(ci, Ti)}i=1...n where Ti is the period of controller
ci, which can be considered as an integer. With such a task specification we
associate two numbers, the basic period T = gcd(T1, . . . , Tn), and the super-
period P = lcm(T1, . . . , Tn), where gcd and lcm are, respectively, the greatest
common divisor and the least common multiple of the task periods. As a
running example we consider the 3 task system S123 = {(c1, 1), (c2, 2), (c3, 3)}
with T = 1 and P = 6, depicted graphically in Fig. 4. The implementation of
this abstract specification consists of allocating portions of the timeline of the
processor to instances of the controllers (tasks) so that their execution times
satisfy the implied constraints. Due to periodicity, if a schedule is found for
the first P cycles, it can be repeated indefinitely for the rest of the timeline.

2 3 5 6

c2

c1

0 41

c3

Fig. 4. A multi-rate specification S123 = {(c1, 1), (c2, 2), (c3, 3)}

c1 c2

c1

c3

c22c21 c32c31 c33

0 1 2 3 4 5 6

Fig. 5. Schedules for example S123: a simplistic imbalanced schedule versus static
partitioning
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Cyclic executive

The most straightforward solution is to execute c1 every cycle, c2 every second
cycle and c3 every third cycle (see Fig. 5). While this solution is simple and
natural, it is not very efficient in utilizing the computer time. As we can see,
there are very “busy” cycles where all three controllers need to be executed,
while in others the computer is mostly idle. Using this approach, it is the
most busy cycle which determines the relation between platform speed and
feasibility of the schedule. In this example the schedule is feasible only on
platforms satisfying C1 + C2 + C3 < T .3

More efficient solution schemes are based on the assumption that the nth
instance of task ci can be executed anywhere in the interval [(n−1) ·Ti, n ·Ti].
The lower and upper bounds of the interval are often called, respectively, the
release time and deadline of the task. The set of all such intervals for our
example is depicted below:

c1: [0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]
c2: [0, 2], [2, 4], [4, 6]
c3: [0, 3], [3, 6]

Instead of restricting the execution of the slow controllers c2 and c3 to
the cycle where they need to produce their outputs, we can execute parts of
them in earlier cycles when the processor is available. Technically there are
different methods for splitting the execution of the slow tasks to obtain a more
balanced distribution of the computational effort.

Offline splitting

One approach consists in partitioning the code of every slow controller offline
into pieces of approximately equal execution times and distributing their exe-
cution over all cycles inside its period. In our example this means splitting c2
into c21 and c22, splitting c3 into c31, c32 and c33 and using a cyclic executive
to schedule the modified tasks, leading to a schedule like the one illustrated
in Fig. 5. The corresponding schedulability condition becomes:

max
j

∑
i

Cij < T.

This solution, which has many advantages, is quite popular in practice. For
instance, it is the one adopted in the time-triggered architecture (TTA) frame-
work [15], where it is handled by several commercial tools. One disadvantage
of this approach is that the splitting of a control loop into subparts of similar
execution time is not easy to accomplish at the application level (Simulink
model) and possibly requires several iterations until a feasible schedule is

3Improvements can sometimes be achieved by using different phases (offsets) for
the periodic computations.
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found. Doing it directly on the code of the control program one loses some of
the methodological advantages of automatic code generation. The variability
in the execution times of the same program on modern processors does not
make this job easier.

c1 c22c21 c32c31 c33

c1 c2 c3

0 654321

Static

EDF

RM

Fig. 6. Schedules for the S123 example: static splitting, EDF and RM

Preemptive solutions

The other class of solutions is more dynamic and is based on the preemption
services of an RTOS. Every controller is compiled into a simple program, each
instance of which is viewed as an independent task dispatched for execution by
a scheduler according to some policy. The basic principle is that a slow process
may execute when the computer is available, but when a more urgent task
is released, the active computation is stopped and resumes when the urgent
task terminates. This “context switching” (saving the contents of registers)
takes some time, which we ignore in this discussion. The classical result of
Liu and Layland [18] shows that, for preemptive scheduling, a set of tasks is
schedulable if the amount of computation time to be consumed in P cycles is
smaller than P · T , that is, ∑

i

Ci/Ti < 1.

The two most popular scheduling policies are earliest deadline first (EDF)
and rate-monotonic (RM).
Earliest deadline first: The simplest and most natural way to allocate the
time budget of the processor is to prefer most urgent tasks: at any moment,
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choose among the enabled tasks the one with the nearest deadline. If two
or more tasks have the same deadline, an arbitrary choice can be made, with
preference to tasks that are already executing (to minimize context switching).
An example of an EDF schedule obtained for S123 appears in Fig. 6. Note that
when the third instance of c1 arrives, it does not preempt the first instance
of c3, because they have the same deadline. EDF was introduced in [18] and
has been proven to be optimal.
Rate-monotonic: The alternative and rather popular approach is to use a
static priority relation among tasks based on their frequency (c1 ≺ c2 ≺ c3 in
our case). Then at every time instant the task with the highest priority among
the enabled ones is selected for execution. RM schedules tend to make many
more preemptions than EDF and, even if we ignore context switching, they
are provably less efficient than EDF schedules. As one can see in Fig. 6, S123
is not schedulable by RM on the same platform for which it is schedulable
by EDF as the computation of the first instance of c3 misses its deadline.
The popularity of RM can be partly explained by the fact that fixed priority
policies are easier to implement in existing operating systems, and that the
degradation in performance with respect to EDF is only 1/3 in the worst case.

3.3 Semantic issues

The discussion in the previous section was based on a simplified abstract
view of the controllers, assuming their I/O to be atomic operations that take
place within zero time at the endpoints of each of their respective periods.
We also implicitly assumed that the controllers are independent and do not
communicate. In reality, the I/O operations are often part of the code of
each task, and the timing of their execution may depend on the scheduling
policy used. We mention two issues related to this fact: data consistency and
determinism.

Data consistency

The first low-level problem to be resolved is due to the possibility that pre-
emption occurs in the middle of an I/O operation, leading to corrupted data.
For example, a task may be interrupted after having read some part of a long
piece of data and resume operation only after some other task has modified
it. Several solutions exist for this problem:

1. Protection by semaphores: This technique, used extensively in operating
systems when resources are shared by several tasks, consists of preventing
the interruption from occurring during I/O operations. From the point of
view of priority-based scheduling this means that the task increases its pri-
ority when it enters its “critical section.” This feature makes the schedul-
ing problem more complex because the blocking time has to be evaluated
and added to the WCET of the corresponding tasks. This can raise the
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well-known priority inversion problem for which solutions such as the pri-
ority inheritance or priority ceiling protocols have been invented [24].

2. Lock-free methods: Here the reading task may detect the fact that the data
it has been reading has changed and it may restart reading, attempting
to get uncorrupted data [1, 16, 17]. Although the number of times this
may happen is finite, the time that can be spent on retrying should be
accounted for in the schedulability analysis.

3. Wait-free methods: Here data that are shared by several tasks are du-
plicated (double- or triple-buffers) so that the reader and the writer use
different “lock-free” copies and than toggle between them. Consequently,
the schedulability analysis need not be modified, but more space is needed
to store the shared data [8, 14].

Determinism

Under this title we group all phenomena related to the deviation of the imple-
mentation from the “nominal” control loop that may result from the potential
variability in execution times of different instances of the same task. We il-
lustrate this class of problems and compare the influence of such variability
on the three types of scheduling policies previously mentioned (simple, static
splitting and preemptive). No attempt is made to cover the whole panorama
of considerations and practical solutions.

Consider example S123 where controller c1 has a state variable y1 which is
computed every iteration as y′

1 = f(y1, y2, y3) where y2 and y3 are computed
by c2 and c3, respectively (note that this also covers the special case where
y2 and y3 are just inputs sampled at a lower frequency). Before continuing,
it is worth contemplating the definition of the computed controller in terms
of the external time of the controlled environment. If we were dealing with
continuous time or with uniform sampling, the values of y1, y2 and y3 used in
every invocation of c1 would be of the same real-time “age,” that is, something
of the form

y1(t′) = f(y1(t), y2(t), y3(t)). (2)

Since the y’s are computed/sampled at different rates, each invocation of
c1 inside the super-period can use only the most recent values of y2 and
y3 that are available, which leads to six different variations on (2), one for
each cycle (see Fig. 7). For example, in the last cycle we compute y1(t) =
f(y1(t− 1), y2(t− 2), y3(t− 3)).

This “non-uniform” relation, expressed naturally using the under-sampling
features of Simulink, is the starting point of multi-periodic control loops.4

Under the simple scheduling policy, this relation is robust under variations
in execution time because each task is executed in a predefined cycle. The

4In fact, the exact definition of this relation may vary according to the details of
the I/O mechanism, but the important point is that the same pattern repeats every
P cycles.
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y1

y2

y3

1 2 3 4 5 6

Fig. 7. Six different computations of y′
1 = f(y1, y2, y3), each with a different

external time characterization of the relation between the variables

situation is not much different if we use the static splitting approach, because
the I/O operations appear in fixed portions of the code of each task, which
are executed at predefined cycles.

On the other hand, preemptive methods are less robust in this sense as the
I/O operations of a given instance of a task may occur at different cycles in
different instances of the super-period depending on the point in the program
where preemption takes place. For example, in the EDF schedule of Fig. 6,
if c3 takes less time and terminates within the second cycle, then the third
invocation of c1 may use this value, i.e., y3(t−1), instead of y3(t−3). A similar
type of non-determinism, also known as jitter, is associated with the varia-
tion in the timing of the output operations. These types of non-determinism
constitute one of the main criticisms of preemptive solutions for control ap-
plications. To alleviate this problem, various “time-triggered” solutions for
the communication between different parts of the controller and for I/O in
general have been proposed. Among them are the time-triggered architecture
[15], to be discussed in Section 5, and the Giotto language [13] which allows
preemption but isolates the execution of I/O operations from the rest of the
code and forces them to take place in predefined time slots.

Let us remark that the attempts to maintain this determinism seem some-
what questionable, at least for periodic implementation of continuous control.
The fact that the age of the value used by a controller deviates by a cycle or
two between invocations need not have a significant effect on the performance
of the control loop, given that such age variability already exists between con-
secutive cycles. Moreover, due to the measurements process and the variability
of the external environment, there is not much sense in speaking of determin-
ism in the actual execution of the control loop, although determinism is a
convenient feature for debugging and simulation purposes. The situation may
be different for a hybrid system where continuous and discrete-event control
are combined (see Section 4.3).
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4 Discrete Events and Hybrid Systems

So far we have focused on classical continuous control, whose implementation
by computers is supported by the mature theories of sampled-data control
and periodic scheduling. In this section we address the implementation of
discrete-event control systems, which constitute an important ingredient of
any modern control system and whose interaction with continuous control
led to the emergence of a new field of research known as hybrid systems.
Although such systems have been intensively studied in recent years, there
is no comprehensive theory concerning their implementation, despite some
recent efforts [5, 10].

4.1 Comparison with continuous control

The specification of a discrete-event controller is given in terms of a transi-
tion system, a generic term which covers automata, Petri nets or variants of
Statecharts (state machines augmented with features such as parallelism and
hierarchy). A transition system is defined over a discrete set of states and
discrete sets of input and output events (alphabets). The dynamics is given in
terms of a transition function consisting of tuples of the form (q, a, b, q′) with
the following intended meaning: when an input event a occurs while in state
q, an output event b is generated and the controller moves to state q′ (see
Fig. 8). Note that the execution of the transition is not merely a table lookup
operation as in textbook finite-state automata, but may involve manipula-
tion of complex data structures which are part of the state of the system.
The software implementation of a transition system is a program that decides
according to the current state and the input event which reaction to compute.

q
a/b

q′ c/d

Fig. 8. A transition system

Although discrete-event systems are defined using the same abstract
scheme of dynamic systems, that is, read input, update state and write out-
put, their nature is quite different from that of continuous systems (see a
more detailed discussion in [19]). In the latter, the dependence of the dynam-
ics on the values of the state and the input is more or less continuous as these
are variables appearing in the numerical recurrence equation. In discrete sys-
tems, the dynamics is defined by if-then-else statements where the values of
state and input variables serve to choose among the branches of the program.
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This leads to a much larger variability in the execution time for subsequent
invocations of the controller.

The second major difference is associated with the time axis with respect
to which the system is defined. The specification of continuous control systems
is tightly and explicitly embedded in the real-time axis through the sampling
rates which determine when inputs are read and what the deadline is for each
invocation of a controller. Discrete transition systems are typically defined
with no reference to real time and operate on a logical time scale, defined
by the events. In other words, the model says that after input a there will
be an output b, but any amount of time may separate the two events. The
only implicit constraint is that the transition should be completed before the
arrival of the next input event.

Without constraints on the environment, only an infinitely fast controller
that reacts in zero time can respond to any event at any time. Assuming
the existence of such a fast machine is often called the synchrony hypothesis,
and it is advocated, among others, by the proponents of the Esterel language
[4]. Although such machines do not exist, it is claimed that this zero time
approximation provides reactive programming languages with a much cleaner
and simpler semantics. As benefits, programs are easier to understand, debug
and validate. Let us also note that this assumption is implicitly accepted
during simulation, for example, with tools such as Simulink/Stateflow: each
time the controller has an action to perform, the simulation time is frozen,
and resumes only after the action is completed. Of course, stopping “real”
time is much more difficult. We mention a recent variation on the synchrony
hypothesis proposed in [21] where zero is replaced by a fixed and uniform
delay (the logical execution time) in the semantics of the specification. The
choice of this number, however, requires looking into the properties of the
execution platform, except, perhaps, for systems where the reactions are very
simple.

When moving to software implementations of such systems, we must bring
real metric time into the picture, both at the specification level (refining the
response time requirements, adding assumptions concerning the speed of the
environment) and at the implementation level (execution times of the reac-
tions on a given platform, event detection mechanisms). As no system can
detect and handle events that arrive with an unbounded frequency, we need
to convert the ideal “untimed” specification into a realistic one by adding
constraints to the model of the environment so that such “Zeno behaviors”
are prevented.

A simple and natural way to restrict the environment is to assume a pos-
itive lower bound on the inter-arrival time of events (events that violate this
constraint are ignored by the controller). This is a very sensible requirement
when the events are determined by changes in the values of discrete signals.
An implementation of a system admitting such a lower bound d is guaranteed
to meet the specifications if the WCET of each transition is smaller than d.
Sometimes it is reasonable to assume such a lower bound for each type of
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input event separately. This does not prevent an event of one type from arriv-
ing while the (sequential) implementation is busy reacting to another event.
However, if the respective WCETs are small enough, the system can cope
with these events using a bounded buffer that stores pending events (this is
similar to the schedulability of multi-period systems discussed in Section 3).

Alternatively, one can explicitly set deadlines for each reaction or simply
assign priorities so that the system will respond to the more important events
and postpone the treatment of others while it is overloaded (this approach
is common in “soft” real-time systems). As we have already noted, the de-
termination of the real-time requirements is less systematic than in the case
of continuous systems, and in many cases this part of the specification will
be derived a posteriori from the constraints of the execution platform rather
than in a top-down fashion.5

4.2 Implementation strategies

Let us illustrate two popular implementation styles without attempting to be
exhaustive in the coverage of all existing approaches.

Single program time-triggered implementation

This is probably the most popular implementation strategy. It attempts to
treat discrete-event systems using the same principles used for continuous
ones. It is similar to the cyclic executive for multi-rate systems with which
it can be easily combined, although no deep theory has been developed for
it. We assume without loss of generality that events correspond to changes
in values of Boolean signals. The set of controllers that specify the system is
compiled into a single program, a sampling rate is chosen and it determines
the deadline for the reactions to events. The input signals are sampled at a
fixed rate and if a signal value is found to be different than in the previous
sampling point, an event is declared. The reactions to all detected events are
then executed sequentially and should terminate within the sampling period.

To see how this approach integrates easily with continuous control, con-
sider, e.g., a train controller which must maintain a reference velocity using
standard continuous control but which should react as well to events such
as requests for emergency stops or other user commands. At every sampling
point such a controller will read the continuous variables as well as the events.
Then, it will execute the reaction for the events (some of which may cause
mode switching in the continuous dynamics) followed by the computation of
the continuous feedback function. Typically, no preemptive scheduling is used
in this implementation style and no attempt is made to make efficient use

5In fact, this is also sometimes the case in continuous control where sampling
rates are determined based on known limitations of the intended implementation
platform.



www.manaraa.com

From Control Loops to Real-Time Programs 413

of the computer. To be schedulable, the sum of WCETs of all the possible
reactions (computed over the set of all input events that may occur within
one sampling period) plus the WCET of the continuous control loop should
be smaller than the sampling period.

Tasks and event-triggered implementation

Another popular implementation strategy starts with a collection of discrete
controllers, each handling one class of events. Each controller is compiled into
a separate task which is invoked when the event occurs. This approach requires
using an RTOS and some scheduling policy: each event generates an interrupt
and the scheduler decides whether to execute the corresponding task or wait
for the termination of a task already being executed.

Fixed priority scheduling seems to be the most popular policy for this
implementation style where, naturally, higher priority is assigned to tasks with
closer deadlines (deadline monotonic policy). A nice schedulability analysis
has been proposed in [3] for this policy under a minimum inter-arrival time
condition. When such a condition holds, the approach does not suffer from
the “unpredictability” charges that proponents of the time-triggered solutions
tend to put on event-triggered systems [15].

The approach combines nicely with periodic and multi-periodic activa-
tions, for instance, by using a fixed priority preemptive scheduling policy
for the periodic tasks. Actually, real-time clock activations can be seen as
events among others, which are naturally endowed with a minimum inter-
arrival time, the period itself. In this sense, this approach generalizes the
multi-periodic one and is well adapted to hybrid systems.

Note that the two aspects mentioned, a single program versus separate
tasks and periodic versus event-triggered sampling, are somewhat orthogonal.
For example the implementation of a program written in the Esterel language
is compiled into a single application task as in the time-triggered implemen-
tation. Then, this application task runs concurrently with another task, the
event handler, which detects events and dispatches them for execution when
the application task is idle.

4.3 Semantic issues

As we have noted in Section 3.3, variations in execution or communication
time may cause changes in the external I/O behavior of controllers. In contin-
uous systems this is restricted to the age of data used by the controller, but
in discrete interacting systems the effect of such variations on the behavior of
the controller can be more dramatic.

To illustrate this important phenomenon, consider the two automata ap-
pearing in Fig. 9 together with their composition. The first automaton reacts
to a while the second reacts to b but its reaction depends on the state of the
first. As one can see, the state of the system depends on the order in which
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the two events arrive. In particular, according to the standard synchronous
composition of automata, if a and b occur simultaneously, the outcome (for
this example) is different than in the case where a occurs before b. Hence, in
order to be faithful to the semantics of the model, the implementation should
be able to make unrealistic distinctions. Only “confluent” automata admit-
ting a diamond-like shape (as the one depicted on the right of Fig. 9) have
their semantics robust under such variations, but such global automata are
obtained only when the individual controllers are practically independent.

As an illustration, consider a periodic sampling implementation and the
two signals of Fig. 10 whose respective risings generate the events a and b.
A slight shift in the sample times may lead to two different interpretations:
in the first a and b are perceived as occurring at the same time while in
the second a occurs before b. How do designers take this phenomenon into
account? It seems that they apply (consciously or not) tricks borrowed from
the asynchronous hardware domain where such phenomena are called hazards
or critical races.6 For instance, they try to ensure that any possible race acts
on independent state variables, and if this is not possible, they try to avoid the
critical race by forbidding the inputs from changing at almost the same time.
This, in turn, is obtained by imposing delays or causality relations between
any two inputs that could possibly be involved in a critical race.

q1

q2

a

q4 q5

q3

b ∧ q1

q1, q3

q2, q3

q2, q4

q1, q5

a

b

b

a

q2, q5

b

a b

a

b ∧ q2

a, b

a, b

Fig. 9. Two interacting systems and their composition (the transition label a, b
indicates that a and b occur simultaneously); a confluent automaton

For event-triggered preemptive implementations this problem is, of course,
more severe, and several solutions for it have been proposed. As mentioned
previously, the Giotto approach and its extension to discrete events [21] guar-
antee semantic consistency by deterministic timing of the I/O operations. On

6In many applications, software-based control has evolved from previous hard-
ware implementations and the hardware culture is still vivid.
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a, b a b

Fig. 10. A pair of signals interpreted differently depending on the sampling

the other hand, the solution proposed in [22] using a multi-buffer protocol
achieves the same goal without insisting on timing determinism.

5 Distribution and Fault Tolerance

The preceding sections dealt with control systems implemented on a single
computer. However, many large control applications are distributed for var-
ious reasons such as location of sensors and actuators, performance or fault
tolerance. As a matter of fact, distribution and fault tolerance are strongly
related issues: on one hand, fault tolerance usually requires some redundancy
which can be implemented as distribution and, on the other hand, distribution
raises consistency problems [20] that make fault tolerance more difficult to im-
plement. For this reason we treat them in the same section, which is somewhat
superficial, given the huge amount of work dedicated to distributed comput-
ing during the past thirty years. We simply mention the major problems and
discuss briefly two classes of solutions used in control applications.

A distributed platform consists of several computers, sensors and actua-
tors (nodes) linked together via some communication network through which
data can be transmitted. An implementation of a control system on such an
architecture consists of assigning controllers to processors, scheduling them
and specifying the communication protocol according to which different nodes
in the network interact. This architecture aggravates the semantic problems
associated with a single computer implementation, namely, variability in exe-
cution times and ordering of events, due to communication delays, clock drifts
between different processors, etc.

5.1 Local clocks solutions

This is the most widely adopted solution in distributed control systems up to
now. The idea is quite simple:

• Each computer has a local real-time clock and runs a periodic (or multi-
periodic) application as described in Section 3.
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• Each computer samples its external world periodically based on its lo-
cal clock. This world is made of its physical environment and variables
produced by other computers. This amounts to a shared buffer (shared
memory) inter-computer communication mechanism.

This solution has many advantages as each computer is complete and acts
autonomously. This feature matches pretty well modern aspects of computa-
tion and control, as manifested in sensor networks and Internet-based control.
The implementation does not require specialized hardware and can thus take
advantage of the fast performance improvements and world-wide debugging
of mass market products.

Yet, this approach has several drawbacks. Due to the lack of clock syn-
chronization, it yields large jitters that may become larger than the periods.
For a purely continuous system this problem is not so severe, because the de-
viation in the real-time age of data items is always bounded. However, it can
become more serious when discrete events are involved. Another drawback is
that when two systems are not synchronized, they should observe each other
more frequently in order not to miss events.

As shown in [7], redundancies can be implemented on top of such systems
in order to achieve fault tolerance.

5.2 Global clock solutions

These are emerging solutions which have been subject to a large research effort
in the past years. They are best known as time-triggered solutions [15,23] and
are based on the following principles:

• A redundant bus dispatches a common fault-tolerant real-time clock to
each computer.

• Communication between computers takes place at fixed points in time
determined by the global clock.

• Each computer runs a periodic or non-preemptive multi-periodic (see Sec-
tion 3.2) application driven by the global clock.

The major advantage of this solution is that it yields small jitters as the timing
is very deterministic. It comes equipped with built-in fault-tolerance strate-
gies and with toolboxes integrated with Simulink/Stateflow which alleviate
the transition from models to implementation. The drawbacks are exactly the
opposite of the advantages noted in Section 5.1: the approach is less flexi-
ble and may be more expensive and less efficient as it requires specialized
hardware.

As a matter of fact, these two solutions can be seen more as complementary
rather than competing. The local clock solution is well adapted to loosely
coupled (autonomous, asynchronous) systems while the global clock solution
matches tightly coupled ones. Moreover, in control systems distributed over
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large distances, there will always be subsystems that are not synchronized
and will need the local clock solution.

Another striking fact about this landscape is that both solutions are time
triggered. It seems as if the event-triggered option has not been considered
for control-dominated distributed systems, while it is the dominant approach
for most distributed systems oriented toward communication and computing.
This could be a topic for future research, especially as control and communi-
cation become more and more interdependent.
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1 Introduction

This article shows how xPC Target [44] facilitates embedded control system
design by turning general-purpose personal computer (PC) hardware into a
rapid prototyping platform. The PC-based platform used is the MathWorks
xPC TargetBoxTM [45], an industrial PC. xPC Target is integrated in Simulink r©

[31], enabling the use of Simulink as a graphical front end with Math-
Works tools for parameter estimation, response optimization, and lineariza-
tion throughout the design cycle.

1.1 What is an embedded control system?

A control system is an implemented strategy used to cause a physical sys-
tem, or plant, to behave in a desired manner. There are two types of control
strategies:

• Closed-loop control uses feedback measurements to correct error between
the plant output and a reference input, i.e., the desired behavior.

• Reactive control is event driven and interacts with the plant via state
transition behavior.

As the feedback control strategy increases in complexity, it becomes more
difficult to apply analog components for its implementation. Dynamics in
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an analog feedback control loop always interact, making it more difficult to
match desired controller characteristics. For example, an analog system always
has a limited filter quality factor, Q, due to parasitic impedances and other
limitations. Conversely, it is easy to create an extremely sharp digital filter
with very large Q. Another complication is that analog integrators are always
limited by capacitor leakage, yet digital integrators can be nearly perfect.

A processor-based approach usually works best for reactive control as well.
In modern control systems, the control strategy is thus typically imple-

mented in software. A microprocessor determines the input to manipulate the
plant and this requires facilities to apply this input to the physical world. In
addition, the control strategy typically relies on measured values of the plant
behavior that have to be made available to the computing resources.

The immersion of computing power into the physical world is one char-
acteristic of an embedded control system. The other characteristic is that the
software that implements the control strategy is stored in read-only memory.
Thus, unlike a general-purpose computer, an embedded control system is not
independently programmable. In other words, an embedded control system is
expected to function without user intervention, although it may require user
interaction.

1.2 Embedded control system characteristics

The general configuration of an embedded control system is shown in Fig. 1.
Because the controller operates in the low-power electronics domain and
the plant operates in high-power hydraulics, mechanics, thermal, and other
physical domains, transducers are needed to convert between controller and
plant. These transducers are used either by actuators, to drive the plant with
controller-computed values, or by sensors, to provide measurements to the
low-power electronics domain. In embedded systems, the low-power compu-
tational electronics of the controller has to interact with high-power physical
domains of many types [42].

m

Fig. 1. General embedded control system configuration

For example, consider the Stewart platform in Fig. 2. This physical system
consists of six legs supporting a circular platform. The platform may be used
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to build, for example, an aircraft simulator. The legs are then used to move
the simulated aircraft so as to give the impression of being inside an actual
aircraft. This unit is sometimes called a “hexapod,” after its six legs.

Fig. 2. A Stewart platform

To move the platform, each leg is equipped with a motor that extends it.
The control strategy that computes the desired extension is implemented in
a low-power microprocessor. An amplifier turns this electrical signal into a
high-power equivalent that can be used to drive the motor. Sensors measure
the actual extension of the legs. Six linear encoders, one on each leg, send
a voltage pulse every time the leg slides a given distance. Dedicated counter
hardware counts the number of pulses. The actual distance is computed based
on this count.

In addition to the transformation between high- and low-power domains,
transformations between discrete-time and continuous-time behavior are re-
quired. The plant can be viewed as changing continuously in time [14, 27].
The controller, however, has a discrete clock that governs its behavior, and
so its values change only at discrete points in time. To obtain deterministic
behavior and ensure data integrity, the sensors must include a mechanism to
sample continuous data at discrete points in time, while the actuators need to
produce a continuous value between the time points with discrete-time data
(typically, the value is held constant).

1.3 Rapid prototyping in embedded control system design

Formal control design methods invariably rely on a plant model [1, 4]. The
plant model can be derived from first principles but often contains unknown
parameters. Experiments must be conducted to gather information on the
behavior of the plant dynamics to help estimate these parameters.
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Once a plant model is available, closed-loop feedback and reactive control
can be designed using simulation or synthesized using methods such as pole
placement, inverse dynamics, total energy control, H∞, and model predictive
control.

Rapid prototyping tools support this design paradigm. At the start of the
control design process an engineer may have an inaccurate model or no model
at all. At this stage, a skeleton control system is developed to stabilize a system
and to obtain the desired behavior for the experiment. Experiments can then
be designed and performed to acquire responses of the system under various
operating conditions. The acquired data can then be used to enhance the plant
model and to design a new control system based on the more accurate plant
model. Simulating the combined control system and plant model, the designer
can study and optimize the performance of the system using the full nonlinear
plant simulation model. Finally, the control system can be implemented on
a rapid prototyping system. If the system does not meet the performance
achieved in simulation, the model and the control system design are further
refined.

Such incremental design for embedded control systems requires that the
rapid prototype operate in real time, interact with hardware, have supporting
control functionality, and be safe.

1.4 Chapter overview

In Section 2, the concept of rapid prototyping is elaborated. In Section 3, the
Stewart platform is presented that will be used throughout the chapter to illus-
trate the concepts put forward. Section 4 discusses the PC-based xPC Target
for rapid prototyping, and Section 5 describes the industrial xPC TargetBox
that is used to implement the embedded control for the Stewart platform. In
Section 6, generation of the embedded code for control is discussed. Section 7
discusses how models are obtained. Section 8 explains how to acquire the data
necessary for modeling. Section 9 gives an overview of how models are used in
the embedded control system design. Section 10 describes the control strategy
as used for the Stewart platform, and Section 11 presents conclusions.

2 What Is Rapid Prototyping?

Much research has been devoted to the analysis, design, and synthesis of
a controller based on a plant model. Note that this research pertains to a
model of the controller as well. Once this controller model has been designed,
however, it still has to be realized and connected to the actual plant, and
most of the actual control system engineering effort is devoted to taking the
controller model to such a realization. In particular, accounting for some of
the implementation details such as, for example, the resolution of a fixed-point
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microprocessor that will be used, may affect the originally designed controller
model and require it to be modified [20].

A rapid prototype is a quick way to validate the controller code by exe-
cuting it with the actual plant, sensors and actuators, the plant model, or any
combination of these components [19].

The purpose of rapid prototyping is to obtain confidence and pinpoint
flaws and errors in a partial design before committing to a completed design.
This is a common design approach. For example, in software, a core algorithm
is typically implemented and tested before extensive comments, exception
handling, and robustness functionality are added.

In scientific research and education, where a system is rarely taken into
production, rapid prototyping serves an important purpose. In industry, rapid
prototyping allows testing of a partial design before expending the effort to
include robustness measures and optimizing the design.

There are three different rapid prototyping configurations: functional,
bypass, and on-target (Fig. 3).

• Functional rapid prototyping is used for testing new ideas and research
projects where there is no controller or the controller is too primitive to
support advanced control strategies. In such cases, the rapid prototyping
controller controls the entire system. As the focus is on proving the con-
cept, the size of the generated code and the fixed-point characteristics of
the software are not important. The hardware used for functional rapid
prototyping is often PC-type hardware and is not intended for production
controller applications. The flexibility to add I/O hardware is important in
rapid prototyping as various hardware contingencies cannot be accounted
for ahead of time.

• Bypass rapid prototyping replaces only a part of the existing control system
with the new controller. This is useful if the system control demands high
current capacity drivers that are typically not available in rapid prototyp-
ing controllers or if only part of the functionality of the controller needs
to be replaced with the new features.

• On-target rapid prototyping uses the production hardware directly and
captures all the hardware dependencies and I/O limitations [5,12]. It allows
engineers to assess the ability of the algorithm to control a vehicle under
various test track conditions, especially those, such as ice, that are hard
to simulate using a model.

3 A Stewart Platform

This example describes the rapid prototyping of the Stewart platform shown
in Fig. 2, using xPC Target [44] and xPC TargetBox [45].
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Fig. 3. Rapid prototyping configurations

3.1 Control objectives

One control objective is to enable the Stewart platform to assume a prescribed
position as accurately and quickly as possible. Another is to move the platform
at specific speeds.

3.2 System configuration

The Stewart platform system in Fig. 4 shows the hexapod plant and xPC
TargetBox controller connected by sensors and actuators. xPC TargetBox
includes a 400 MHz Intel Pentium III (floating-point) processor, with 128 MB
RAM, and 32 MB flash RAM.

3.3 The peripherals

The peripheral hardware consists of force actuators and position sensors.

Force actuators

Mounted on the legs of the Stewart platform are Nanomotion H1 piezoceramic
motors that extend the legs, so there are six actuators. The motors are driven
by Nanomotion amplifiers that read the control voltage from one of the six
channels of the RTD DM6604 analog output of the xPC TargetBox. The input
to the amplifiers is a low-power analog reference signal that they convert into
a high-power sinusoidal voltage. By varying the amplitude of the sinusoid, the
motor moves the leg up and down.7

7http://www.nanomotion.com/data/docs/Tech%20notes%20102.pdf
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Fig. 4. Stewart platform hardware configuration

Position sensors

Six MicroE Mercury 3110 incremental encoders8 measure the extension of
each of the six legs. To measure the extension, these sensors use an optical
beam that produces a sequence of electrical pulses when a grated slider is
passed by. The slider has 65,536 counts on it over about 4 cm of travel, giving
a precision of about 0.61 µm of travel per count.

A slide with a reference marking calibrates the zero location from which to
start counting incrementally. In this particular hardware setup, the encoder
pickups cannot see the reference marking and so have a purely incremental
capability. Because the encoder cannot be reset at a given location based on a
reference reset pulse, the only option is to drive it to the stops of the actuator
slider and define that to be zero.

The sensor is powered by a 5 V supply at 300 mA. It delivers the electrical
pulses with a power and impedance that allow it to be directly connected to a
counter board. xPC TargetBox includes an RTD DM6814 incremental encoder
board that counts how many pulses it receives from the encoder pickup and
passes this count to the model. Two counter I/O boards, each supporting
three channels, are used.

4 xPC Target

4.1 General-purpose hardware

A rapid prototyping platform needs to be more powerful and flexible than
the eventual target processor. For example, if the software has not yet been

8http://www.microesys.com/
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optimized, it will not run as efficiently. To achieve real-time behavior, a more
powerful microprocessor is necessary. Furthermore, additional measurements
may need to be made to obtain insight in the functioning of the controller.

The necessary flexibility, computing power, and memory capacity may
make rapid prototyping platforms much more expensive than the hardware
that is ultimately used in production. Because of the cost, rapid prototyp-
ing platforms are often used for more than one project, an approach that is
supported by the inherent flexible nature of such platforms.

xPC Target [44] provides the means to turn general-purpose PC hardware
into a prototyping environment that can be used for signal acquisition, rapid
prototyping, and hardware-in-the-loop simulation.

4.2 PC form factor

The form factor of a device is its physical shape and size. There are a number
of specific form factors available for PC-based systems. A form factor may
encompass design components such as connector types, bus protocols, board
sizes, power specifications, and mechanical enclosures. Rarely does the form
factor directly influence processor selection, but a particular form factor is
often indirectly tied to a processor family. Thus, it is common to couple the
choice of a form factor to the processor selected. This can be a regular desktop
PC, rack-mounted PC, or an industrial PC. The advantages of using PC-based
platforms are their scalable computing power, flexibility, and expandability.

xPC Target can be used with any PC containing Intel 386/486, Pentium, or
AMD K5/K6/Athlon processors as the real-time target. This includes desktop
computers, industrial computers such as xPC TargetBox, PC/104, PC/104+,
CompactPCI, all-in-one embedded PC, or any other PC-compatible form fac-
tor. Thanks to economies of scale and competition, these devices have per-
formances in the order of millions of floating-point operations per second
(MFLOPS), relative to cost. Moreover, the large range of available form fac-
tors allows xPC Target to be used in small PC/104 systems as well as in much
larger expanded PCI systems. For example, it is common to perform early de-
sign work using a standard desktop PC and then immediately retarget the
control algorithm to an industrial computer for field testing.

4.3 Real-time operating system

The xPC Target kernel provides a real-time operating system that supports
both interrupt handling and polling and is tuned to provide maximum per-
formance with minimal overhead. High-performance hardware allows sample
rates that approach 100 kHz.

4.4 Drivers

A key step in transforming software into a real-time system is the requirement
to have device drivers that communicate between the I/O devices on the target
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PC and the application code running on this target. These drivers thus enable
interaction between the real-time application and the real physical system.
The device driver contains the code that runs on the target hardware for in-
terfacing to I/O devices such as analog-to-digital (A/D) converters, encoders,
digital signals, and communication ports. Each device driver is implemented
as a Simulink S-function using C-code MEX files.

Fig. 5 shows the Simulink blocks for the six encoder channels supported
by two DM6814 boards used on the Stewart platform. These blocks result in
automatically generated code for the hardware drivers.

motors

translation

rotation

positions

angles

limit_and_filter

hexapod grated_slides

postion

angle

leg_extend

convert_to_legs_extension

act_extend

des_extend

voltage

controller position

angle

UDP_to_target

position

angle

UDP_from_host

Translation

Rotation

Buttons

Magellan Space Mouse

position

DM6814

voltage

DM6604

6

6

6

6

3

3

6

6

3

3

12

3

3

Fig. 5. Simulink model of Stewart platform host and target software

The code for the entire system identification application can be generated
without manually producing glue or driver software.

4.5 Writing device drivers

To understand the process of writing device drivers, it is essential to under-
stand S-functions and low-level programming of I/O boards.

An S-function is a description of a Simulink block written in a language
such as M or C [31]. S-functions have a special calling syntax, referred to as
a call-back, that allows these custom blocks to interact with Simulink in the
same manner as built-in Simulink blocks do. A C S-function can be compiled
and dynamically linked into the Simulink environment, thereby allowing cus-
tom blocks to be added to the Simulink environment. Thus, S-functions and
S-function routines form an application program interface (API) that allows
the flexible implementation of generic algorithms within the Simulink envi-
ronment. This flexibility cannot always be maintained when S-functions are
used with Real-Time Workshop r© [28] to generate code. For example, it is not
possible to access the MATLAB r© [18] workspace from an S-function that is
used with Real-Time Workshop, but it is possible when using the S-function
with Simulink for simulation purposes only.
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To incorporate a device driver block in the Simulink model requires an S-
function, which in turn requires the C source code for the device driver. xPC
Target provides a comprehensive device driver library supporting more than
250 boards of various types, including A/D converters, digital input/output,
Controller Area Network (CAN) [3], and ARINC 429. Thus, xPC Target
greatly simplifies the process of generating a real-time application by pro-
viding the library of device driver S-functions.

Writing a device driver that is not yet available is simpler for xPC Tar-
get than writing a general configuration since xPC Target does not contain
the many layers typically found in an operating system (OS). For example,
the xPC Target kernel has direct virtual-to-physical address mapping, which
means that declaring a pointer at a particular address will lead to bus access
at the same physical address. Moreover, the source code for the existing xPC
Target device drivers is provided with the product, enabling users to gain
familiarity with the way device drivers are implemented.

Device drivers for xPC Target can be developed in one of two ways:

• Obtaining the source code for the driver from the hardware manufacturer
and porting it to the xPC Target kernel

• Using the register programming manual of the I/O board from the hard-
ware manufacturer to develop a driver from the very beginning.

The xPC Target kernel provides a set of functions for accessing ports and
memory, PCI initialization space, and performing time measurements that
can be used in an S-function compiled for xPC Target.

PCI boards are better than ISA boards for adding I/O functionality to
a real-time system because they provide plug-and-play allocation of access,
interrupt resources, a wider and faster bus, and software calibration.

4.6 xPC Target configuration

The xPC Target host-target arrangement is shown schematically in Fig. 6.
On the host PC (which runs MATLAB, Simulink, Real-Time Workshop, and
xPC Target), xPC Target works with the code generated from the Simulink
application and a C compiler to build the real-time target application. The
target application can run in real time on a target PC once it is downloaded
to the target PC from the host PC. The target hardware is booted from a
real-time kernel in xPC Target. However, the xPC Target kernel needs the PC
basic input/output system (BIOS) because when the target PC boots and the
BIOS is loaded, the BIOS prepares the target PC environment for running
the kernel and then starts the kernel.

The kernel initiates the host-target communication, activates the appli-
cation loader, and waits for the target application to be downloaded from
the host PC. The host-target communication can occur through either serial
or TCP/IP communication protocols. Once the target application has been
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downloaded to the target PC, it can be controlled and modified from the host
PC.
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xPC Target

xPC Target
Application

Physical
System
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Fig. 6. xPC Target system

In the annotated Simulink model of the Stewart platform setup shown in
Fig. 5, the shaded area in the bottom-right corner marks the software that
is running on the host PC. The shaded area at the top indicates the actual
hardware. The rest of the blocks are running on the target PC.

4.7 Host and target interaction

It is frequently necessary to interact with the real-time application to either
observe signals or change parameters.

Data logging and on-line monitoring

During the rapid prototyping stage, it is important to have access to many
variables. For this reason, the plant is typically instrumented with more sen-
sors than will be included in the “production” configuration. In addition, the
data needs to be stored in a persistent form or made visible in real time.

Oscilloscopes such as the Agilent 54621A 2-Channel 60 MHz Oscilloscope
allow communication over, for example, an RS-232 connection [39]. This con-
nection supports sending commands to the oscilloscope such as the time base
to use. It also supports communicating the display data.

Alternatively, monitoring software can be used to manage data. xPC Tar-
get supports several monitoring and data logging methods, including xPC
Target scopes, outport blocks in the Simulink model of the target application,
and a Web browser interface.

xPC Target scopes are data display options for the target. Any signal in
the target application can be associated with the target scope. In addition to
being displayed on the display monitor attached to the target, the data that
is sent to the scope can be stored in RAM or on the xPC Target file system
and transferred to the host when the execution of the target application stops.



www.manaraa.com

430 P. J. Mosterman et al.

The availability of a file system on the target hardware allows large amounts
of data to be logged, especially useful in prototyping applications. The data
display and logging can be controlled by other signals in the model so that
bursts of logged data can be acquired.

Outport blocks in the Simulink model of the target application can be used
to log data to an object in the MATLAB workspace once the execution of the
target application is terminated. From here, the data can be manipulated as
regular workspace variables, one option being saving it to a file and another
being displaying it in a MATLAB plot. The outport blocks must be at the top
level in the model hierarchy and are considered model output. Time and the
model state can be logged in the same way in which this data can be written
to the MATLAB workspace during operation of the target application.

A Web browser interface can be used to retrieve the data logged by the
target application in a comma-separated list that can be easily handled by
spreadsheet or similar programs.

Note that the task execution time is a variable that is available for logging
by an xPC Target real-time application, although it is not available when
simulating the application in Simulink.

For the Stewart platform described in Section 3, the sample rate of the in-
put and output blocks is chosen at 1 ms, yielding a data acquisition frequency
of 1 kHz. This frequency is fairly standard for mechanical systems. Because it
is much higher than the mechanical dynamics (around 10 or 20 Hz), it is high
enough to eliminate aliasing concerns [8, 23]. The powerful xPC TargetBox
processors and memory allow sampling at this high a frequency. To prevent
data files from becoming too large, the data logging frequency is down-sampled
by a factor of 10 to about 100 Hz.

Parameter tuning

xPC Target supports the modification of parameters in the Simulink blocks
while the application is running. The parameter changes are immediately re-
flected in the real-time application. The tight integration between MATLAB,
Simulink, Real-Time Workshop, and xPC Target makes it possible to write
a script that incrementally changes a parameter and monitors a signal out-
put. The script can then be run on the host PC to optimize the value of the
parameter.

5 xPC TargetBox

xPC TargetBox provides a complete hardware capability for prototyping con-
trol systems. It combines xPC Target software with a Pentium-based computer
in a rugged enclosure that is suitable for industrial environments. The micro-
processor can be augmented with a number of I/O configurations that are
commonly required for control applications, such as counters/timers, A/D,
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D/A, pulse-width modulation (PWM), digital I/O, and CAN bus. xPC Tar-
getBox is a PC-compatible computer configured to use a standard PC/104
stack but with all physical considerations incorporated to create a rugged and
powerful controller.

xPC TargetBox includes chassis, enclosure, connector breakouts, and an
internal power supply. It enables the design of embedded systems for appli-
cations such as mobile controllers like PC/104 and single-board computers
(SBCs). The acquisition cost for an all-in-one embedded PC is slightly higher
than for a PC/104 or SBC system, but there is no additional cost for designing
and manufacturing an enclosure because the system includes the enclosure.

xPC TargetBox systems can achieve sample rates approaching 60 kHz.
They accommodate up to four PC/104 expansion boards and support a se-
lection of commonly used I/O options.

6 Generating Embedded Code

6.1 Application execution

Simulink simulation steps

A typical Simulink block consists of inputs, states, and outputs, where the
outputs are a function of the sample time, the inputs, and the block states.
During simulation, the model execution follows a series of steps (Fig. 7). The
first step is the initialization of the model, where Simulink incorporates library
blocks into the model; propagates signal widths, data types, and sample times;
evaluates block parameters; determines block execution order; and allocates
memory. Simulink then enters a simulation loop. Each pass through the loop
is referred to as a simulation step. During each simulation step, Simulink
executes each of the model blocks in the order determined during initialization.
For each block, Simulink invokes functions that compute the values of the
block states, the derivatives, and the outputs for the current sample time.
The simulation is then incremented to the next step. This process continues
until the simulation is stopped.

Real-time execution

Real-time behavior is inherent to embedded systems design. There are differ-
ent definitions of “real-time”. For the purpose of this paper, it is defined as
“a fast enough response” for a particular application.

Real-Time Workshop takes the Simulink model and generates the applica-
tion or algorithm code that contains the system of equations derived from the
model as well as the block parameters and the code to perform initialization.
Real-Time Workshop also provides a run-time interface that allows the model
code to be built into a complete, stand-alone program that can be compiled
and executed. Fig. 8 provides a high-level view of the real-time executable.



www.manaraa.com

432 P. J. Mosterman et al.

Initialize model

Calculate time of next sample hit
(only for variable sample time blocks)

Update discrete states
Clean up at final
time step

Si
m

ul
at

io
n

lo
op

Integration
(minor time step)

Calculate outputs

Calculate zero crossings

Calculate outputs

Calculate derivatives
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Fig. 7. Steps in a Simulink simulation

xPC Target uses this run-time interface and combines it with a real-time clock
and scheduler to generate a real-time application, while providing the drivers
for interfacing to real-time hardware and the signal monitoring and param-
eter tuning capabilities. Based on the sample rate specified in the Simulink
model, xPC Target uses interrupts to step the execution of the model at the
appropriate rate. With each new interrupt, the target application computes
all the block outputs from the model, similar to the way Simulink computes
its block outputs.

Code generated from the modelExecution driver for the model code
Operating system interface routines
Input/output routines
Solver and data logging routines

Environment Application

Fig. 8. The object-oriented view of a real-time program

The code generated from the Simulink model is sometimes referred to as
the model code because it implements the Simulink model. The model code
contains functions that correspond to the applicable simulation steps outlined
in Fig. 7: compute the model outputs, update the discrete states, integrate
the continuous states (if applicable), and update time. xPC Target generates
its own main program. This program interacts with the execution driver for
the model code, which in turn calls these functions.

The functions then write their calculated data to the real-time model. At
each sample interval, the main program passes control to the model execution
function, which executes one step through the model. This step reads inputs
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from the external hardware, calculates the model outputs, writes outputs to
the external hardware, and then updates the states, as shown in Fig. 9.

Read system input
from A/D

Calculate and update
continuous states

Calculate system output

Write system output to D/A

Calculate and update
discrete states

Increment time

Integration algorithm

Execute model

Fig. 9. Real-time execution of the model code

If these computations require the plant output of the previous sample time,
they must be performed in one sample interval. This implies synchronization
between the execution of the logical program by the controller and the dy-
namic behavior of the plant in real time. The sample rate is determined by
control law analysis and depends on the time constants of the plant: the faster
the plant time constants, the higher the required sample rate.

Note that this scheme writes the system outputs to the hardware before the
states are updated. Separating the state update from the output calculation
minimizes the time between the input and output operations. The generated
code also contains functions to perform initialization, facilitate data access,
and complete tasks before program termination.

The requirement to have plant input computed at a given point in time
implies a fixed controller response time. As a result, the controller cannot rely
on iterative computational schemes unless the upper bound of the iterations is
fixed. This means that the controller must not employ a variable integration
step or include algebraic loops.

6.2 Model-based code

Using Simulink as a graphical front end to the embedded software combined
with automatic code generation technology makes it easy to modify the con-
troller —it is easier to change the model than to change the code (code changes
have a higher probability of introducing new defects) [22]. The controller can
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be analyzed in terms of the Simulink model, which is more intuitive than the
embedded software code, and sophisticated data analysis tools are immedi-
ately available to study and tune the controller performance.

6.3 Data acquisition code

As illustrated by the measurement setup in Section 3, the actuation of a plant
and sensing some of its signals can be an intricate matter. The transducers
used to transform signals between physical domains are often complex de-
vices with highly nonlinear characteristics, making them difficult to model.
Furthermore, careful calibration is crucial and, given that the physics of the
system change over time, conscientious recalibration is a necessity.

Selecting from among the many available sensors and actuators is an im-
portant stage in the design of an embedded control system, especially because
dedicated “signal conditioning” hardware may be required to employ particu-
lar sensors and actuators. This hardware may be used, for example, to change
the impedance of a signal, ensure its voltage range is within required bounds
(often between 0 V and 5 V), filter voltage spikes, and protect against power
surges.

In addition, the actuators and sensors chosen present interfacing require-
ments. For example, a DC motor may have to be driven by PWM, and so the
availability of a PWM channel to the controller is desirable.

A measured variable is made available to the embedded controller as a
voltage. To be used in control law computations, this variable must be con-
verted into the corresponding value of the physical quantity that it measured.
For example, the position measurement of the legs of the Stewart platform is
made available as a sequence of electrical pulses. These pulses are counted.
The resulting value is indicative of the extension. However, the actual value
requires computing 0.04/65536∗count number (see Section 3.3) first. Embed-
ded control systems include software to perform the computations required to
complete the data acquisition.

6.4 Supporting control algorithms

Embedded control systems typically account for different operating regions,
or modes of operation. For example, an aircraft moves through a sequence of
modes such as take-off, cruise, descent, and flare on each trip. In order to test
the algorithm for a particular mode, the plant must be in the corresponding
mode. It may be necessary to implement control algorithms for any of the
modes that the system has to move through to arrive at the desired mode.
Furthermore, additional control loops may be present in the same system.
These supporting control algorithms can, however, be of a rudimentary nature.

To estimate friction parameters in the Stewart platform in Fig. 2, the
system has to be moved to an operating point. This involves a start-up stage,
during which the system is operated in an initialization mode, before moving
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into its operational mode. This start-up is modeled in Stateflow r© [36] by the
statechart [10] shown in Fig. 10.

initializing_legs
en: volts_out=init_volts;

running_legs
du: volts_out=volts_in;

Fig. 10. Stewart platform start-up procedure

Once the required measurements have been taken, the Stewart platform
must be returned to a safe and stable position. This is performed by the shut-
down stage, modeled by the statechart in Fig. 11. After the operational mode,
running legs, a reset mode, reset legs, is entered during which the extensions
of the legs are reset. Next, the final mode, done, is entered during which all
control signals are commanded to 0. Once this mode is entered, it is safe to
turn off the system power.

[clock_time>reset_time]

[clock_time>(reset_time+3)]

running_legs
du: volts_out=volts_in;

reset_legs
du: volts_out=reset_volts;

done
en: volts_out=0*reset_volts;

Fig. 11. Stewart platform shut-down procedure

6.5 Safety

Embedded control systems are fail-critical; they exhibit potentially dangerous
behavior to the point where they may trigger catastrophic events. For this
reason, the legs on the Stewart platform must not be driven beyond their
maximum extension. This condition is ensured by a control that enforces a
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hardware limit. The controller uses the current extension of each leg and
the requested force to be exerted upon this leg as shown in the statechart in
Fig. 12(a). If a leg is within 2% of its full extension, the controller will not allow
further extension. The output of this statechart, F des out, is then passed
through the force saturation computation statechart shown in Fig. 12(b).

limit_enforcer_system

[x_L<mech_limit_min]

[x_L>mech_limit_max]

out_of_bounds

beyond_min

beyond_max

in_bounds
du:F_des_out=F_des_in;

(a) Limiting

[F_in<-F_max]

[F_in<-F_max]

[F_in>F_max]

[F_in>F_max] [F_in<F_max & F_in>-F_max]

saturated too_small
du:F_out=-F_max;

too_big
du:F_out=F_max;

unsaturated
du:F_out=F_in;

(b) Saturation

Fig. 12. Force safety computations

In many cases, emergency hardware is available that allows a safety switch
to immediately invoke a safe controller. Often, this safe controller is nothing
but a simple strategy to shut off power (the “big red button”). However,
simply shutting off power is not always a feasible approach. For example, in
aircraft, a hardware or software mode-switch may have to be present that
has a proven controller (human or automatic) immediately take over. If the
controller that is tested is designed to deal with calamities, it requires pushing
the system to its envelope of safe behavior. In this case, the safety switch may
even have to be made before the test of the prototype controller goes awry,
as it is necessary to be in a recoverable state when the switch is made.
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7 Plant Modeling

In many applications the equations of motion for the system can be described
by first principles. Simulink and Stateflow provide the functionality to de-
scribe the overall architecture of a system. Tools for domain-specific physical
behaviors include SimMechanics [30], for characterizing the dynamics of two-
and three-dimensional mechanical components, and SimPowerSystems [11],
for modeling the dynamics of electrical power systems.

The SimMechanics model of the overall Stewart platform mechanics was
exported from a computer aided design (CAD) drawing in SolidWorks [35].
Fig. 13 shows a SimMechanics model of a Stewart platform leg, including
friction. The gray area shows the SimMechanics part, which consists of a
body representing the lower leg and a body representing the upper leg. The
two bodies are connected by a prismatic joint. The Lower Leg Sensor and
the Upper Leg Sensor sense the position and orientation of the lower and
upper leg bodies for display with the Virtual Reality Toolbox [41]. The Lower
Connect and Upper Connect ports connect the leg to the base and top plate
of the Stewart platform, respectively. The prismatic joint is modeled to have
stiction by the Stiction Actuator. This actuator takes forward and reverse
stiction values and evaluates whether the static friction value is between these
forward and reverse values. If it is, the joint is locked. Otherwise, the joint
moves with kinetic friction and an external actuation force. The kinetic friction
is computed by the Friction block and includes nonlinearities such as spring-
damper endstop behavior.

The connections within the SimMechanics domain are energy connections
that carry two conjugate variables, velocity and force. The product of these
variables constitutes power [27]. The SimMechanics compiler automatically
derives the computational direction of the velocity and force (the computa-
tional causality) that needs to be made explicit in a Simulink model [43].
Because the connections carry two variables that are computed from opposite
ends, the connections are undirected, and, therefore, instead of an arrowhead,
a direction-neutral line ending (such as a solid circle or a square) is used.

Typically, values for physical parameters such as moments of inertia,
masses, rod lengths, and gear ratios are well known and can be incorporated
into the model. Parameters such as friction coefficients, viscosity, and stiction
behavior, however, are not precisely known. Measured data from the rapid pro-
totyping system can be used with the first-principle description to calibrate
these parameters using Simulink Parameter Estimation [6]. Simulink Param-
eter Estimation estimates parameters and dynamic states in Simulink and
related modeling environments such as SimMechanics and SimPowerSystems.
Simulink Parameter Estimation allows the selection of a set of parameters
and states to be estimated. Minimum and maximum values of the parame-
ters and initial states can be set, in addition to the expected values. Simulink
Parameter Estimation uses optimization algorithms from the Optimization
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Fig. 13. A SimMechanics model of one leg of the Stewart platform

Toolbox [26] and, optionally, the Genetic Algorithm and Direct Search Tool-
box [9].

Linear system identification tools are useful if the dynamics of a system
behave in a near-linear manner about a given operating condition, but cannot
be modeled from first principles. The System Identification Toolbox [38] com-
putes linear discrete and continuous models using both time and frequency
domain data.

Transfer function estimation is another process that takes experimental
data and converts it using spectral estimation techniques to compute the
frequency response of a system. The Signal Processing Toolbox [29] has many
functions to support the estimation of a transfer function.

If linear models do not describe the model accurately and the underlying
equations of motion are not well known, a nonlinear black box neural network
can be created using the Neural Network Toolbox [21].
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8 Data Acquisition

8.1 Experiment design

An experiment to acquire input/output data requires input signals that ad-
equately excite the system. Experiment design must address [15, 25]: sample
time selection, signal-to-noise ratio, and signal persistency.

Experiment validation and analysis is a post-processing step that involves
the cleanup and initial analysis of the data. The post-processing steps include
detrending, filtering, and outlier removal. Other experimental validation steps
include [2, 6, 38]:

• Spectral estimation—the process of converting experimental data using
spectral estimation techniques to compute the frequency response of a
system. This type of estimation can be used to assess the order, the band-
width, and a model for the system.

• Performing correlation calculations—to test for the existence of feedback,
nonlinearities, and delays in the data.

• Data acquisition—two sets of data should be acquired from the rapid pro-
totyping system: input for model estimation and validation. The form of
the signals used in the validation data set should be different from the
signals used for estimation data set generation.

8.2 Real-time needs in data acquisition

While data acquisition systems are useful for gathering data to build physical
models, they cannot perform real-time data processing.

In a general data acquisition configuration, plant sensors provide a stream
of measurements that are logged at a given sample rate. The plant may be ex-
cited by feedforward control, but the data acquisition system does not include
any feedback control. In a real-time data acquisition configuration, closed-loop
feedback control may pose stringent real-time constraints. The data acquisi-
tion part, however, can be run at a lower, and less demanding, frequency.

Rapid prototyping systems are preferable to standard data acquisition
tools in the following cases:

• When the plant must be operated in a given mode to obtain data to
estimate model parameters. For example, to determine the static friction
of each of the legs of the Stewart platform, they have to be movable in both
the positive and negative directions. An initial start-up phase is, therefore,
necessary to extend all the legs to a point where they can move in both
directions.

• When a plant is unstable and requires feedback to stabilize the dynamics
for an experiment.
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• When other control loops must be in operation while performing the ex-
periment (e.g., when designing the spark control for a combustion engine
while keeping the rest of the engine control strategy and I/O interfacing
the same).

• When safety control functionality must be in place to protect the system.

8.3 Data acquisition techniques

There are three basic techniques for data acquisition. Each has advantages
and drawbacks [44]:

• Polling reads the status of a device regularly and is easiest to understand
and debug.

• Interrupt-based data acquisition directs attention to a device only when it
requests attention and is more flexible but suffers from “interrupt latency.”

• Direct memory access (DMA) moves blocks of data directly into memory
but requires the data to be processed as it comes in.

8.4 Parameter estimation

Once the acquired data has been uploaded from the target to the host (see
Section 4), Simulink Parameter Estimation can be used to estimate the pa-
rameters of a plant model.

For example, in Fig. 14, three sets of data were acquired from the Stew-
art platform. The input is the voltage with which one of the piezoceramic
actuators is driven. The output is the extension of the corresponding leg as
measured by the grated slide.
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Fig. 14. Excitation

These data sets are used to estimate the static and dynamic friction be-
havior of one of the legs. Fig. 15 shows the response of the Stewart platform
to each of the excitations in Fig. 14.

Fig. 16 shows the resulting output for the excitation in Fig. 14(a). The solid
curve is the measured output, also shown in Fig. 15(a). The initial model
output using parameter values as chosen by an educated guess is depicted
by the dotted curve. The parameter values that result from the estimation
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Fig. 15. Response

are given in Table 1. The corresponding trace is the dashed curve shown in
Fig. 16. The estimated parameter values produce a model output that, while it
better approximates the measured output, still deviates significantly from the
actual output. Investigation of the model and the deviations reveals position-
dependent stiction. This dependency can be added to the model structure and
the parameter estimation process can be repeated.
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Fig. 16. Parameter estimation result

9 Stages in Control System Design

Once a model is available, the design of a control system can commence as
follows:

1. Transform the model of the physical system into a form suitable for con-
troller design. If the model is nonlinear, use the linearization tools to
extract a linear model of the plant at various operating points [7, 32].
Simulink Control Design [32] provides tools to automatically extract a
linear model from a Simulink block diagram.
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Table 1. Estimated parameter set

Name Value Estimate Initial Guess Min. Max. Typical Value
Kf 0 .74713

√
Kf 0 +Inf 0 .75

Kfv 15
√

Kfv 0 +Inf 15
Kk 1 .0015

√
Kk 0 +Inf 1

Kv 40
√

Kv 0 +Inf 40
sf f -3 .5004

√
sf f -Inf 0 -3 .5

sf r 3 .5
√

sf r 0 +Inf 3 .5
sg f 0 .99998

√
sg f 0 +Inf 1

sg r 1
√

sg r 0 +Inf 1
xL offset 17 .814 xL offset 17 .814 +Inf 17 .814

2. Using a linear plant model, employ classical, modern, and robust control
design tools to get a close estimate of the feedback control system compo-
nents [7,17,24,34,46]. Linearization of a nonlinear model will usually result
in a number of modes of operation for which different linearized models
are derived. Such systems are called hybrid dynamic systems, and they
require dedicated synthesis and analysis techniques [16, 40]. Care should
be taken to account for computational delays and sampling effects. These
variables can affect the stability and robustness of a control system design
[37].

3. Implement the feedback control system design in the nonlinear Simulink
plant model. Optimize controller performance on the full nonlinear model
[13]. Simulink Response Optimization [33] lets users specify constraints
on the response of the control system and pick parameters to optimize.

4. Simulate the nonlinear control and plant model to validate the design. A
set of test cases that “lock down” required behavior may be used.

5. Generate code for the designed control and test this code against a non-
linear plant model or a real-time plant model. The real-time version tends
to be more accurate in time but less accurate in terms of variable val-
ues because real-time simulation typically requires less accurate models
to satisfy the response time constraints.

6. Test and tune the control system performance. Simulink can communicate
directly with embedded software running on a target. Changes in param-
eters in the Simulink model from which the target embedded software is
generated are communicated to the target application to take effect while
the software is running.

10 The Stewart Platform Controller

A feedback control law was designed that drives the Stewart platform to a
commanded position. In this feedback control law, the offset and hysteresis
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need to be accounted for. If a proportional-integral-derivative (PID) controller
were used, the proportional gain would be excessively high.

For the Stewart platform in Fig. 2, the offset at which the piezoceramic
motors actually start moving is determined from acquired data. Because of
the physics of the motors, a significant force is required to ensure that the leg
starts moving. This force corresponds to approximately ± 3.2 V of command
voltage, depending on the extension of the leg and the direction in which it
is required to start moving. The velocity against voltage profile is linear once
this offset is established, causing some hysteresis around 0 V.

The control algorithm used is shown in Fig. 17. The input and output
of this control algorithm are six-dimensional variables, corresponding to the
six legs of the hexapod. The algorithm takes as input the desired extension of
each of the legs, x Ldes, the error between the actual and desired extension of
each of the legs, x Le, and the time derivative of the actual extension, xdot L.
The output of the algorithm is the desired force to be exerted by each motor
that drives the extension of each leg, F des. The desired force is the sum
of a PID control that uses a first-order filter to approximate the derivative,
an offset term to compensate for the stiction nonlinearity of the prismatic
joints, and the derivative of the desired leg extension to improve tracking of
the prescribed movement. Note that, to drive the motor, the computed force
is translated into a voltage. This translation is not shown in Fig. 17.
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Fig. 17. Stewart platform feedback control

Using Simulink Response Optimization, the parameters for the respective
control terms could be quickly estimated. If the performance of the imple-
mented system does not meet the requirements, additional data can be ac-
quired from the Stewart platform and used to refine the plant and controller
models.
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11 Conclusions

This chapter has discussed the use of MathWorks products for embedded con-
trol system design, with emphasis on rapid prototyping. xPC Target and xPC
TargetBox play a central role in this process, as the use of general-purpose
PC-based hardware makes them particularly well suited for prototyping appli-
cations. In addition, xPC Target can be equally well employed in other system
configurations [19], providing hardware-in-the-loop simulation and testing ca-
pabilities to assist in the development of embedded controllers.

The characteristics of embedded control systems and the relevant features
of xPC Target were discussed. The industrial PC, xPC TargetBox, was de-
scribed in the context of a Stewart platform application.

Acknowledgements

The authors thank Mike Dickens, Tony Lennon, and Rosemary Oxenford for
helpful comments on an earlier draft.

c©2004, The MathWorks, Inc. Reprinted with permission. MATLAB and
Simulink are registered trademarks of The MathWorks, Inc.

References
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1 Introduction: Control Applications Using LabVIEW

Control applications are a very broad class of applications in which digital
computers are used together with sensors and actuators to produce a desired
behavior within the controlled system or process. This broad space of control
applications can be roughly divided into two categories: industrial control
and embedded control. Industrial or process control applications are those in
which control is used as part of the process of creating or producing an end
product. The control system is not a part of the actual end product itself.
Examples include the manufacture of pharmaceuticals and the refining of oil.
In the case of industrial process control, the control system must be robust
and reliable, since the processes typically run continuously for days, weeks or
even years.

Embedded control applications are those in which the control system is a
component of the end product itself. For example, Electronic Control Units
(ECUs) are found in a wide variety of products including automobiles, air-
planes and home appliances. While embedded control systems must also be
reliable, cost is a more significant factor, since the components of the control
system contribute to the overall cost of manufacture of the product. In this
case, much more time and effort is usually spent in the design phase of the
control system to ensure reliable performance without requiring any unneces-
sary excess of processing power, memory, sensors, actuators, etc. in the digital
control system.

LabVIEW has been used successfully for many years in test and measure-
ment applications due to the ease of graphical programming and the wide
array of functionality for interfacing directly to instruments, sensors and ac-
tuators. This connectivity to I/O has also enabled LabVIEW to be used for
control applications. Because Windows is a non-deterministic operating sys-
tem, LabVIEW for Windows was used to control relatively slow processes that
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did not require fast update rates—for example, temperature control systems.
For more information on LabVIEW applications, see [3].

With LabVIEW Real-Time, the power of LabVIEW has been extended
by running LabVIEW applications under a deterministic real-time operating
system. This has enabled development of high-speed closed-loop control appli-
cations with the ease of use of graphical programming. LabVIEW Real-Time
can be used for industrial control applications using rugged hardware such as
PXI or CompactFieldPoint. In addition, LabVIEW Real-Time can be used in
the development of embedded control systems by acting as a rapid control pro-
totype or as a hardware-in-the-loop (HIL) test system for testing embedded
controller designs. The aim of this chapter is to explain how LabVIEW Real-
Time and National Instruments (NI) real-time hardware targets can be used
for the deployment of industrial control applications and the development of
embedded control applications.

1.1 Industrial control: The programmable automation controller
(PAC)

For the last three decades, with a proven track record for reliable operation,
the programmable logic controller (PLC) has reigned supreme as the standard
for automation and control applications. However companies turning toward
flexible automation today are finding that PLCs are often not flexible enough
for their rapidly changing production demands. In a typical plant there will
be discrete control, motion control, visual inspection, process control, and
production reporting. Traditionally, with a fixed automation model, each of
these areas is viewed as an isolated discipline, is run on a separate controller,
and is programmed with separate software. While this paradigm is workable in
a fixed automation environment like Henry Ford’s famous Model T line, where
“Any customer can have a car painted any color that he wants so long as it
is black,” it is unsustainable in an environment where product customization
and rapid changes in product design are the standards.

Faced with the need for the rapid evolution to high value production, in the
last decade industry pundits and journal editors have foretold the widespread
adoption of PC-based control. With features like powerful multidisciplinary
software tools, floating-point processors, extensive memory, and a graphical
interface, the PC seemed poised to become the ultimate industrial automa-
tion platform. However, today in most factories you’ll see primarily PLCs
performing machine and discrete control. To be fair, while many engineers
have looked to the PC when they are incorporating advanced functionality
like analog control and simulation, database connectivity, web-based func-
tionality, and communication with third party devices, the PLC is still king
for control.

The problem with PC-based control up to now is that standard PCs are
not designed for rugged environments. Although some engineers use special
industrial computers with hardened hardware and special operating systems,
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most engineers avoid PCs for control because they, or someone they know,
have had a reliability problem with a PC. PCs running standard operating
systems with off-the-shelf hardware are generally too fragile and temperamen-
tal to be relied upon for embedded industrial control. In addition, the devices
used within a PC for different automation tasks such as analog or digital I/O
or motion may have different development environments.

Thus, many engineers either live without functionality, which cannot easily
be accomplished with a PLC, or they cobble together a system that includes a
PLC for the control portion of the code and a PC for the more advanced func-
tionality. This is why, in many factories today, you will see PLCs being used
in conjunction with PCs for data logging, connecting to bar code scanners,
inserting information into databases, and publishing data to the web. The
big problem with this type of setup is that these systems are often difficult
to construct, troubleshoot, and maintain. The system engineer is left with
the unenviable task of incorporating hardware and software from multiple
vendors, and these components have not been designed to work together.

While experts were debating the advantages of PC-based control and PLC-
based control, some vendors were designing new products that incorporate the
best of both worlds. If the dot-com bubble had one good outcome it was a
dramatic increase in processor speed, network reliability, and communication
technology. Vendors today are incorporating industrial versions of floating-
point processors, dynamic random access memory (DRAM), non-spinning
memory storage such as CompactFlash, and fast Ethernet chipsets into indus-
trial control products. More importantly, they are developing software with
the flexibility and usability of PC-based control systems that can run under
real-time operating systems for reliability.

Software in PC-based control systems today can perform multiple con-
trol disciplines, discrete control, process control, motion control, visual in-
spection, reporting, database connectivity, and statistics. This enables engi-
neers to learn one software development tool, such as LabVIEW, and use it
across the plant. The same software also has the ability to run on various
platforms, from large mainframe installations to those embedded on a chip
(Fig. 1). For instance, LabVIEW graphical programming software can run on
Linux-based workstations, on Windows-based PCs, on embedded controllers
running a real-time operating system (LabVIEW Real-Time), on personal dig-
ital assistants (PDAs) (LabVIEW PDA), and even compiled into silicon on a
field-programmable gate array (FPGA) chip (LabVIEW FPGA). The software
flexibility frees engineers from the constraints of environmental and reliability
requirements by allowing them to select the most appropriate platform for
their installation.

Programmable automation controllers

In December of 2002, the ARC Advisory Group identified this emerging class
of software and hardware products and gave them the name “programmable
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Fig. 1. LabVIEW can be used on a wide range of platforms and targets (workstation
down to embedded devices)

automation controllers” or PACs [8]. They identified PACs as devices that
offer open industry standards, extended domain functionality, a common de-
velopment platform, and advanced capabilities.

LabVIEW Real-Time as the foundation for PAC

One example of a PAC is the combination of National Instruments LabVIEW
Real-Time software and any of several National Instruments real-time hard-
ware platforms. Together, these products deliver an embedded industrial con-
trol platform designed with PC flexibility and PLC reliability. These hardware
platforms use LabVIEW Real-Time, which is LabVIEW running on a real-
time operating system (RTOS). LabVIEW Real-Time extends the LabVIEW
development environment to deliver deterministic, real-time performance. The
engineer develops his application on a host computer using graphical program-
ming and then downloads the application to run on an independent hardware
target based on off-the-shelf computing components and an RTOS. The ad-
vantages of this approach are that the engineer can

• Develop reliable applications with graphical programming
• Implement and visualize precise deterministic performance
• Eliminate time spent integrating diverse I/O.

In the future, engineers will be able to use the same programming engine
to distribute intelligence for automation to additional levels of control and
devices. An example of this that exists today is the NI Compact Vision System
(CVS). This device includes an x86-based processor which can run LabVIEW
Real-Time. In addition, engineers can now re-program the digital I/O on the
device using the LabVIEW FPGA.
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PAC concepts can be extended by allowing for intelligence to be placed
in new devices. Fig. 2 shows the extension of LabVIEW down to the level
of FPGA chips. This technology is based on LabVIEW FPGA, which con-
verts LabVIEW code into the VHDL code required to program these devices.
LabVIEW FPGA can be used to delegate extremely time-critical functions to
hardware such as limit and proximity sensor detection, safety interlocks, and
sensor health monitoring. These types of functions require a very high degree
of reliability which can only be achieved through implementation in silicon.
In addition, custom digital protocols may be developed and implemented as
well as simple, low-level control algorithms which must run at very high loop
rates. LabVIEW FPGA allows a controls engineer to easily design their own
hardware for these purposes.

1.2 Embedded control applications

The design of embedded control systems is often characterized using the “V-
diagram” (see Fig. 2) The left side of this diagram shows the process beginning
with requirements, through the design and simulation of the system to deploy-
ment of control software on an embedded target. The right side of the “V”
shows the corresponding testing steps that are necessary as the functionality
of the controller is verified and eventually incorporated into the overall de-
signed system. LabVIEW and LabVIEW Real-Time can be used throughout
this process to aid in the development of embedded control applications.

Fig. 2. V-diagram representing the embedded control design process
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Design of embedded control systems

LabVIEW has a suite of powerful control design and simulation add-on mod-
ules for use in the design of embedded control systems. The native measure-
ment functionality of LabVIEW can be used together with the system iden-
tification algorithms to characterize plant models directly from stimulus and
response waveform data. Control design functions can be used to analyze
plant models and systems and design control algorithms. The powerful user
interface capability of the LabVIEW front panel can be used to create system
identification and/or control design applications for a specific problem or class
of problems that enables a repeatable, documented design process.

The LabVIEW Simulation Module provides a means of representing
dataflow logic in the control block diagram form typical in the design of con-
trol systems, and it includes numerical ordinary differential equation solvers
for simulation or real-time implementation. Plant models and control logic
can be simulated off-line with complex inputs to refine the design before im-
plementation on actual hardware. Models developed with LabVIEW can then
be reused together with I/O functionality on Real-Time hardware for imple-
mentation or hardware-in-the-loop simulation.

Rapid control prototyping and hardware-in-the-loop (HIL)
simulation

The increasing complexity of electronic control systems and the demands for
faster time to market have led to an increase in the use of rapid prototyping
and HIL testing in the design of embedded control systems. The complexity
of these systems increases with the increasing functional demands required
of applications such as that of modern automobiles. This in turn creates an
increased need to prototype these systems before deployment to embedded
controllers and to test controllers under simulated conditions before imple-
mentation on the actual physical plant system.

Faster time to market means that iterations of design cycles must be min-
imized while still ensuring that the designed system meets all requirements.
Applying rapid control prototyping ensures that control designs are function-
ally correct before committing to the costly process of embedding the designed
control algorithms in embedded control systems. By iterating new designs
quickly using prototypes, the need for expensive redesigns after deployment
to embedded controllers is minimized.

As described above, LabVIEW Real-Time and Real-Time hardware targets
can be used to run models developed in LabVIEW for prototyping or HIL test
applications. In addition, models or control logic designed with other software
tools such as The MathWorks’ Simulink1 can be integrated with LabVIEW
using the LabVIEW Simulation Interface Toolkit. LabVIEW’s front panels

1Simulink r© is a registered trademark of The MathWorks Inc.
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can be used as a dynamic graphical user interface for Simulink applications
during off-line simulation. The Simulink models can then be compiled into
dynamic linked library (DLL) form using The MathWorks’ Real-Time Work-
shop2 together with the LabVIEW Simulation Interface Toolkit. The toolkit
provides functions in LabVIEW that directly interface to the DLL generated
from Real-Time Workshop. When combined with the I/O capability of Lab-
VIEW, the compiled Simulink models can be run in LabVIEW Real-Time for
implementation, prototyping, or HIL simulation.

1.3 Introduction to LabVIEW Real-Time

Most LabVIEW applications run on a general-purpose operating system (OS)
like Windows, Linux, Solaris, or Mac OS. Some applications require determin-
istic real-time performance that a general-purpose OS cannot guarantee. The
LabVIEW Real-Time Module extends the capabilities of LabVIEW to ad-
dress the need for deterministic real-time performance. For more information
on general programming with LabVIEW, see [2], [4].

The Real-Time Module combines LabVIEW graphical programming with
the power of an RTOS, enabling the creation of deterministic real-time appli-
cations. Programs, referred to as Virtual Instruments (VIs), are developed in
LabVIEW and executed on a real-time (RT) target. The RT target runs VIs
without a user interface and offers a stable platform for real-time VIs.

Real-time basics

RTOSs are designed for high-reliability, deterministic systems. These oper-
ating systems differ from desktop operating systems in the following three
ways:

1. OS scheduling mechanism ensures high-priority tasks always execute first
2. Software developer has explicit control over all system tasks
3. System does not require user input from peripherals such as mouse and

keyboard.

In contrast, desktop OSs are designed to host a diverse set of applications
including accounting software, desktop publishing, video gaming, and engi-
neering tools. In addition, a desktop OS is expected to respond to all user
inputs from the mouse and keyboard instantaneously. As a result, a desktop
OS cannot be optimized for deterministic performance.

All LabVIEW Real-Time targets include an embedded RTOS that adheres
to preemptive and round-robin scheduling, optimized for deterministic perfor-
mance. With LabVIEW Real-Time, higher priority threads always preempt
execution of lower priority threads. When threads of equal priority need to
execute, round-robin scheduling gives each thread an equal amount of time

2Real-Time Workshop r© is a registered trademark of The MathWorks, Inc.
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with the processor. After one thread uses its available time slice, the OS au-
tomatically kicks that thread off the processor and the next thread in line
begins executing. The combination of preemptive and round-robin scheduling
ensures that LabVIEW Real-Time applications achieve deterministic perfor-
mance with minimal jitter.

LabVIEW Real-Time Module platforms

National Instruments designed the LabVIEW Real-Time Module to execute
VIs on two different real-time platforms. The LabVIEW Real-Time Module
can execute VIs on hardware targets running the RTOS of the Venturcom Phar
Lap Embedded Tool Suite (ETS) and on computers running the Venturcom
Real-Time Extension (RTX).

Venturcom Phar Lap ETS provides an RTOS that runs on NI RT Series
hardware to meet the requirements of embedded applications that need to
behave deterministically or have extended reliability requirements.

Venturcom RTX adds a real-time subsystem (RTSS) to Windows. Ventur-
com RTX enables Windows and the RTSS to be run at the same time on the
same computer. The RTSS has a priority-based real-time execution system in-
dependent of the Windows scheduler. RTSS scheduling supersedes Windows
scheduling to ensure deterministic real-time performance of applications run-
ning in the RTSS.

Real-Time system components

A real-time system consists of software and hardware components. The soft-
ware components include LabVIEW, the RT Engine, and VIs built using
LabVIEW. The hardware components of a real-time system include a host
computer and an RT target. The following sections describe the different com-
ponents of a real-time system.

Host computer
The host computer is a computer with LabVIEW and the LabVIEW Real-
Time Module installed on which VIs are developed for the real-time system.
After the real-time system VIs are developed, they may be downloaded and
run on the RT target. The host computer can run VIs that communicate with
the VIs running on the RT target.

LabVIEW
VIs are developed with LabVIEW on the host computer. The Real-Time Mod-
ule extends the capabilities of LabVIEW to allow selection of an RT target
on which to run VIs.

RT Engine
The RT Engine is a version of LabVIEW that runs on the RT target. The
RT Engine runs the VIs downloaded to RT targets. The RT Engine provides
deterministic real-time performance for the following reasons:
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• The RT Engine runs on an RTOS or RTX subsystem, which ensures that
the LabVIEW execution system and other services adhere to real-time
operation.

• The RT Engine runs on RT Series hardware or the RT target on the
RTX subsystem. Other applications or device drivers commonly found on
the host computer do not run on RT targets. The absence of additional
applications or devices means that a third-party application or driver does
not impede the execution of VIs.

• RT targets on which the RT Engine runs do not use virtual memory, which
eliminates a major source of unpredictability in deterministic systems.

RT target
An RT target refers to RT Series hardware or the RTSS that runs the RT
Engine and VIs created using LabVIEW. There are three types of RT targets:
RT Series plug-in devices, networked RT Series devices, and the RTSS.

2 LabVIEW Real-Time Hardware Platforms

2.1 Real-Time hardware architecture

All LabVIEW Real-Time deployment platforms are based on a common hard-
ware and software architecture. Each hardware target uses off-the-shelf com-
puting components such as a microprocessor, RAM, non-volatile storage, and
an I/O bus interface. The embedded software consists of an RTOS, driver
software, and a specialized version of the LabVIEW run-time engine. See Fig.
3.

Fig. 3. LabVIEW Real-Time hardware architecture

While the core architecture is the same across all LabVIEW Real-Time
targets, the extent to which these benefits can be realized varies according
to the platform selected. Peripheral component interconnect (PCI) and PCI
eXtensions for instrumentation (PXI) systems deliver the highest performance
with minimal jitter while Compact FieldPoint and Compact Vision Systems
deliver the highest degree of ruggedness. All platforms function equally as
autonomous or stand-alone, headless systems.
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PCI real-time systems

Many test and measurement applications today are based on PCI systems.
LabVIEW Real-Time can be used with these systems by either adding a
real-time component to a Windows system or converting a desktop PC to
a dedicated real-time target.

Real-Time PCI plug-in boards
The NI PCI-7041/6040E RT Series plug-in board adds a real-time compo-
nent to an existing test and measurement system such as a safety shutdown
system integrated with a test application. The PCI-7041/6040E consists of
two boards—an intelligent board and a multifunction data acquisition (DAQ)
board—permanently joined together. The intelligent board plugs into a PCI
slot in a Windows computer. It has the same basic components as a computer
motherboard—an embedded microprocessor, RAM, and nonvolatile storage.
The multifunction DAQ board includes connectivity for 16 analog inputs, two
analog outputs, 8 digital input/output lines, and two counter/timer signals.

Using LabVIEW Real-Time, programs can be downloaded to the processor
on the intelligent board, which runs an RTOS. The program runs on the
embedded processor independent of all operations on the Windows processor.
As long as the RT Series DAQ board has power, the embedded application
will continue to run. As a result, real-time PCI plug-in boards are ideal for
adding a reliable control component to a Windows-based system.

Desktop PCs
If more I/O is needed than is offered on the PCI-7041/6040E, a standard
desktop PC can be converted to a real-time system using LabVIEW Real-
Time for ETS Targets or LabVIEW Real-Time for RTX Targets.

Using LabVIEW Real-Time for ETS Targets, a certified desktop PC can
be converted into a dedicated real-time hardware target. In this case, Ven-
turcom Phar Lap ETS, a dedicated RTOS consisting of a single real-time
kernel, is downloaded to the desktop PC microprocessor. Applications devel-
oped for a dedicated RTOS are developed on a separate host computer and
then downloaded to the real-time target. This same architecture is used for
all NI real-time hardware targets.

In some cases, a solution is needed in which a single machine provides a
user interface in Windows as well as real-time control functionality. Using Lab-
VIEW Real-Time for RTX Targets, a real-time component can be added to a
variety of Windows desktop PCs. In this case, Venturcom RTX, an extension-
based RTOS, is downloaded to the desktop PC microprocessor. An RTOS
extension consists of a real-time kernel and a Windows kernel sharing the
same processor. With this dual-kernel architecture, both the host application
and real-time system can be run on the same machine.

With the RTX architecture, the real-time tasks are given higher priority;
Windows tasks execute only when all real-time tasks are sleeping. However,
the real-time and Windows applications still share the same hardware. If Win-
dows initiates an operation that reserves the hardware for a set period of time
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(for example, reserving the data bus for a large data transfer from the CD
ROM), the real-time tasks will be unable to use that resource until the opera-
tion is complete. This type of situation can cause a priority inversion to occur
between the real-time and Windows tasks. Therefore, applications running
on the machine must be implemented to carefully avoid this type of resource
contention, possibly limiting the functionality of applications running in the
Windows environment.

PXI/CompactPCI real-time systems

In many applications a system is needed that is more rugged and provides
more I/O capabilities than a standard desktop PC. Real-time PXI systems
consist of a rugged chassis, embedded controller, and plug-in I/O modules.
This target is ideal for high-performance systems such as HIL test of electronic
control units and vibration monitoring for machine condition monitoring ap-
plications.

Using LabVIEW Real-Time for ETS Targets, the embedded controller
can be converted to a real-time controller by downloading the RTOS and
application software to a dedicated microprocessor. The embedded software
then has access to all I/O in the PXI system, taking advantage of the PXI
advanced timing and synchronization features to achieve precise I/O triggering
and multimodule synchronization.

FieldPoint and Compact FieldPoint real-time systems

In industrial control applications, which are often highly distributed, real-time
control is needed in a small, ruggedized form factor suitable for harsh envi-
ronments. FieldPoint and Compact FieldPoint systems consist of a controller
with an embedded processor running an RTOS and a variety of I/O mod-
ules. These systems feature rugged hardware, designed to operate in harsh
industrial environments. In addition, the software structure of FieldPoint and
Compact FieldPoint systems support a built-in publish/subscribe protocol,
making these ideal for creating distributed applications.

Using LabVIEW Real-Time for ETS Targets, distributed measurement
and control applications can be developed and then downloaded to run on the
FieldPoint or Compact FieldPoint controller. The embedded software then
has access to all I/O connected to the controller.

Compact Vision real-time systems

Compact Vision Systems are small rugged systems optimized for machine vi-
sion application such as automated inspection. A single small Compact Vision
System includes an embedded processor with an RTOS, connections for three
IEEE 1394 DCAM cameras, a local video display, an Ethernet port, 15 digital
inputs, and 14 digital outputs.
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Using LabVIEW Real-Time for ETS Targets, machine vision applications
can be developed and then downloaded to run on the Compact Vision System.
The embedded software then has access to the camera signals and digital
I/O connected to the system. In addition, LabVIEW FPGA can be used to
customize the operation of the digital I/O lines, converting the lines into
advanced timing and triggering for complementary machinery or a custom
communication protocol to transfer data to proprietary external equipment.

CompactRIO reconfigurable control and acquisition system

For control prototyping or industrial control applications that require a high-
performance control system in a compact, ruggedized form factor, NI Com-
pactRIO may be used. CompactRIO is an advanced reconfigurable embed-
ded system development platform that offers flexibility, performance, and
low-level access to reconfigurable hardware resources. Sophisticated embed-
ded control or acquisition systems developed with CompactRIO match or ex-
ceed the performance and optimization of custom-designed hardware devices.
CompactRIO employs a user-programmable FPGA core that automatically
synthesizes an optimized custom hardware circuit implementation of a Lab-
VIEW FPGA application to implement any input, output, communication,
or control design.

The reconfigurable chassis is the heart of the CompactRIO system and
contains the Reconfigurable I/O (RIO) FPGA core. This user-defined RIO
FPGA is a custom hardware implementation of a control logic, input/output,
timing, triggering, and synchronization design. The RIO FPGA circuit is con-
nected to the I/O modules in a star topology, allowing direct access to each
module for precise control and unlimited flexibility in timing, triggering, and
synchronization. The RIO FPGA core has built-in data transfer mechanisms
to pass data to a host processor for real-time analysis, post processing, data
logging, or display in a real-time or Windows host application.

The NI CompactRIO Real-Time Controller has a powerful floating-point
processor which runs embedded LabVIEW Real-Time applications for tightly
integrated analog process control, batch control, motion, signal processing,
data logging, and Ethernet or serial communication.

2.2 LabVIEW Real-Time deployment platform comparison

Each LabVIEW Real-Time deployment platform is designed for a slightly dif-
ferent application. PCI and PXI systems provide the highest performance
while Compact FieldPoint and Compact Vision Systems deliver the most
rugged hardware. In this section, we compare key aspects of each LabVIEW
Real-Time hardware target in areas of I/O availability, performance, and phys-
ical attributes.
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I/O availability

PXI/CompactPCI and Desktop PCs running ETS RTOS deliver the highest
variety of I/O with NI and third-party modules providing signal connectivity
to analog, digital, counter/timer, image, motion control, reflective memory, se-
rial, general-purpose interface bus (GPIB), Controller Area Network (CAN),
and more. While these systems provide the highest variety of I/O, the pro-
gramming is more complicated than that for the FieldPoint and Compact
FieldPoint systems. With FieldPoint and Compact FieldPoint, the I/O timing
is defined by the I/O hardware; therefore, the application program interface
(API) is less involved than what is required from the other platforms.

Desktop PCs running ETS or RTX RTOS, PXI, and Compact Vision
Systems also work with LabVIEW FPGA targets, NI Reconfigurable I/O
hardware programmed through LabVIEW software. With this unique level of
customizability, engineers can define hardware operation for custom digital
protocols, onboard processing, and immediate decision making.

All LabVIEW Real-Time systems are designed to work well in a distributed
architecture, with multiple nodes connected via Ethernet. However, Desktop
PCs with ETS RTOS and PXI systems deliver software-transparent I/O ex-
pandability with NI MXI. Using MXI, two or more PXI chassis can be daisy-
chained together so that all I/O is controlled by a single PXI or Desktop PC
controller.

Performance

Performance of LabVIEW Real-Time systems can be measured in terms of de-
terministic execution, I/O timing, triggering, synchronization, and processor
speed. Determinism is the most fundamental component of all real-time sys-
tems. It is defined by how consistently a system is able to perform a given oper-
ation within a fixed amount of time. Determinism is affected by the operating
system, software program architecture, and integration of application soft-
ware with I/O timing and synchronization capabilities. The processor speed
determines the minimum loop-cycle time.

PXI, PCI, and desktop PC real-time systems
NI PXI and PCI real-time platforms feature the fastest processors and a data
bus optimized for high-speed data transfers and synchronized timing across
multiple devices. All timing for these devices is configured programmatically.
Using LabVIEW and the driver API, the sample frequency of input signals
and the update rate of output signals are specified.

Using the PXI trigger bus, the benefits of hardware timing can be ex-
tended to synchronize operations across two or more I/O modules. PXI de-
fines eight highly flexible bused trigger lines that can be used in a variety
of ways. For example, triggers can be used to synchronize the operation of
several PXI modules. In other applications, one module can control carefully
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timed sequences of operations performed on other modules in the system. In
addition, trigger signals can be shared between multiple modules for deter-
ministic responses to asynchronous external events that are being monitored
or controlled. The number of triggers that a particular application requires
varies with the complexity and number of events involved.

System jitter can be further reduced using the PXI star trigger bus. The
star trigger bus implements a dedicated trigger line between the Star Trigger
Slot (first peripheral slot adjacent to the System Slot) and the other peripheral
slots. PXI star trigger delivers two unique advantages in augmenting the bused
trigger lines. The first is a guarantee of a unique trigger line for each module
in the system. For large systems, this eliminates the need to combine several
module functions on a single trigger line or to artificially limit the number of
trigger times available. The second advantage is the low-skew connection from
a single trigger point. The PXI backplane defines specific layout requirements
so that the star trigger lines provide matched propagation time from the star
trigger slot to each module for very precise trigger relationships between each
module.

FieldPoint and Compact FieldPoint real-time systems
FieldPoint and Compact FieldPoint systems are designed to be small and
compact. In addition, each I/O module has a unique fixed sampling rate de-
termined by the hardware module. As a result, the I/O programming for
these systems is considerably less involved than that for the PXI and PCI
counterparts.

Because I/O timing for FieldPoint and Compact FieldPoint systems is
fixed within each hardware module, these systems have three asynchronous
loops executing in parallel:

• Input channel updates sent from the input module to the software control
loop

• Software control loop running on the embedded controller
• Output channel updates sent from the software control loop to the output

module.

As a result, these systems are best suited for applications requiring a con-
trol loops rate of less than 200 Hz.

Physical attributes

In addition to deterministic performance, the RTOSs impart a higher level
of reliability because they are specialized, streamlined operating systems that
use fewer resources and eliminate the fragilities of standard operation sys-
tems. Along with the more reliable software framework, LabVIEW Real-Time
platforms include hardware modifications that deliver an even higher level of
reliability suitable for industrial environments.
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National Instruments offers a variety of rugged real-time hardware plat-
forms that extend the application space for LabVIEW Real-Time into harsh
environments where the hardware must withstand extreme temperatures,
shock, vibration, and intermittent power failures. Compact FieldPoint, Com-
pact Vision System, and the PXI-8145 RT embedded controller are designed
with no moving parts, eliminating the most common failures due to shock and
vibration.

Compact FieldPoint controllers are designed to work in a wide range of
temperatures, from -25 to 60 oC, thus eliminating failures due to heat. They
also feature redundant power supply inputs for a seamless connection to back-
up battery. In addition, Compact FieldPoint systems have been certified to
meet the following industrial standards:

• Low-Voltage Directive, European Directives for CE Marking (73/23/EEC)
• European Union (EN) and International (IEC) Safety Standards for Elec-

trical Equipment for Test and Measurement, Control, or Laboratory (EN
61010-1, IEC 61010-1)

• Process Control Equipment (UL 3121-1, UL 61010C-1)
• Safety Requirements for Electrical Equipment for Measurement, Control

and Laboratory Use (CAN/CSA C22.2 No. 1010.1)
• Hazardous Locations (Class I, Division 2, Zone 2).

Compact FieldPoint and Compact Vision Systems provide the best porta-
bility because of the small rugged design. Compact FieldPoint features a rigid
backplane with screw fasteners for the I/O modules.

3 LabVIEW Real-Time Software Architecture

3.1 Architecture of a deterministic application in LabVIEW
Real-Time

LabVIEW Real-Time relies on multithreading and a strict priority scheme to
guarantee determinism to critical tasks.

To create a multithreaded application in LabVIEW, time-critical tasks
must be separated from non-time-critical tasks. VIs can then be built to com-
plete each task. The VIs are prioritized and then categorized into one of the
available execution systems to control the amount of processor resources each
VI receives. LabVIEW assigns each VI to an execution system thread accord-
ing to the VI priority and execution system assigned.

The threads execute on the processor accordingly. Deterministic commu-
nication methods can be used to pass data between the different VIs.

The RTOS on RT targets and the RTSS use a combination of round-
robin and preemptive scheduling to execute threads in the execution system.
Round-robin scheduling applies to threads of equal priority. Equal shares of
processor time are allocated among equal priority threads. For example, each
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normal priority thread is allotted 10 ms to run. The processor executes all
the tasks it can in 10 ms, and whatever is incomplete at the end of that
period must wait to complete during the next allocation of time. Conversely,
preemptive scheduling means that any higher priority thread that needs to
execute immediately pauses execution of all lower priority threads and begins
to execute. A time-critical priority thread is the highest priority and preempts
all priorities. For more information on creating deterministic LabVIEW Real-
Time applications, refer to [6] and [7].

3.2 Dividing tasks to create deterministic multithreaded
applications

Deterministic control applications depend on time-critical tasks to complete
on time, every time. Therefore, time-critical tasks need enough processor re-
sources to ensure their completion. Time-critical tasks must be separated from
all other tasks in the application and placed in a separate VI to ensure that
they receive enough processor resources. For example, if a control applica-
tion processes measurement data at regular intervals and stores the data on
disk, the timing and control of the data acquisition must be handled in a time-
critical VI. However, storing the data on disk is inherently a non-deterministic
task because file I/O operations have unpredictable response times that de-
pend on the hardware and the availability of the hardware resource. Therefore,
file I/O operations must be placed in a normal priority VI.

The time-critical priority VI receives the processor resources necessary to
complete the task and does not relinquish control of the processor until it
cooperatively yields to the normal priority VI or until it completes the task.
The normal priority VI then runs until preempted by the time-critical VI.
Deterministic methods can be used to pass data between the VIs running on
the RT target.

The following VI priorities, listed in order from lowest to highest, can be
selected to assign VIs to an execution system thread:

• background priority (lowest)
• normal priority
• above normal priority
• high priority
• time-critical priority (highest)

Threads of higher priority preempt threads of lower priority. Normal priority
is the default thread priority for all VIs created in LabVIEW. The time-
critical priority preempts all thread priorities. A time-critical priority thread
does not relinquish processor resources until it completes all tasks. However, a
time-critical thread can explicitly relinquish control of processor resources to
ensure that the thread does not monopolize the processor resources. SubVIs
inherit the priority of the caller VI. For example, a subVI called in a time-
critical VI runs in time-critical priority. Because time-critical priority threads
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cannot preempt each other, only one time-critical thread should be created in
an application to guarantee deterministic behavior.

Because of the preemptive nature of time-critical VIs, they can monop-
olize processor resources. A time-critical VI might use all of the processor
resources, not allowing lower priority VIs in the application to execute. Time-
critical VIs must periodically yield, or sleep, to allow lower priority tasks to
execute without affecting the determinism of the time-critical code. By timing
control loops, time-critical VIs can yield and cooperatively relinquish proces-
sor resources. LabVIEW Real-Time provides several ways to yield a thread;
simple VIs can be used to yield periodically until the CPU time reaches a
certain count. Loop timing can also be tied to hardware interrupts. Finally,
the Timed Loop can be used to configure any of these options for optimal
performance or if multi-rate applications are needed.

3.3 Passing data between VIs

Because tasks must be separated into time-critical VIs and non-time-critical
VIs, data must be communicated between the separate VIs in a typical Lab-
VIEW Real-Time application. LabVIEW provides many different ways of
sharing data between loops, such as global variables, functional global vari-
ables, and the Real-Time FIFO VIs (FIFO stands for first-in-first-out) to send
and receive data between VIs in an application. The Real-Time FIFO VIs are
always safe to use in a time-critical VI, regardless of the size of the data.

The Real-Time FIFO VIs can be used to transfer data between VIs in an
application. An RT FIFO acts like a fixed queue, where the first value written
to the FIFO is the first value that can be read from the FIFO. RT FIFOs and
LabVIEW queues both transfer data from one VI to another. However, unlike
a LabVIEW queue, an RT FIFO ensures deterministic behavior by imposing
a size restriction on the data. The number and size of the RT FIFO elements
must be specified. Both a reader and writer can access the data in an RT
FIFO at the same time, allowing RT FIFOs to work safely from within a
time-critical VI.

Because of the fixed-size restriction, an RT FIFO can be a lossy communi-
cation method. Writing data to an RT FIFO when the FIFO is full overwrites
the oldest element. Data stored in an RT FIFO must be read before the FIFO
is full to ensure the transfer of every element without losing data.

3.4 Communicating with applications on an RT target

The RT Engine on the RT target does not provide a user interface for appli-
cations. One of two communication protocols can be used, front panel com-
munication or network communication, to provide a user interface on the host
computer for RT target VIs.
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Front panel communication

A LabVIEW VI consists of two parts: a front panel, which serves as the user
interface for the application, and a block diagram, which consists of the graph-
ical code that defines program execution. With front panel communication,
LabVIEW and the RT Engine execute different parts of the same VI, as shown
in Fig. 4. LabVIEW on the host computer displays the front panel of the VI
while the RT Engine executes the block diagram. A user interface thread
handles the communication between LabVIEW and the RT Engine.

LabVIEW

RT Engine

Host Computer

RT Target

User Interface Communication

Fig. 4. Front panel communication protocol

Front panel communication can be used between LabVIEW on the host
computer and the RT Engine to control and test VIs running on an RT target.
After the VI has been downloaded and run, LabVIEW can be kept open on
the host computer to display and interact with the front panel of the VI. Front
panel communication can also be used to debug VIs while they run on the RT
target. LabVIEW debugging tools—such as probes, execution highlighting,
breakpoints, and single stepping—can be used to locate errors on the block
diagram code.

Front panel communication is a good communication method to use dur-
ing development because front panel communication is a quick method for
monitoring and interfacing with VIs running on an RT target. However, front
panel communication is not deterministic and can affect the determinism of a
time-critical VI. Network communication methods should be used to increase
the efficiency of the communication between a host computer and VIs running
on the RT target.
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Network communication

With network communication, a host VI runs on the host computer and com-
municates with the VI running on the RT target using specific network com-
munication methods such as transmission control protocol (TCP), VI Server,
and, in the case of non-networked RT Series plug-in devices, shared memory
reads and writes. Network communication might be used for the following
reasons:

• Another VI must be run on the host computer.
• The data exchanged between the host computer and the RT target must be

controlled. Communication code can be customized to specify which front
panel objects get updated and when. One can also control which compo-
nents are visible on the front panel because some controls and indicators
might be more important than others.

• Timing and sequencing of the data transfer must be controlled.
• Additional data processing or logging must be performed.

LabVIEW

RT Engine

Host Computer

RT Target

Network Communication

VI Communication

Fig. 5. Network communication protocol

In Fig. 5, the RT target VI is similar to the VI in Fig. 4 that runs on the RT
target using front panel communication to update the front panel controls and
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indicators. However, the RT target VI in Fig. 5 uses Real-Time FIFO VIs to
pass data to a communication VI. The communication VI then communicates
with the host computer VI using network communication methods to update
controls and indicators.

Creating communication VIs with the RT Communication Wizard

The RT Communication Wizard can be used to greatly simplify the devel-
opment of LabVIEW Real-Time applications that require network commu-
nication. The RT Communication Wizard creates VIs that deterministically
transfer front panel control and indicator data from time-critical VIs running
on an RT target to a VI running on the host computer. After a time-critical
VI is specified, the RT Communication Wizard returns a list of controls and
indicators present in the VI. The RT Communication Wizard replaces the
front panel controls and indicators selected from the time-critical VI with
Real-Time FIFO VIs. The RT Communication Wizard creates a normal pri-
ority VI that contains Real-Time FIFO VIs to send and receive front panel
data from the time-critical VI. The Real-Time FIFO VIs transfer data de-
terministically and do not affect the timing of the time-critical VI. The RT
Communication Wizard creates the following three VIs:

• Time-Critical VI—Runs on the RT target and contains the time-critical
tasks and Real-Time FIFO VIs to transfer front panel data deterministi-
cally to the normal priority VI.

• Normal Priority VI—Runs on the RT target and contains all non-determin-
istic network communication tasks to update the host VI with front panel
data received from the time-critical VI.

• Host VI—Runs on the host computer and displays the front panel controls
and indicators of the time-critical VI.

Network and bus communication

High-level software protocols can be used to communicate between VIs run-
ning on the RT target and VIs running on a host computer. Each protocol
has its advantages and disadvantages. The following list classifies the different
communication methods:

• Shared memory communication—Used for communication between Lab-
VIEW and RT Series plug-in devices or the RT target on the RTX sub-
system.

• Network communication—Used for communication over Ethernet net-
works.
– TCP
– User Datagram Protocol (UDP)
– DataSocket
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– VI Server
– Simple Mail Transfer Protocol (SMTP) (send only)

• IrDA wireless communication—Used for communication with RT targets
using Infrared Data Association hardware.

• Bus communication—Used for communication over different bus commu-
nication ports.
– Serial
– CAN

• Reflective Memory—Used for deterministic communication over a dedi-
cated copper or optical network.

All of the methods described, with the exception of CAN and reflective
memory, are non-deterministic and using them inside a time-critical VI adds
jitter to the application. For additional information on networking in Lab-
VIEW and LabVIEW Real-Time applications, see [1],[3],[5].

Shared memory
In operating systems like Windows, two processes or applications can commu-
nicate with each other using the shared memory mechanism of the operating
system. Similarly, VIs running on an RT target and VIs running on the host
computer can communicate using the Real-Time Shared Memory VIs. The
Real-Time Shared Memory VIs can be used to read and write to shared mem-
ory locations of RT Series plug-in devices or the shared memory locations of
the RTSS.

The Real-Time Shared Memory VIs communicate data deterministically
because they have low overhead. However, the NI RT Series PCI-7041 plug-in
devices have a shared memory size limit of 512 KB. If several megabytes of
data are to be transferred, the data must be divided into smaller portions and
then transferred. In doing so, the data in the shared memory must not be
overwritten before it is read.

TCP
TCP is an industry-standard protocol for communicating over networks. VIs
running on the host computer can communicate with RT target VIs using
the LabVIEW TCP functions. However, TCP is non-deterministic, and using
TCP communication inside a time-critical VI might cause the loop cycle time
to vary from the desired time. The Real-Time Module extends the capabilities
of the existing TCP functions to enable communication with networked RT
Series devices and to allow communication across shared memory with RT
Series plug-in devices.

UDP
UDP is a network transmission protocol for transferring data between two lo-
cations on a network. UDP is not a connection-based protocol, so the transmit-
ting and receiving computers do not establish a network connection. Because
there is no network connection, there is little overhead when transmitting
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data. However, UDP is non-deterministic, and using UDP communication in-
side a time-critical VI might cause the loop cycle time to vary from the desired
time. When using UDP to send data, the receiving computer must have a read
port open before the transmitting computer sends the data.

Data can be transferred bidirectionally with UDP. With bidirectional data
transfers, both computers specify a read and write port and transmit data
back and forth using the specified ports. Bidirectional UDP data transfers
can be used to send and receive data from the network communication VI on
the RT target.

UDP has the ability to perform fast data transmissions deterministically.
However, UDP cannot guarantee that all datagrams arrive at the receiving
computer. Because UDP is not connection based, the arrival of datagrams
cannot be verified. Network congestion must be avoided to ensure that the
transmission of datagrams is not affected. Also, data stored in the data buffer
of the receiving computer must be read fast enough to prevent overflow and
loss of data.

DataSocket
DataSocket is an Internet programming technology to share live data between
VIs and other computers. A DataSocket Server running on a host computer
acts as a data repository. Data placed on the DataSocket Server becomes
available for clients to access.

One advantage of using DataSocket is that multiple clients can access data
on the DataSocket Server. A LabVIEW VI can use the DataSocket Write VI to
post data to the DataSocket Server. Any number of VIs running on different
RT targets or host computers can use the DataSocket Read VI to retrieve
the data. RT target VIs can post data, such as status information, to the
DataSocket Server for a VI running on a host computer to read.

DataSocket is non-deterministic and using DataSocket functions inside a
time-critical VI adds jitter to the application.

VI Server
The VI Server can be used to monitor and control VIs on an RT target. Using
VI Server technology, a LabVIEW VI can invoke RT target VIs remotely.
The LabVIEW VI can pass parameter values to and from the RT target VIs,
creating a distributed application. One advantage to communicating using the
VI Server is that the VI Server allows access to the functionality of TCP while
working within the framework of LabVIEW.

SMTP
The SMTP VIs can be used to send data from a VI running on the RT target to
VIs running on another computer. The SMTP VIs can send electronic mail,
including attached data and files, using the Simple Mail Transfer Protocol
(SMTP). The SMTP VIs cannot be used to receive information. SMTP is
non-deterministic, and using SMTP communication inside a time-critical VI
adds jitter to the application.
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Serial
Serial communication is the transmission of data between two locations
through the serial ports. The VISA functions provide serial communication
support in LabVIEW for communication between RT targets with serial de-
vices and serial instruments or computers that have a serial connection. Serial
communication is ideal when transfer data rates are low or for transmitting
data over long distances. Serial communication is non-deterministic, and using
serial communication inside a time-critical VI adds jitter to the application.

IrDA wireless communication
Infrared Data Association (IrDA) is a communication standard that speci-
fies a way to transfer data using a wireless infrared connection. IrDA devices
communicate using infrared LEDs. IrDA devices can be used to send data
in and out of VIs running on an RT target using the LabVIEW IrDA func-
tions. RT Series controllers support Extended Systems XTNDAccess IrDA PC
Adapters and ACTiSYS IR-220L+ IrDA Com-Port Serial Adapters connected
to a built-in controller serial port.

CAN
The Controller Area Network (CAN) is a deterministic, multi-drop commu-
nication bus standardized as ISO 11898. Using CAN, up to 8 data bytes per
frame can be transferred at a rate of up to 1 Mbit per second. Multiple RT
systems can be networked using NI-CAN interface cards and NI-CAN driver
software.

Reflective memory
Reflective memory is a means of sharing data between two independent sys-
tems in a deterministic manner. Reflective memory devices can be connected
together using fiber optic cables to provide this deterministic network, which
operates like a dual-ported memory system. When one system acquires data it
writes to its local memory, which has one port that is defined as the Reflective
Memory address space that in turn updates the memory of the second sys-
tem over fiber optics. In a typical Reflective Memory network, all secondary
systems’ local memory can be updated within 700 nanoseconds.

Reflective memory was traditionally used with RTOSs and VXI; however,
solutions on other platforms have been created as well. VMIC is a company
that provides a Reflective memory solution for both the PXI and PCI stan-
dards. National Instruments has created a LabVIEW instrument driver for
VMIC’s Reflective memory devices, which can leverage off LabVIEW Real-
Time and the PXI standard for deterministic communication.

4 Conclusions

LabVIEW Real-Time and NI real-time hardware targets such as PXI and
Compact FieldPoint leverage the powerful graphical programming and mea-
surement capabilities of LabVIEW for real-time control applications. For the
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design of embedded control systems, LabVIEW can be used to analyze dy-
namic systems and design and simulate control logic. LabVIEW Real-Time
can be used to rapidly prototype the control logic and test against the real
plant system by interfacing to sensor and actuator signals. In addition, Lab-
VIEW Real-Time can be used to test a designed embedded controller in an
HIL test configuration. For industrial control applications, LabVIEW Real-
Time provides a single software development tool that can implement the
functions of both traditional PLCs and PC-based control systems, thus acting
as a PAC. Real-time hardware systems such as Compact FieldPoint provide a
small, rugged form factor with the I/O capabilities necessary for distributed
industrial control applications.
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1 Control Loops in RTLinux

Control loops have the schematic form while(active){wait for trigger;
do something to a device;} and they are the building blocks of most real-
time programs. Control loops in RTLinux can be just a few lines of code or
can involve the synchronized performance of thousands of loops. People have
used RTLinux for some of the most demanding real-time applications as well
as for quick experiments. Whether you are developing a 100-microsecond duty
cycle magnetic bearing controller [3], a jet engine control and hardware-in-loop
simulation (as did Pratt & Whitney), or a simple robotic controller using a
sound card as an improvised analog-to-digital (A/D) device (several Japanese
universities), you need the same ingredients, the same principles, and a good
understanding of the device or plant you are controlling.

RTLinux consists of a real-time kernel called RTCore which runs the Linux
operating system as a preemptible thread (it is also possible to use the Berke-
ley Software Design BSD UNIX instead of Linux). The execution of Linux
software is scheduled by the Linux scheduler, independently of the RTCore
scheduler, and the Linux software is prevented from disabling interrupts or
timers that can trigger real-time software activation. The idea here is to use
Linux as a utility task and to decouple real-time components from the non-
real-time operating system utility. The general rule for RTLinux programmers
is to move as much of the code as possible into the Linux context in order to
take advantage of the sophisticated environment and tools available there so
that in the real-time environment we can focus on getting the timing right.

This chapter covers basic control loop design and emphasizes issues of
moving data and control information between the real-time loop and the out-
side world. We provide abbreviated treatment of scheduling and synchroniza-
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tion. Our experience is that pure priority scheduling1 satisfies 90% of all re-
quirements and slot schedulers2 satisfy most of the rest. Both are built into
RTLinux. Synchronization is not hard if a few basic rules are followed [8] and
proper attention is paid to making the design robust. The RTLinux program-
ming model is most effective when engineers can properly modularize their
programs and reuse the powerful software found in Linux or BSD.

RTCore uses the Portable Operating System Interface (POSIX) threads
application programming interface (API) with some additions for the two-
kernel design. A complete manual comes with RTLinuxPro or you can down-
load the Single UNIX Specification from the Open Group [6] or use the POSIX
specification itself [4]. The standard textbook on POSIX threads is [1]. Read-
ers who need a quick introduction to “C” have many choices: the authoritative
reference is [5]. Our examples are all for RTLinuxPro because it is simpler to
use and has some additional control features, but most of what is written here
is also applicable to RTLinuxFree.

The next section covers the mechanics of interrupt-driven and periodic
control loops in RTLinux and how to interface these loops to external soft-
ware components. Section 3 covers a control system for a servomotor-based
device. Section 4 shows how control loops can be written using the XML-RPC
Controls Kit tool in RTLinux to reduce interface complexity.

Among the important issues we have not covered are real-time network-
ing, RTCore’s memory-protected mode where threads are created inside UNIX
processes instead of in the non-real-time kernel, debugging, performance anal-
ysis, shared memory, and complex synchronization. A wider introduction to
RTLinux programming can be found in the RTLinux Handbook [7].

2 Basic Control Loops: Event Driven and Periodic

RTLinux applications consist of threads, interrupt handlers, “main” kernel
processes, and user processes. A thread is a stream of execution—a stack,
local variables, and code. An interrupt handler is a function that is called
when an interrupt is caught. A process is a thread that runs under control
of the UNIX scheduler. A kernel process runs in the kernel address space.
A user process executes in its own restricted address space. Threads and
interrupt handlers execute under the control of the real-time kernel. User
code is executed by ordinary UNIX processes. Processes are threads with
more state—user processes in UNIX usually have their own memory space.
Interrupt handlers have the highest priority and lowest overhead but are more
limited in functionality.

1The scheduler always selects the highest priority runnable thread and lets it
run to completion until the thread blocks, or until a higher priority thread becomes
runnable.

2The scheduler runs at fixed intervals and picks the highest priority runnable
thread associated with the current interval.
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RTLinux applications are written as if they were ordinary UNIX programs.
A build system creates an executable file that sets up standard input and
output and automatically starts the “main routine” running as a Linux kernel
thread in a specialized environment. So we start with a program, say, prog.c
and build an executable by typing make to produce an executable file called
prog.rtl. When we execute prog.rtl the main function is exported to run
in kernel space and any interrupt handlers or threads created by main run
under the control of the real-time scheduler—invisible to the UNIX (Linux or
BSD) platform.

2.1 Loops

Interrupt-driven loops

Table 1 is a complete application that creates an interrupt handler for a simple
device. The loop is implicit and has the form while(NOT terminated){wait
for interrupt; do handler}. Unlike a simple polling loop, however, this
loop allows the processor to continue to do useful work between interrupts.
The main routine registers the handler to catch some specific interrupt and
then calls rtl main wait to wait for program termination. To clean up, the
main routine unregisters the handler. The handler itself does whatever it needs
to do to control the device, re-enables interrupts from that device (RTLinux
leaves the interrupt blocked until told otherwise), and returns.

Interrupt latency. Because RTLinux is a hard real-time system, only
other real-time software can delay the execution of an interrupt handler. On
a typical IA32 PC currently (2004), the worst-case interrupt latency between
assertion of a hardware interrupt and start of execution of the handler is about
8 microseconds.

Interrupt handlers need to be very simple. When you have a complex
requirement for an interrupt-driven control loop you can use an interrupt-
driven thread with a semaphore to signal between the interrupt handler and
the thread. Let’s first look at threads and then return to this issue.

Periodic control loops

Table 2 is a complete application that creates a periodic control thread for
a simple device. The loop has the form while(NOT terminated){wait for
period; do mythread}. Again, this loop allows the processor to continue
to do useful work between time intervals. The main routine creates a thread
using the POSIX pthread create function and then waits for termination.
To clean up, the main routine cancels the thread and then uses the POSIX
pthread join to wait for the thread to completely exit. The thread itself
first reads the current time and then enters a loop where it continually waits
“period” nanoseconds and then does whatever it needs to do in terms of con-
trol. The POSIX standard allows for several clocks with different properties.
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#include <stdio.h>
#include <unistd.h>
#include <sched.h>

unsigned int handler(unsigned int irq, struct rtl_frame *regs);

int main(void) {
if ( rtl_request_irq( IRQ, handler )) {
printf("failed to get irq %d\n", IRQ);
return -1;

}
rtl_main_wait();
rtl_free_irq(IRQ);
return 1;

}
unsigned int handler(unsigned int irq, struct rtl_frame *regs)
{
CONTROL_DEVICE();
rtl_hard_enable_irq(irq);
return 0;

}

Table 1. Interrupt-driven control loop

CLOCK REALTIME is the default in RTLinux, but CLOCK GPOS which is phase
lock looped to the timer in the Linux (or BSD) operating system, CLOCK GPS
which can be phase lock looped to a GPS clock, and CLOCK MONOTONIC which
is the time since system boot are also sometimes useful. Usually periodic
control loops are on an “absolute” schedule so we use the TIMER ABSTIME,
however we could also wait for a time relative to the current time. The timers
are, of course, not completely precise and a periodic task has a certain level
of jitter as hardware limits and possibly other real-time code can introduce
delays. On a standard (2004 time period) 2GHz processor, hardware induced
worst-case jitter is about 22 microseconds. If that number is too high, there is
a timer advance feature that expires the timer early and “busy waits” for the
right moment, and even a method of reserving processors on a multiprocessor
system for real-time activity only.

Note: One common error to avoid is to convert an absolute schedule to
a relative schedule by moving the rtl clock gettime inside the loop body
in a loop like the one in Table 2. As a result, instead of waiting for time
start + n ∗ period at the nth iteration of the loop, we wait for time start +
n ∗ period+Σn

i=1jittern as the jitter errors accumulate.
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#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

pthread_t thread;
void *mythread(void *);

int main(void)
{
pthread_create( &thread, NULL, mythread, (void *)0 );
rtl_main_wait();
pthread_cancel( thread );
pthread_join( thread, NULL );
return 0;

}
void *mythread(void *t)
{
struct timespec next;
rtl_clock_gettime( CLOCK_REALTIME, &next);
while (1) {
timespec_add_ns( &next, period);
clock_nanosleep( CLOCK_REALTIME, TIMER_ABSTIME,

&next, NULL);
CONTROL_DEVICE();

}
return NULL;

}

Table 2. Periodic control loop

Using a thread with an interrupt handler

A thread can be used in an event-driven loop if it is driven by a semaphore
instead of a hardware interrupt. In the example given in Table 3, a handler
catches an interrupt, reads data from the device and writes it to a FIFO,
and then signals a thread to do the more complex processing. RTLinux FIFO
connect real-time threads to each other or to non-real-time processes. The
name “FIFO” means first-in first-out and the FIFO provides character stream
connection. The main routine is responsible for creating and shutting down
the thread (canceling and joining) and closing and unlinking the FIFOs.

2.2 Connecting loops to the outside world

Suppose we want to collect data from the device and store it, or we need
to be able to have an operator or a control program modify the period of a
loop. RTLinux provides three options: FIFOs, shared memory, and variable
export. The simplest is a FIFO. When an “.rtl” program starts, it sets up
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/* in a real program you should test for errors on
the calls to create and open FIFOs, and to create the
thread */

rtl_sem_t sem;
unsigned int handler(unsigned int irq, struct rtl_frame *regs);
void *thread_func(void *);
int fd_in,fd_out;
main(){
rtl_request_irq( IRQ, handler ));
mkfifo("/myfifo",0);
fd_in = open("/myfifo",O_RDONLY | O_NONBLOCK);
fd_out = open("/myfifo",O_WRONLY | O_NONBLOCK);
pthread_create(&mythread,NULL,thread_funci, (void *)0);
rtl_main_wait();
rtl_free_irq(IRQ);
pthread_cancel(mythread);
pthread_join(mythread);
return 0;

}
void handler(unsigned int irq, struct rtl_frame *regs){
GET_DATA(&buffer);
write(fd_out,&buffer,SIZE);
rtl_hard_enable_irq(IRQ);
rtl_sem_post(&sem);

}
void *thread_func(void *x){
while(1){

rtl_sem_wait(&sem);
read(fd_in,&buffer2,SIZE);
DO_PROCESSING;
}

}

Table 3. Semaphores and FIFOS in interrupt-driven loop

standard output and standard input through real-time FIFOs. Suppose the
CONTROL DEVICE function used above looked like this:

CONTROL_DEVICE(){
int i = READ_INPUT();
rtl_printf("%d\n",i);
}

Then the shell command prog.rtl > logfile would log data. The advan-
tages of a Linux/UNIX platform become obvious here as we can use pipes to
pass the data through processing programs or to graphics programs or even
over the network. If we have a Linux program called myfilter to process the
data and then want to send it over a network we can use a single line shell
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command: prog.rtl |myfilter | netcat -p 1001 remote.fsmlabs.com.
More sophisticated uses of FIFOs are discussed in the following sections.

3 A servocontroller

Suppose we have two servomotors controlled via a digital I/O port and that
we also need to be able to send the control system commands from a human
operator. This example, taken from a paper by Cort Dougan [2] on remote
control of a video camera, shows how to control servomotors, how to accept
commands from an operator, and how to work with multiple threads.

3.1 The control loops

The computer controls servomotors by varying the length of a pulse sent every
cycle. The loop executes every DutyCycle time units, give or take some error.
Each time the loop runs, an output signal gets turned on for PulseWidth time
units and then the loop waits DutyCycle − PulseWidth time units to pass
before running again. But we have two motors. Many real-time applications
and even real-time operating systems have been written as big control loops
with slots for operations and delays between slots. In this case, we would need
to turn on both output signals, wait the minimum of the two delays, turn off
the corresponding signal, wait for the difference (unless the difference is below
a threshold), and then turn off the second signal. If we were implementing
this loop in the context of a dedicated controller, then this approach would be
ugly but reasonable, although obviously each additional motor makes things
geometrically more complex—imagine six motors. But we need the processor
to be free to do other work, so our control loop would have to also run the
non-real-time software sometimes. By using separate threads and timers for
each control loop, we can dispense with the entire problem. We don’t even
have to bother to put the threads on out of phase schedules or worry about
priority because the worst case is when one thread must wait for the other to
finish inverting the output bit—less than 2 microseconds measured on low-end
PCs.

The code for the control loop can be placed in a thread. In fact we can use
the same code for both threads, just passing the motor identification number
to each thread (see Table 4).

3.2 The interface

Now let’s consider the hard part: an operator interface. We’ll start with some-
thing very primitive and take advantage of the flexibility of the UNIX design to
make it smarter. In our main code we can create two FIFOs and attach a han-
dler to them. Call one “/horizontal-motor” and call the other one “/vertical-
motor”. These handlers become activated on write operations from the user
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void *servo_thread(void *argument){
int motor_id = (int)argument; /* passed when thread is created*/
rtl_clock_gettime(RTL_CLOCK_REALTIME,&next);
while(active()){

pulse_length= input_pulse_length[motor_id];
ioctl(fd_par, RTL_PAR_SETBIT, num);
timespec_add_ns( &next, pulse_length); /*now + pulse_length*/
clock_nanosleep( CLOCK_REALTIME, TIMER_ABSTIME, &next, NULL);
ioctl(fd_par, RTL_PAR_CLEARBIT, num);
timespec_add_ns(&next, frame_length - pulse_length);

/*remaining time*/
clock_nanosleep( CLOCK_REALTIME, TIMER_ABSTIME, &next, NULL);

}
}

Table 4. Control loop for a servomotor

side. That is, when the user writes a command into a FIFO, the FIFO han-
dler runs. The idea is that the threads control the device and user commands
come up the FIFOs, triggering the FIFO handlers, which then read commands
and update the value of input pulse length parameters for the appropriate
control loop. Commands can be typed from the shell prompt.

echo 0 > /horizontalmotor
echo 180 > /horizontalmotor

will shift our camera left and then right while

echo 0 > /verticalmotor
echo 180 > /verticalmotor

will shift it up and down. Because of the modular UNIX design, we can pretty
easily connect these FIFOs to a web server and use a browser as a control
interface. In fact, one of the motivations for the design of RTLinux was to
take advantage of the scripting languages, browsers, and other utilities in
Linux instead of being forced to use some variant of those utilities from a
specialized operating system. Notice that because all the user applications
run in the application operating system thread, they cannot interfere with
the timing of the real-time threads!

We will not give the details of the program here—it’s standard POSIX.
The outline of the program is as follows.

int main(void) {
int error, VERTICAL,HORIZONTAL;
struct rtl_sigaction act;

/* create the FIFOs */
... rtl_mkfifo ...
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/* open the FIFOs */
... rtl_open ...
/* attach FIFO handlers */
... rtl_sigaction ...
/* create threads */
... rtl_pthread_create ...

/* wait for the program to be killed */
rtl_main_wait();

/* cleanup */
....

3.3 More advanced considerations

A tougher application might require a little more work on synchronization and
priorities. If the duty cycle required more precision, we could easily start the
second thread on a time offset so that it was out of phase with the first loop.
For even more precision, we could use a symmetric multiprocessor (SMP)
machine and put the two threads on different processors or even reserve a
processor for the motor control. Both of these are done via the POSIX thread
attributes which are set prior to creating a thread. Finally, we might need ad-
ditional real-time threads to, for example, collect data from the frame buffer.
In this case, since the motor control threads are fast, a likely design is to give
the frame buffer loop lower priority than the motor control loops so that it
won’t interfere with their scheduling. All these bring up interesting issues of
synchronization (see [8] for some ideas on that topic). Our experience with
RTLinux applications is that synchronization is a problem solved by keeping
to clear rules, so we’ll return to the operator interfaces. In practice, these
interfaces are often the hardest things to get right.

4 Controls Kit

(This section is taken from a paper by Edgar Hilton as adapted in the RTLinux
Handbook [7]). The purpose of Controls Kit (CKit) is to automate the process
of connecting a control system to the outside world. CKit provides methods
to monitor any parameter, tune parameters, or listen to alarms (both locally
and/or through the network) from any

1. script,
2. web browser,
3. spreadsheet,
4. XML aware program,
5. XML-RPC aware interface,
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Fig. 1. Detail of CKit Java GUI

6. provided Java based graphical user interface (GUI), as shown in Fig. 1.

A CKit enabled RTLinuxPro box can be monitored not only by a remote
engineering machine, but also by other CKit enabled RTLinuxPro boxes over
the network!3

The example presented is a single-input single-output (SISO) proper, anti-
windup, and high frequency limited proportional-integral-derivative (PID)
controller using the algorithm provided in the FSMLabs controls library with
CKit (see Fig. 2). In this example, we’ll assume that there is an existing device
driver for the A/D and D/A hardware.

4.1 Design

We only need one real-time thread in this example. Initialization of the hard-
ware and the PID parameters and running the trigger function (to send a
command RUN or STOP to the thread) all can be done without real-time.
The loop period is 1/2 millisecond (500 microseconds). When the thread is

3Imagine, for example, a dozen mobile robots synchronizing with each other via
a wireless network or a set of factory floor control workstations synchronizing part
arrivals and departures with each other while at the same time being tuned remotely
from either an engineering or management safe house.
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Fig. 2. Detail of PID algorithm

created, it will suspend itself on a semaphore waiting for a RUN command.
The RUN command will release the thread to run a periodic control loop until
a STOP command is issued.

4.2 Implementation

CKit controlled objects are called entities, and in this program we need three
entities.

1. TestGroup is the top-level entity of type “group” and it serves as the root
of the entity tree.

2. Run is a boolean entity which we will associate with a handler function so
that any changes to this entity will trigger the handler function.

3. myPID is an algorithm entity defined within the FSMLabs controls library
(libFSMCL.a). This entity contains all the parameters and internal states
needed for the PID algorithm.

4.3 Coding

The example structure is straightforward:

import headers and declare globals and CKit variables
main(){
initialize CKit variables
create thread
rtl_main_wait()
cleanup
exit(0);
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}
thread() { ... }
trigger(){ ... } /* the FIFO event handler */

First, the headers, globals, and CKit variable declarations are shown in
Table 5. Here are the declarations of the CKit aggregate entity MainPID,
basic entity RunBool, and basic entity TestGroup.

#include <rtl_posixio.h>
#include <stdio.h>
#include <ckit/FSMCL_core.h>
#include <semaphore.h>

/* Declarations */
rtl_sem_t loop_sem;
FSMCL_PID_entity MainPID; /* PID entity from library */
CK_entity RunBool; /* boolean entity */
CK_entity TestGroup; /* group entity */

/* Function prototypes */
static void *controlloop (void *arg);
static void triggerFcn(void *arg);

Table 5. CKit header section

The variable “TestGroup” is registered as the top-level directory by giving
it a “NULL” parent. We give it an unimaginative name “Test” and a tool-tip
of “Test Group for PID Example”. The code for this is shown in Table 6. The
boolean can be initialized to FALSE, assigned as a child of the TestGroup
entity, and associated with the function “triggerFcn()” so that the next
time that this entity is updated by the user the given function will run in
the context of the Linux thread. All the parameters to the PID controller are
statically initialized in this example, but we could have done the same thing
from the command line through a script prior to running.

The control loop thread can then be created using the usual RTLinux API
calls. When pthread create executes, the real-time application launches.

Finally, we have to make sure to do a cleanup and release all resources
after the rtl main wait. Cleanup closes down the control loop thread and
then destroys all of the entities. Destroying the top-level entity automatically
frees all of its children.

Trigger function

As you may recall, each time that the “Run” entity is updated from the
command line, the handler function will execute and either start or stop the
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main()
{
pthread_t testThrd;

/* initialize our entities */
CK_group_init(&TestGroup, /* entity pointer */

"Test", /* registration name */
"Test Group for PID Example", /* tooltip */
NULL); /* parenthood */

FSMCL_PID_init(&MainPID, /* entity pointer */
"PIDControl", /* registration name */
"Test PID controller", /* tooltip */
&TestGroup); /* parenthood */

CK_boolean_init(&RunBool, /* entity pointer */
"Run", /* registration name */
"Run/Stop program", /* tooltip */
&TestGroup, /* parenthood */
FALSE); /* initial value */

CK_execute_on_update(&RunBool, /* entity pointer */
triggerFcn, /* pointer to handler */
NULL); /* argument to handler */

/* Initialize the PID controller gains (min, max, initial) */
CK_scalar_init_float_val(&(MainPID.K), 0.0, 10.0, 5.0);
CK_scalar_init_float_val(&(MainPID.Td), 10.0, 100.0, 50.0);
CK_scalar_init_float_val(&(MainPID.Tint), 1.0, 100.0, 25.0);

/* anti-windup and high frequency limit (min, max, initial)*/
CK_scalar_init_float_val(&(MainPID.Tlim), 1.0, 100.0, 25.0);
CK_scalar_init_float_val(&(MainPID.N), 3.0, 20.0, 10.0);

/* Saturation model for actuator (min, max, initial) */
CK_scalar_init_float_val(&(MainPID.Umodel.UmodelMin),
-10.0, 10.0, 0.0);
CK_scalar_init_float_val(&(MainPID.Umodel.UmodelMax),
90.0, 110.0, 100.0);

/* And our reference point (min, max, initial) */
CK_scalar_init_float_val(&(MainPID.SetPoint), -1.0, 1.0, 0.0);

pthread_create(&testThrd, NULL, controlloop, 0);

rtl_main_wait();
pthread_cancel(testThrd);
pthread_join(test, NULL);

/* Cleanup our entities */
CK_entity_destroy(&TestGroup);
exit(0); /* end the main routine */
}

Table 6. CKit main routine
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program based on the value of the boolean. The entire trigger function is given
in Table 7.

static void triggerFcn(void *arg)
{
int val;
val = CK_scalar_get_boolean(&RunBool);

if (val){
CK_message("Commencing control run");
rtl_sem_post(&loop_start);

} else {
CK_message("Controller shut down by user");

}
}

Table 7. CKit trigger function

In this example, we will generate an alarm of level 0 (e.g., a low-priority
message) through the CKit infrastructure each time the boolean is updated.
If the program is to be started, then we will kick-start the control loop thread.
Otherwise, we simply enqueue the alarm and let the control loop thread shut
itself down after the next iteration.

Control loop

Our final coding concern is the design of the control loop thread. Here, we
set up two while loops. The innermost loop is nothing more than a standard
periodic loop as seen in many of the RTLinux example programs. The external
while loop is an infinite loop which will be used to run and stop our program.

The outermost loop will first check the value of the runtime boolean. If
the value is false, it will sleep on the semaphore until it is awakened by the
trigger function (which will post the semaphore). At that point, it will ini-
tialize the internal values of the PID controller (FSMCL PID reset())and will
begin execution of the periodic component of the thread. Within the periodic
component, we will sample our A/D boards using some previously existing
I/O function SampleAD(), calculate the PID control using the sensed values
(FSMCL PIDcontrol()), and finally write out the control output through our
D/A boards through a previously existing function WriteDA().

The periodic component will continue to execute until the runtime boolean
(RunBool) becomes false. As soon as it becomes false, the code will exit the
innermost while loop. Then, prior to once again suspending itself, the code
will convert the thread into a non-periodic thread.

The entire code for the main thread is shown in Table 8.
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static void *controlloop (void *arg)
{
struct timespec next;
float Sens; /* Sensor value */
float Control; /* Control output */
float Period; /* PID controller period. Needed by

the PID function */

Period = 0.05; /* Desired Period, 500 microseconds */

pthread_setfp_np(pthread_self(),1);

while (1) {
if (!CK_scalar_get_boolean(&RunBool)){
rtl_sem_wait(&loop_start);

}
FSMCL_PID_reset(&MainPID);
rtl_clock_gettime( CLOCK_REALTIME, &next);

/* Periodic loop */
while(CK_scalar_get_boolean(&RunBool)){
timespec_add_ns( &next, (int)(Period*1.0e9));
clock_nanosleep( CLOCK_REALTIME, TIMER_ABSTIME, &next, NULL);

// sample sensors from A/D
Sens = SampleAD();

// Run PID controller
FSMCL_PIDcontrol(&Sens, &Control, &Period, &MainPID);

// write out to D/A
WriteDA(&Control);

}
}
return 0;

}

Table 8. CKit example

4.4 Program execution

We reuse our RTLinuxPro Makefile as above to build our CKit aware RTCore
program. We execute our program as follows.

1. RTCore must be up and running.
2. The hard real-time and non-real-time components of CKit can be started

from the command line with the commands ckit module.rtl and ckitd,
respectively.
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3. If we want to allow remote machines to query and set entities, we start
up the XML-RPC server with the command ck xmlrpc server.

4. Execute the new CKit aware program (./test.rtl)

4.5 Parameter queries

We can now take a look at the program variables by typing:

ck_hrt_op -L

which will return the output shown in Table 9.

+-#>TestGroup # group #
| +-#> PIDControl # group #
| | +-#> ActuatorModel # group #
| | | +-#> UmodelMax # float # 100.00
| | | +-#> UmodelMin # float # 0.00
| | |
| | +-#> K # float # 5.00
| | +-#> N # float # 10.00
| | +-#> SetPoint # float # 0.00
| | +-#> Td # float # 50.00
| | +-#> Tint # float # 25.00
| | +-#> Tlim # float # 25.00
| |
| +-#> Run # boolean # false
|

Table 9. CKit human readable tree

Here, our registered tree is shown with the basic entities TestGroup and
RunBool, as well as all of the entities defined within the PIDControl entity.
An XML rendition of the same tree is obtained by typing:

ck_hrt_op -Lx

We can embed the ck hrt op utility into any scripting language that can
interpret XML (such as Perl, Python, etc.). But to simplify the explanation,
we will stick to the command line here. The program can be started by typing:

ck_hrt_op -p TestGroup::Run -s true -v

where the -p option is used to specify the name of the entity, -s is used to
specify the value to which we are setting the entity, and -v specifies which
value we want to specify, in this case, the current value (as compared to the
minimum or maximum values). Once we type this command, the program
should immediately begin its execution. To stop the program, type:

ck_hrt_op -p TestGroup::Run -s false -v
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To verify that the Run flag has been updated, we could type:

ck_hrt_op -p TestGroup::Run -g -v

which states that we want to obtain (-g) the current value (-v) of the Run
entity (-p TestGroup::Run). This returns the string value of “false”.

We can also query the values and set the values for remote CKit en-
abled machines, assuming that the remote machine is already running the
ck xmlrpc server. You can do so by using the -X option in ck hrt op as
follows:

ck_hrt_op -X http://remoteMachineIP:3134/RPC2 -L

where remoteMachineIP denotes the address of the remote CKit enabled ma-
chine, 3134 denotes the port number (by default, port 3134, configurable),
and RPC2 denotes that this is the XML-RPC protocol.

All of the above ck hrt op capabilities are also accessible via a C++ li-
brary which can perform both local and remote parameter queries. This allows
you to write your own CKit aware C++ programs which directly query the
ckitd server. If, however, you prefer to query the remote machines via a differ-
ent programming language (such as Perl), you can also do so by performing
XML-RPC queries to the remote machine. Refer to the CKit manual and
examples for a more complete discussion of these subjects.

4.6 Subscribing to asynchronous alarms

At this point, the reader will have noticed that each time that the value of the
Run boolean changed, we should have received an asynchronous alarm. What
happened to these alarms?

The CKit infrastructure allows any number of users to subscribe to any
alarm level (0–10) that may be especially beneficial to the users. To do so,
we rely on either the ck alarm command line utility or the C++ libraries
described at the closing of the previous section.

For example, let’s say that we are interested in subscribing to all alarms
being generated within the CKit. To do so, we type the following:

ck_alarm -s all

Here, we are going to print out a human readable alarm each time that an
alarm occurs. In this case, we are listening to all alarm levels, normal low
priority messages (level 0), warnings (level 5), and critical alarms (level 10).
We could have listed the explicit alarm levels of interest on a comma-separated
list, as in

ck_alarm -s 0,5,10
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which will subscribe to all normal messages, warnings, and critical messages,
respectively. To unsubscribe, simply hit Control+C, and the utility will un-
subscribe from all the alarms.

If needed, we can take specialized actions on different alarms of different
levels. All alarms can be displayed either in human readable or XML format.

4.7 Graphical interfaces

The CKit is currently capable of interfacing to many different programming
languages due to its XML infrastructure, but it also comes with a Java front
end which can be used for many control applications. Fig. 1 shows one such
front end for a robotic application. Three tabs are shown, one which is used to
control the robotic chassis, a second one which is used to tune the parameters
of the robotic arm, and a third one used to control the robotic gripper. Entities
are implemented as widgets which can be used to update and monitor entity
values. These widgets can further be placed above any graphic which can more
easily document the control project.
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1 Introduction

Hybrid systems are digital real-time systems embedded in analog environ-
ments. A paradigmatic example of a hybrid system is a digital embedded con-
trol program for an analog plant environment, like a furnace or an airplane: the
controller state moves discretely between control modes, and in each control
mode, the plant state evolves continuously according to physical laws. Those
systems combine discrete and continuous dynamics. Those aspects have been
studied in computer science and in control theory. Computer scientists have
introduced hybrid automata [28], a formal model that combines discrete con-
trol graphs, usually called finite state automata, with continuously evolving
variables. A hybrid automaton exhibits two kinds of state changes: discrete
jump transitions occur instantaneously, and continuous flow transitions occur
when time elapses.

Hybrid systems are often systems that are safety critical. As a conse-
quence, their reliability is a central issue. For example, the correctness of a
digital controller that monitors the temperature of a nuclear reactor is cru-
cial. We present hybrid automata as formal models that define trajectories
(behaviors) of hybrid systems. Properties of a hybrid system assign values
to its trajectories: for example, they can classify trajectories as good or bad.
The behaviors of a hybrid automaton are often complex, and thus it may be
difficult to reason about them. This is why, since the early works on hybrid
automata, the emphasis has been on their computer aided analysis. Model-
checking methods [18] have been studied extensively and tools able to analyze
complex hybrid systems have been developed.

This chapter is organized as follows. First, we introduce the syntax and
semantics of hybrid automata, and show how complex hybrid systems can
be modeled compositionally as products of hybrid automata. Then, we define
safety properties of hybrid automata and show how to model them using
monitors. We show that the verification of those properties reduces naturally
to reachability problems, that is, to decide if there exists a trajectory of the
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hybrid system that reaches a given set of states. As hybrid automata can be
very complex mathematical objects, restricted subclasses for which we have
automatic analysis methods have been introduced. In this introduction, we
focus on rectangular hybrid automata and show how they can be used to over-
approximate the behavior of more complex hybrid automata. We close the
chapter by referencing the literature to allow the reader into go deeper into
this flourishing research subject.

2 Hybrid Automata: A Model for Hybrid Systems

To illustrate the main notions about hybrid automata, we use a running ex-
ample throughout the chapter. The components of the running example are
depicted in Fig. 1. It shows a system composed of three devices: (i) a tank that
contains water and that can be heated using a gas burner, (ii) a gas burner
that can be turned on or turned off, and (iii) a thermometer that monitors the
temperature of the water inside the tank and periodically issues signals when
the temperature of the water in the tank is above or below certain thresholds.
Later, we will add to this system a controller that will observe the signals
issued by the thermometer and will issue orders to the gas burner in order to
maintain the temperature of the water within a given range.

Fig. 1. Our running example

We first describe in detail the behavior of the temperature of the water
in the tank. When the gas burner is OFF, the temperature of the water,
denoted by the variable x, decreases according to the following exponential
function: x(t) = Ie−Kt where I is the initial temperature of the water, K is a
constant that depends on the nature of the tank (how much it conducts heat
for example), and t denotes time. However, this law is only true when the
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temperature of the water is greater than 20 degrees, the temperature of the
room where the tank is located. When the heater is OFF and the temperature
of the water is 20 degrees, then the temperature stays constant. On the other
hand, when the gas burner is ON, the temperature of the water increases
according to the following exponential function x(t) = Ie−Kt + h(1 − e−Kt)
where I, K, and t are as before and h is a constant that depends on the power
of the gas burner. Again, this rule is only true if the water in the tank has a
temperature that is less than or equal to 100 degrees. When the temperature
of the water reaches 100 degrees, it stays constant (the pressure increases but
we omit that in our model). Fig. 2 shows a fragment of a possible evolution
of the temperature of the water within the tank.

Fig. 2. One possible behavior of the tank

As we can see from the description of the evolution of the temperature
in the tank, the system is not purely continuous. The evolution of the tem-
perature depends on the mode of the system (the burner is ON or OFF, the
temperature is below or above 100 degrees), and the system can switch dis-
cretely from one mode to another (if the burner is turned off, for example).
Therefore, a natural model for such a system should mix continuous evolu-
tions with discrete switches. Hybrid automata are well suited to describe such
complex mixed discrete-continuous behaviors. Their syntax is defined in the
next subsection.

2.1 Syntax

A hybrid automaton is a generalized finite-state automaton that is equipped
with continuous variables. The discrete changes of the hybrid system are mod-
eled by edges of the automaton, and the continuous evolutions of the hybrid
system are modeled by differential equations that label locations of the au-
tomaton. The syntax of hybrid automata is defined as follows.

Definition 1 [Hybrid Automaton] A hybrid automatonH is a tuple 〈Loc,Edge,
Σ,X, Init, Inv,Flow, Jump〉 where:
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• Loc is a finite set {l1, l2, . . . ln} of (control) locations that represent control
modes of the hybrid system.

• Σ is a finite set of event names.
• Edge ⊆ Loc×Σ×Loc is a finite set of labelled edges that represent discrete

changes of control mode in the hybrid system. Those changes are labelled
by event names taken from the finite set of labels Σ.

• X is a finite set {x1, x2, . . . , xm} of real-valued variables. We write Ẋ for
the set of dotted variables {ẋ1, ẋ2, . . . , ẋm} which are used to represent first
derivatives of the variables during continuous evolutions (inside a mode),
and we write X ′ for the primed variables {x′

1, x
′
2, . . . , x

′
m} that are used to

represent updates at the conclusion of discrete changes (from one control
mode to another).

• Init, Inv,Flow are functions that assign three predicates to each location.
Init(l) is a predicate whose free variables are from X and which states the
possible valuations for those variables when the hybrid system starts from
location l. Inv(l) is a predicate whose free variables are from X and which
constrains the possible valuations for those variables when the control of
the hybrid system is in location l. Flow(l) is a predicate whose free variables
are from X ∪ Ẋ and which states the possible continuous evolutions when
the control of the hybrid system is in location l.

• Jump is a function that assigns to each labelled edge a predicate whose
free variables are from X ∪ X ′. Jump(e) states when the discrete change
modeled by e is possible and what the possible updates of the variables
are when the hybrid system makes the discrete change.

The evolution of the temperature of the water in the tank is modeled using
the hybrid automaton of Fig. 3. Locations are drawn as boxes with rounded
corners and edges as arrows. Locations are named t1 to t4. A predicate next
to a location denotes an invariant predicate. Invariant predicates equivalent
to true are omitted. A predicate next to a location within a box denotes an
initial predicate. Initial predicates equivalent to false are omitted. Predicates
inside locations denote flow predicates. Edges are labelled by event names and
update predicates. The hybrid automaton is composed of four locations that
model the four different modes of evolution of the temperature within the
tank as described above. Variable x is used to model the temperature of the
water in the tank.

Location t1 models the behavior of the system when the temperature of the
water is between 20 and 100 degrees as indicated by the invariant 20 ≤ x ≤ 100
and the gas burner is ON. In that case, the dynamics that govern the variable x
is given by the flow predicate ẋ = K(h− x). Location t2 models the behavior
of the system when the temperature of the water has reached 100 degrees.
In that location, the flow predicate ẋ = 0 models the fact that the water
temperature stays constant. Location t3 models the tank system when the
heater is OFF and the temperature of the water is above 20 degrees. In that
case, the flow predicate that governs the evolution of x is ẋ = −Kx. Finally,
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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those behaviors in a formal way, we use timed transition systems, which are
defined as follows.

Definition 2 [Timed Transition System] A timed transition system TTS is a
tuple 〈S, S0, Σ,→〉 where S is a (possibly infinite) set of states, S0 ⊆ S is the
subset of initial states, Σ is a finite set of labels, and →⊆ S × Σ ∪ R≥0 × S
is the transition relation. We write s→d s

′ for (s, d, s′) ∈→.

We denote [X → R] the set of valuations that map variables from X to
real numbers. Let p be a predicate over the set of variables X, then [[p]] is the
set of valuations v ∈ [X → R] satisfying p, noted v |= p. Let q be a predicate
over the set of variables X ∪ X ′, then [[q]] is the set of pairs of valuations
(v, v′) ∈ [X → R] × [X ′ → R] such that (v, v′) |= q. Let r be a predicate
over the set of variables X ∪ Ẋ, then [[r]] is the set of pairs of valuations
(v, v̇) ∈ [X → R] × [Ẋ → R] such that (v, v̇) |= r. The TTS associated to a
hybrid automaton is defined as follows.

Definition 3 The timed transition system 〈S, S0, Σ,→〉 of the hybrid au-
tomatonH = 〈Loc,Edge, Σ,X, Init, Inv, Flow, Jump〉, written as [[H]], is defined
as follows:

• S is the set of pairs (l, v) where l ∈ Loc and v ∈ [X → R] such that
v ∈[[Inv(l)]], this set is called the state space of H;

• S0 is the subset of pairs (l, v) ∈ S such that v ∈[[Init(l)]], this set is called
the initial state space of H;

• the transitions are either:
– discrete: for each edge e = (l, σ, l′) ∈ Edge, we have (l, v) →σ (l′, v′)

if (l, v) ∈ S, (l′, v′) ∈ S, and we have that (v, v′) ∈[[Jump(e)]];
– continuous: for each nonnegative real δ ∈ R≥0, we have (l, v) →δ

(l′, v′) if l = l′, (l, v) ∈ S, (l′, v′) ∈ S, and there is a differentiable
function f : [0, δ] → R

m, with first derivative ḟ : (0, δ) → R
m, such

that the following conditions hold:
· f(0) = v,
· f(δ) = v′,
· for all reals ε ∈ (0, δ), both f(ε) ∈[[Inv(l)]] and (f(ε), ḟ(ε)) ∈[[Flow(l)]].
The function f is called a witness for the transition (l, v)→δ (l′, v′).

In this transition system, we abstract continuous flows by transitions re-
taining only the information about the source, target and duration of each
flow.

The paths contained in the timed transition system of a hybrid automaton
H are formal representations of the possible trajectories of the hybrid system
modeled by H, i.e., the evolutions of the state of the hybrid system along
time. Formally, a finite path, noted λ, in the timed transition system T =
〈S, S0, Σ,→〉 is a finite sequence alternating between states and transition
labels s0τ0s1τ1 . . . τn−1sn such that at any i, 0 ≤ i ≤ n, si ∈ S and for any
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i, 0 ≤ i < n, (si, τi, si+1) ∈→. We call n + 1 the length of the path and
it is denoted by |λ|. This definition is extended to infinite paths as follows:
an infinite path λ in the timed transition system T is an infinite sequence
alternating between states and transition labels s0τ0s1τ1 . . . τn−1sn . . . such
that for any i ≥ 0: si ∈ S and (si, τi, si+1) ∈→. The length of an infinite
path is +∞. The duration of a (finite or infinite) path λ is the sum of time
labels that appear along λ. That is, given λ = s0τ0s1τ1 . . . snτn . . . , let J be
a subset of indices j in {0, 1, . . . |λ|} such that τj ∈ R≥0, then the duration of
λ is defined by Duration(λ) =

∑
j∈J τj . We say that a (finite or infinite) path

λ is initial if its first state s0 is an initial state of the TTS, i.e. s0 ∈ S0. We
write PathF (T ) for the set of finite initial paths of S and Path∞(T ) for the
set of infinite initial paths of S.

Example 1. The following path belongs to PathF ([[Tank]]):

(t4, x %→ 20)
(1)︷ ︸︸ ︷→ON(t1, x %→ 20)

(2)︷︸︸︷→10(t1, x %→ 88.59 . . . )
(3)︷ ︸︸ ︷→2.74...(t1, x %→ 100)

(4)︷︸︸︷→B

(t2, x %→ 100)
(5)︷︸︸︷→5 (t2, x %→ 100)

(6)︷ ︸︸ ︷→OFF(t3, x %→ 100)
(7)︷︸︸︷→8 (t3, x %→ 54.88 . . . )

Transition (1) is discrete: the control of the tank instantaneously changes
from control location t4 to control location t1. The value of x remains equal
to 20 due to the jump predicate x′ = x expressing that the value of x is
left unchanged by the discrete jump. The witness function for time step (2) is
f(t) = 20e−0.075t+150(1−e−0.075t) on the interval [0, 10]. For time step (3) the
witness function is f(t) = 88.59 . . . e−0.075t + 150(1− e−0.075t) on the interval
[0, 2.75]. Transition (4) is a discrete change that is forced by the invariant
20 ≤ x ≤ 100 that labels location t1. The witness function for time step (5) is
f(t) = 100 on the interval [0, 5]. Transition (6) is a discrete change that can
occur at any time when in location t2. The witness function for time step (7)
is f(t) = 100e−0.075t on the interval [0, 8].

Remark 1. If we are interested in the infinite behaviors of a hybrid automaton,
then we are usually interested in infinite sequences of transitions that do
not converge in time. In fact, trajectories during which an infinite number
of discrete changes occur in a finite amount of time are not realistic. It is
clear that if a controller takes discrete switches, say, at times 1

2 ,
3
4 ,

7
8 ,

15
16 , . . . ,

then it is not implementable. In this case, we say that the controller is Zeno.
The nonZenoness property of an infinite path can be expressed as follows.
Let T 〈S, S0, Σ,→〉 be a TTS and λ be an infinite path of T . The path λ is
nonZeno if and only if Duration(λ) = +∞. The divergence of time is a liveness
assumption [1], and it is the only liveness assumption we need to consider [25].
Algorithmic methods for checking nonzenoness properties of timed and hybrid
automata are given in [36].
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2.3 Composition

Nontrivial systems consist of several interacting components (three in our
running example). We model each component as a hybrid automaton, and
the components coordinate with each other by shared variables and shared
events. The automaton for the thermometer and for the gas burner are given
in Fig. 4. The thermometer uses the shared variable x to synchronize with
the tank: the behavior of the thermometer depends on the evolution of the
variable x whose evolution is governed by the hybrid automaton that models
the tank. The flow of this variable is not constrained in the thermometer
automaton. In our formalization, the thermometer samples the variable x once
every 1

10 time units and issues the event DW93 if the temperature is below
93 degrees, issues the event UP95 if the temperature is above 95 degrees, and
issues an internal event ε in other cases (this event is not shared with other
components). The sampling rate is enforced using the analog variable z that
evolves with a derivative equal to 1. Such a variable counts time and is called a
clock. The gas burner uses events to synchronize with the tank. The gas burner
communicates with the tank by synchronizing control switches through the
two shared events ON and OFF. The time needed for the gas burner to turn
off or turn on is fixed at 1

10 time units.
To formalize those intuitions, we use the notion of the product of two

hybrid automata which is defined as follows.

Definition 4 [Automata-Product] Let H1 = 〈Loc1,Edge1, Σ1, X1, Init1, Inv1,
Flow1, Jump1〉 andH2 = 〈Loc2,Edge2, Σ2, X2, Init2, Inv2,Flow2, Jump2〉 be two
hybrid automata such that Loc1∩Loc2 = ∅. Their synchronized product, noted
asH1⊗H2, is the hybrid automatonH = 〈Loc,Edge, Σ,X, Init, Inv,Flow, Jump〉
defined as follows:

• Loc =
{
{l1, l2} | l1 ∈ Loc1 ∧ l2 ∈ Loc2}.

• Edge is defined as follows: ({l11, l21}, σ, {l12, l22}) ∈ Edge iff either
1. σ ∈ Σ1 \Σ2, (l11, σ, l

1
2) ∈ Edge1, and l21 = l22;

2. σ ∈ Σ2 \Σ1, (l21, σ, l
2
2) ∈ Edge2, and l11 = l12;

3. σ ∈ Σ1 ∩Σ2, (l11, σ, l
1
2) ∈ Edge1 and (l21, σ, l

2
2) ∈ Edge2.

Conditions (1) and (2) express that unshared events (also called internal
events) are interleaved while condition (3) expresses that shared events
must occur simultaneously in the two automata.

• Σ = Σ1 ∪Σ2.
• X = X1 ∪X2.
• for any location {l1, l2} ∈ Loc, we have that Init({l1, l2}) = Init1(l1) ∧

Init2(l2).
• for any location {l1, l2} ∈ Loc, we have that Inv({l1, l2}) = Inv1(l1) ∧

Inv2(l2).
• for any location {l1, l2} ∈ Loc, we have that Flow({l1, l2}) = Flow1(l1) ∧

Flow2(l2).
• for any edge ({l11, l21}, σ, {l12, l22}) ∈ Edge, we have that:
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Fig. 4. Hybrid automata for the burner and the thermometer

1. Jump({l11, l21}, σ, {l12, l22}) = Jump((l11, σ, l
1
2)) ∧

∧
x∈X2\X1 x′ = x if σ ∈

Σ1 \Σ2;
2. Jump({l11, l21}, σ, {l12, l22}) = Jump((l21, σ, l

2
2)) ∧

∧
x∈X1\X2 x′ = x if σ ∈

Σ2 \Σ1;
3. Jump({l11, l21}, σ, {l12, l22}) = Jump((l11, σ, l

1
2)) ∧ Jump((l21, σ, l

2
2)) if σ ∈

Σ1 ∩Σ2;
Conditions 1 and 2 express that discrete changes that are local to one
automaton have the enabling condition and the effect described by the
jump predicate of that automaton and the variables which are not shared
remain unchanged. Condition 3 expresses that discrete changes shared
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by the two automata have as enabling condition the conjunction of the
enabling conditions of each discrete change. Their effect is the conjunction
of the effects of each discrete change.

In our example, we obtain the complete system by composing the three
automata. It is easy to show that the product operation that we have defined
is commutative and associative, so we can write Sys = Tank⊗Burner⊗Thermo.
Fig. 5 shows the hybrid automaton obtained by composing the automaton for
the tank and the automaton for the thermometer. We have omitted transitions
that are incompatible with the invariant of their starting location. That is,
edges e = (l, σ, l′) such that [[Jump(e) ∧ Inv(l)]]= ∅ are not depicted.

Fig. 5. Product of tank and thermometer

3 Properties of Hybrid Systems

Properties assign values to trajectories of hybrid systems. In this introduction,
we restrict ourselves to properties that classify trajectories as good or bad
according to whether or not they stay in a given set of (good) states. Those
properties are called safety properties [1], and they are the most important
class of properties when considering safety critical systems.
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Let us go back to our running example. Now that we have a complete model
of our system, we would like to design a controller that enforces some desired
behaviors. The controller will be an additional hybrid automaton that, when
composed with the automata modeling our system, must enforce the following
properties on the trajectories of the entire system:

• (R1) the temperature in the tank must never reach 100 degrees;
• (R2) after 15 seconds of operation, the system must be in stable regime,

which means that the temperature of the water in the tank must always
stay between 91 and 97 degrees;

• (R3) during this stable regime, the burner is never continuously ON for
more than two seconds.

The three properties above are safety properties. They impose that the
system should stay within a set of safe states, or equivalently, that the system
should never enter a set of bad states (states where the safety property is
violated). This is clear for property (R1) where the bad states are the states
where the value of x is greater than or equal to 100. We will see later that this
is also the case for the other two properties. In this chapter, we only focus on
safety properties. Pointers to the literature are given in the last section for
other classes of properties.

We propose in Fig. 6, a possible controller for our system. The behavior of
this controller is as follows. The controller observes two events coming from
the thermometer (UP95, DW93) and issues two events toward the gas burner
(TURN-ON, TURN-OFF). Initially, the controller waits in location c1 until it
sees the event DW93. When this event occurs, the control switches instanta-
neously to location c2. There, it immediately switches to c3 by emitting the
event TURN-ON toward the gas burner. In location c3, the controller ignores
the event DW93 and waits for the event UP95. When this event takes place,
the control moves to location c4 where it instantaneously emits the event
TURN-OFF toward the gas burner.

In the next section, we show how to formalize the requirements expressed
informally above and how to prove, using algorithmic methods, that the con-
troller we propose fulfills those requirements.

3.1 Safety properties and monitors

Safety properties

To formalize safety properties, we need some more notation. Let T =
〈S, S0, Σ,→〉 be a TTS. Let λ = s0τ0s1τ1 . . . sn be a finite path in T . We
denote State(λ) for the set of states that appear along the path λ. We say
that a path λ reaches a state s if s ∈ State(λ). We say that a state s is reach-
able in T if s ∈

⋃
λ∈PathF (T ) State(λ). The set of states that are reachable in T

is noted Reach(T ). A set of states R ⊆ S is called a region. We note R for the
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Fig. 6. A controller for the system

complement of R in the state space of T , that is, R = S \R. We say that T is
safe for R iff Reach(T ) ⊆ R. A region R is reachable in T iff R∩Reach(T ) 
= ∅.

Definition 5 [Verification Problems] LetH be a hybrid automaton with TTS
[[H]] whose state space is S, and let R ⊆ S be a region. The safety problem
associated to R asks whether Reach([[H]]) ⊆ R. The reachability problem as-
sociated to R asks whether Reach([[H]]) ∩R 
= ∅.

Those two problems are dual in the following formal sense.

Theorem 1. For any TTS T , for any region R of T , Reach(T ) ⊆ R iff
Reach(T ) ∩R = ∅.

Hence, solving a safety problem boils down to solving its dual reachability
problem. In that reachability problem, the region R is often called the set of
bad states.

Monitors

In order to formalize safety requirements, it is often very convenient to use
a monitor automaton, also often called an observer, that “watches” the tra-
jectories of the system and enters “Bad” locations whenever one trajectory
violates a given safety property. Safety verification is then reduced to decid-
ing the reachability of a set of “Bad” locations.

In Fig. 7(a), 7(b), and 7(c), we give the monitors for the safety require-
ments (R1), (R2), and (R3) respectively. The automaton Moni1 monitors the
value of variable x whose dynamics is defined in the tank automaton. As soon
as x reaches the value 100, the control of the monitor can move to location
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(a) Monitor for property (R1) (b) Monitor for property (R2)

(c) Monitor for property (R3)

Fig. 7. Monitors for the safety properties (R1), (R2), and (R3)

w2 which is a Bad location. Thus to verify property (R1), we have to estab-
lish that no state in which the control of Moni1 is in location w2 is reachable
in [[Tank⊗ Burner⊗ Thermo⊗ Controller ⊗Moni1]]. In that case, we know that
the controller ensures requirement (R1). The automaton Moni2 initially main-
tains a variable t that counts the time elapsed since the initialization of the
system. When this variable reaches value 15 (the system was started 15 sec-
onds ago), the control has to leave location w1. If the value of variable x (the
temperature of the water inside the tank) at that time is between 91 and 97,
the control moves to location w2 and the control can stay there only if the
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temperature stays within this interval of values. On the other hand, if the
value is, or becomes, less than 91, it moves to location w3, and if the value is,
or becomes, greater than 97, it moves to location w4. Locations w3 and w4 are
the Bad locations. It is clear that if no state in which the control of Moni2 is ei-
ther w3 or w4 is reachable in [[Tank⊗ Burner⊗ Thermo⊗ Controller ⊗Moni2]],
then we know that the controller ensures requirement (R2). Finally, the au-
tomaton Moni3 works as follows. For the first 15 seconds, the control stays in
location w1, if the burner is OFF, or in location w2, if the burner is ON. After
15 seconds, the control moves to location w3 or w4. In w3, each time the event
ON occurs, the variable t is reset and the control moves to location w4 where
t counts time. There, the monitor waits for the next OFF event. If this next
OFF event occurs within 2 time units (t < 2), then the control moves back
to location w3 where the monitor waits for the next ON event. On the other
hand, if the event OFF occurs after 2 time units (t ≥ 2), then the control of
the monitor moves to location w5, a “Bad” location. Again, it is clear that our
system satisfies requirement (R3) if no state where the control of Moni3 is in
location w5 can be reached in [[Tank⊗ Burner⊗ Thermo⊗ Controller ⊗Moni3]].

3.2 How do we solve reachability problems?

We have seen that safety verification problems can be reduced to reachability
problems. We introduce here some basic notions useful for reachability prob-
lems. Given a TTS T = 〈S, S0, Σ,→〉, we define the following two operators:

• the direct successor operator PostT : 2S → 2S , is an operator that, given
a set of states, returns the set of direct successors of those states in T .
Formally, for any S′ ⊆ S, we have that

PostT (S′) =
{
s ∈ S | ∃s′ ∈ S′ : (∃σ ∈ Σ : s′ →σ s ∨ ∃δ ∈ R≥0 : s′ →δ s)

}
.

• the direct predecessor operator PreT : 2S → 2S , is an operator that, given
a set of states, returns the set of direct predecessors of those states in T .
Formally, for any S′ ⊆ S, we have that

PreT (S′) =
{
s ∈ S | ∃s′ ∈ S′ : (∃σ ∈ Σ : s→σ s

′ ∨ ∃δ ∈ R≥0 : s→δ s
′)
}
.

The set of reachable states of a hybrid automaton H can be described
as the least solution (for the subset order over sets of states) of equations
constructed using the direct successor or predecessor operators:

• The set of reachable states of a hybrid automaton H with TTS [[H]]=
〈S, S0, Σ,→〉 can be described as the least solution of the following equa-
tion:

X = (S0 ∪ Post[[H]](X)), (1)

where X ranges over sets of states.
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• Symmetrically, the set of states of this automaton that can reach a given
region R can be described as the least solution of the following equation:

X = (R ∪ Pre[[H]](X)), (2)

where X ranges over sets of states.

As the direct successor and the direct predecessor operators are monotone for
the subset order, we know by the Tarsky theorems that the least solutions of
those equations can be obtained by successive approximations. Unfortunately,
this does not mean that we can effectively solve those equations. In fact, the
fixpoint is not necessarily reached within a finite number of steps. In general,
reachability problems are undecidable for even the simplest class of hybrid
automata (we give detailed references to the literature later). Even applying
the direct successor or predecessor operator to a region one time may be very
difficult as it amounts to solving general differential equations. We do not know
how to do that in general. This is why subclasses of hybrid systems for which
we know how to compute direct successors or predecessors of regions have
been studied in the literature [4]. In the next section, we study a particularly
interesting one, the rectangular hybrid automata [34, 45].

4 Rectangular Hybrid Automata

4.1 Syntactic restrictions

An interval is a convex non-empty subset of the positive real numbers
with greatest lower bound in Q ∪ {−∞} and least upper bound in Q ∪
{+∞}. As usual, intervals can be denoted by (a, b), [a, b), (a, b] or [a, b] where
a ∈ Q ∪ {−∞} and b ∈ Q ∪ {+∞}, and a ≤ b. Let I be an interval, we note
glb(I) for the greatest lower bound of I and lub(I) for the least upper bound
of I. Let X be a set of variables, we note Rect(X) for the following set of
formulas:

Rect(X) ' φ1, φ2 := ⊥ | ) | x ∈ I | φ1 ∧ φ2,

where x belongs to the set of variables X, and I is an interval. Those formulas
are called rectangular predicates. The set of formula Rect(Ẋ) is defined in
the same way, replacing X by Ẋ. Those formulas are called rectangular flow
predicates. We need a last set of formulas. We denote by UpdateRect(X), the
following set of formulas:

UpdateRect(X) ' φ1, φ2 := ⊥ | ) | x ∈ I | x′ ∈ I | x′ = x | φ1 ∧ φ2,

where x belongs to the set of variables X, x′ belongs to X ′ the set of primed
copies of variables in X, and I is an interval. Formulas from this set are called
rectangular update predicates.
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Definition 6 [Rectangular Automaton] A rectangular automaton is a hybrid
automaton H = 〈Loc, Edge, Σ,X, Init, Inv,Flow, Jump〉 where for any l ∈ Loc,
Init(l) and Inv(l) are rectangular predicates over X, that is, formulas taken in
Rect(X), for any edge e ∈ Edge, Jump(e) is a rectangular update predicate
over X, that is a formula taken in UpdateRect(X), and finally, for any location
l ∈ Loc, Flow(l) is a rectangular flow predicate over Ẋ, that is, a formula taken
in Rect(Ẋ).

It is easy to show that the composition of two rectangular automata is
again a rectangular automaton. The hybrid automata for the gas burner, the
thermometer, the controller, and the three monitors are all rectangular hybrid
automata.

4.2 Reachability analysis of rectangular hybrid automata

The computation of the Pre and Post operators is easier in the case of rect-
angular hybrid automata. For that class of hybrid automata, we are able to
define a semi-algorithm (no guarantee of termination) for reachability. This
semi-algorithm manipulates regions that are infinite sets of states. Therefore,
we need a way to represent regions in a symbolic way.

A linear term over the set of variables X is a linear combination of the
variables in X with integer coefficients. A linear formula over X is a boolean
combination of inequalities between linear terms over X. Given a linear for-
mula Ψ , we write [[Ψ ]] for the set of valuations v of the variables in X such that
v |= Ψ . If we allow quantifiers with linear formulas, we obtain the theory of
reals with addition, noted T(R, 0, 1,+,≤). Note that rectangular predicates,
rectangular flow predicates, and rectangular update predicates are linear for-
mulas over X, Ẋ, and X ∪X ′, respectively.

Let H = 〈Loc,Edge, Σ,X, Init, Inv,Flow, Jump〉 be a rectangular automa-
ton. A symbolic region R of H is a finite set {(l, Ψl) | l ∈ Loc} of pairs, where
l ∈ Loc is a location of the automaton and Ψl is a linear formula such that
[[Ψl]]⊆[[Inv(l)]]. Let l ∈ Loc and let Flow(l) be the rectangular flow predicate
that labels l. We denote by [[Flow(l)]] (x) the set of values {v̇(x) | v̇ ∈[[Flow(l)]]},
that is the set of possible values of the first derivative of variable x when the
control is in location l. It is easy to show that this set is an interval of the
real numbers with rational lower and upper bounds.

Given a location l ∈ Loc and a set of valuations V ⊆ [X → R], such
that V ⊆[[Inv(l)]]: the forward time closure, noted 〈V 〉↗l of V at l is the set of
valuations of variables in X that are reachable from some valuation v ∈ V by
letting time pass:

〈V 〉↗l =⎧⎨⎩v′ | ∃v ∈ V, t ∈ R≥0 : ∀x ∈ X :
∧v(x) + t× glb([[Flow(l)]] (x)) ≺1

x v
′(x)

∧v′(x) ≺2
x v(x) + t× lub([[Flow(l)]] (x))

∧v′ ∈[[Inv(l)]]

⎫⎬⎭
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where

≺1
x=

{
≤ if glb([[Flow(l)]] (x)) ∈[[Flow(l)]] (x), i.e., the interval is left closed
< if glb([[Flow(l)]] (x)) 
∈[[Flow(l)]] (x), i.e., the interval is left open

where

≺2
x=

{
≤ if lub([[Flow(l)]] (x)) ∈[[Flow(l)]] (x), i.e., the interval is right closed
< if lub([[Flow(l)]] (x)) 
∈[[Flow(l)]] (x), i.e., the interval is right open

The set above can be defined inside T(R, 0, 1,+,≤). As T(R, 0, 1,+,≤) admits
quantifier elimination, it is clear that given any linear formula Ψ , we can
construct a linear formula Φ such that [[Φ]]= 〈[[Ψ ]]〉↗l .

Given an edge e ∈ Edge and a set of valuations V ⊆ [X → R], the
postcondition poste(V ) of V with respect to e is the set of valuations that are
reachable from some valuation v ∈ V by taking the discrete transition e:

poste(V ) = {v′ | ∃v ∈ V : (v, v′) ∈[[Jump(e)]]}.

Again, as T(R, 0, 1,+,≤) admits quantifier elimination, and for any edge e,
Jump(e) is a rectangular update predicate over X, and so a linear formula
over X ∪X ′, it is clear that if we are given a linear formula Ψ , then we can
construct a linear formula Φ such that [[Φ]]= poste([[Ψ ]]).

We can now define the forward time closure and the edge postcondition
operators of H over symbolic regions. Let R = {(l, Ψl ∧ Inv(l)) | l ∈ Loc} be a
symbolic region of H:

• 〈R〉↗ =
⋃

l∈Loc{(l, 〈[[Ψl]]〉↗l )}
• post(R) =

⋃
e=(l,σ,l′)∈Edge{(l′, poste(Ψl))}

From those two operators, we can define our symbolic post operator for rect-
angular automata as follows. Let R = {(l, Ψl) | l ∈ Loc} be a symbolic region
of H:

Post(R) = post(〈R〉↗).

Now, we can use the Tarsky fixpoint theorem to find the least solution of
equation (1) by successive approximations defined as follows:

• R0 = {(l, Init(l)) | l ∈ Loc}
• for any integer i > 0, Ri = Ri−1 ∪ Post(Ri−1)

This approximation schema defines naturally a semi-algorithm for reachabil-
ity. This algorithm is given in Fig. 8.

4.3 Rectangular hybrid automata as abstractions

Let us go back to our running example. Remember that the automata for the
burner, the thermometer, the controller, and the three monitors that we have
defined above are all in the class of rectangular hybrid automata. The only
automaton of our example which is outside the class of rectangular hybrid
automata is the automaton for the tank.
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A symbolic algorithm for reachability
begin

R := {(l, Init(l) ∧ Inv(l)) | l ∈ Loc};
Prec := ∅;
while [[R]] ⊆[[Prec]] do

Prec := Prec ∪ R;
R := Post(R);

od
if Bad ∩ Prec = ∅ then return(OK) else return(KO); fi

where [[R]] ⊆[[Prec]] holds if there exist (l, Ψ) ∈ R and (l, Ψ ′) ∈ Prec such that
∀x1, . . . , xm : Ψ(x1, . . . , xn) → Ψ ′(x1, . . . , xn) is not a valid formula.

Fig. 8. Semi-algorithm for the reachability analysis of rectangular hybrid automata

In this subsection, we show how to approximate complex dynamics with
rectangular dynamics in a systematic way. Those systematic approximations
allow us to use automatic tools, like HyTech [29], to analyze approximated
systems and, in a lot of practical cases, to infer the important properties of
the original (complex) systems. This methodology is closely related to the
theory of abstract interpretation studied by computer scientists [20] and the
approximation techniques used in analysis of dynamical systems [40].

We introduced here an approximation schema known as the rectangular
phase-portrait approximation scheme; see [30] for more details. The idea of
this approximation scheme can be stated as follows. For each control mode of
the hybrid automaton that we want to approximate, the state space is parti-
tioned into rectangular regions, and within each region, the flow field is over-
approximated using rectangular flows. Those approximations may be obtained
manually, using techniques from dynamical system theory, or in some cases
automatically, when lower and upper bounds on derivatives can be obtained
from bounds on the value of variables within rectangular regions. The ap-
proximations can be arbitrarily precise by approximating over suitably small
regions of the state space.

Let us illustrate that approximation schema on our running example. Let
us consider the location t1 of the tank. In this location, we know that the
possible values for x, the temperature of the water within the tank, are such
that 20 ≤ x ≤ 100 (this is given by the invariant that labels the location)
and the flow of x is given by the flow predicate ẋ = K(h− x). As the second
derivative of x in the interval [20, 100] is never zero, we know that the minimal
value of the first derivative of x in this interval occurs when x = 100 and the
maximal derivative occurs when x = 20. Remember that we have fixed the
value of the constant K to 0.075 and h to 150. With those constants, we
know that the values of the first derivative of x within [20, 100] are bounded
from below by 3.75 and from above by 9.75. It means that if we replace
the flow predicate of location t2 by ẋ ∈ [ 375100 ,

975
100 ], or by ẋ ∈ [3, 10] to keep

things simple, then we are sure that the resulting automaton will define at
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least the trajectories defined by the original automaton. We can repeat this
schema for each location of the original automaton. In this way we obtain
a rectangular hybrid automaton that overapproximates the behavior of our
original model in the sense that any trajectory of the original automaton can
be mimicked by the approximating automaton (and so is a trajectory of the
approximating automaton). In this introduction the notion of approximations
is left informal; it can be formalized using notions like simulations [43], and
we refer the interested reader to [30] for a correctness proof. The automaton
obtained by this schema is given in Fig. 9 and is noted RectTank.

Fig. 9. Rectangular automaton RectTank for the tank

Let us now analyze the behaviors of our system approximated as a product
of rectangular hybrid automata. This model can be analyzed using the tool
HyTech [29]. HyTech is a model-checking tool for the reachability analysis
of linear hybrid automata, a class of hybrid automata that subsumes the class
of rectangular hybrid automata. HyTech allows us to describe each compo-
nent of the system directly as a rectangular automaton in a textual syntax and
to formalize reachability questions using a simple (and yet powerful) script
language.

For our analysis of the tank system, we consider the product of each
of the three monitors Monii, 1 ≤ i ≤ 3, of Fig. 7(c), with the system
RectTank⊗Burner⊗Thermo⊗ Controller. Again, it is easy to show that since
RectTank overapproximates the behaviors of Tank, and if “Bad” locations are
not reachable in RectTank⊗Burner⊗Thermo⊗Controller⊗Monii then “Bad” is
also not reachable in Tank⊗Burner⊗Thermo⊗Controller⊗Monii. This means
that if we can prove that a safety requirement is verified in the approximated
system, then it is also verified for the original system.
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When running the three verification tasks in HyTech, only the verifica-
tion task of property (R1) is positive in the approximated system; the two
other properties turn out to be false in this approximation. HyTech provides
witness trajectories that lead to bad states, that is, trajectories where the con-
trol of monitors Moni2 and Moni3 enter bad locations. If we look carefully at
those trajectories, we can see that they are not possible in the original system.
In particular, there are continuous transitions that cannot be mimicked by the
concrete system. Those paths are present because of the overapproximation.
To rule out those spurious paths, we have to refine our initial approximation
and get closer to the real dynamics of the temperature of the water in the
tank. For that purpose, we proceed as follows. As suggested above, we must
partition the state space in smaller rectangular regions to capture more pre-
cisely the first derivative of x. To do that, we need to split some control modes
of our original automaton. Consider the control mode modeled by location t1,
that is, when the burner is ON and the temperature is rising following the flow
predicate ẋ = K(h − x). Instead of considering only the rectangular region
20 ≤ x ≤ 100, we will consider the four regions 20 ≤ x ≤ 50, 50 ≤ x ≤ 91,
91 ≤ x ≤ 95, and finally 95 ≤ x ≤ 100. For those regions, we can approximate,
using the same reasoning as above, the first derivative of x by the following
rectangular flow predicates: ẋ ∈ [7, 10] for the first region, ẋ ∈ [4, 8] for the
second region, ẋ ∈ [4, 5] for the third region, and ẋ ∈ [3, 5] for the last region.
This splitting is depicted in Fig. 10. Internal actions are taken to move the
control from one region to the next when the boundaries of the region are
reached. We can also apply this process to location t3 and split this control
mode into 3 locations as follows. Instead of the region 20 ≤ x ≤ 100, we use
the regions 20 ≤ x ≤ 91, 91 ≤ x ≤ 97, and finally 97 ≤ x ≤ 100. The flow
predicates that we obtain are, respectively, ẋ ∈ [−7,−1], ẋ ∈ [−8,−6], and
ẋ ∈ [−8,−7]. Finally, we obtain a new overapproximating automaton that we
denote RectTank2. Fig. 11 shows how the dynamics of the temperature of the
water is approximated within the refined rectangular automaton for the tank
within location t1.

Now if we test the reachability of the Bad location of the monitors Monii,
1 ≤ i ≤ 3, in Tank ⊗ Burner ⊗ Thermo ⊗ Controller ⊗ Monii, with HyTech,
we obtain that the “Bad” locations are not reachable in the three cases. This
allows us to conclude that our controller is correct for the original (complex)
system.

5 Beyond This Introduction

We close this chapter by referencing the literature. The interested reader will
find in this section references to articles that will allow her/him to go beyond
this introduction. We have organized the section into subsections devoted
to active areas of research in the field of hybrid automata. Some references
below have already been given above. These references are not intended to be
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Fig. 10. Refinement by location splitting

Fig. 11. Approximation of the dynamics by rectangles with rectangular regions
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exhaustive (some important works may have been forgotten), but they are,
from the point of view of the author, natural papers to look at in order to
delve deeper into notions only sketched in this introductory chapter.

5.1 Analysis: Subclasses, decidability and complexity results

In [6, 7], Alur and Dill have introduced timed automata. This was the first
proposal to extend finite state automata with continuous variables. Timed
automata are a subclass of hybrid automata where continuous variables are
clocks, that is, continuous variables that have constant slopes equal to 1 (they
count time), values of clocks are compared to constants, and the only updates
allowed are resets to 0. The reachability problem for timed automata is decid-
able (it is PSpace-complete). Symbolic procedures to analyze timed automata
are given in [36]. The first proposition to extend timed models to more general
hybrid models can be found in [42]. Rectangular hybrid automata have been
proposed in [45]. The reachability problem of rectangular hybrid automata is
undecidable in the general case, but it is decidable for the subclass of initial-
ized rectangular hybrid automata [34]. Other interesting subclasses of hybrid
automata that can be analyzed algorithmically are integration graphs [41] and
dynamical systems with piecewise constant derivatives [13]. More details and
pointers about analysis and decidability results related to subclasses of hybrid
automata can be found in [4, 28].

5.2 Beyond monitors: Temporal logics and real-time logics

Temporal logics have proven useful for specification and verification of reactive
systems [19,44]. In this introduction, we have focused only on the verification
of the important class of safety properties: many more involved properties
reduce to safety properties if progress of time is ensured [25]. Nevertheless,
there has been a lot of research on suitable formalisms to express properties
of hybrid systems. In particular, temporal logics have been extended for real-
time. The reader interested in real-time logics is referred to [3,8,27,38,46,47]
for definitions and verification methods related to those logics. As an illustra-
tion of the expressive power of real-time logics, we give here the formalization
of the three requirements of our running example in the logic MITL [8]. The
following formulas are requirements that any infinite trajectory of the tank
system must verify. The � operator is read as “Always” (in the future), �≥15
is read as “always after 15 time units”, �<2 is read as “there exists a state
distant of less than 2 time units”. The three requirements are then formalized
as follows:

• �(x < 100), meaning that in any trajectory, in any state, the temperature
of the water is strictly less than 100 degrees;

• �≥15(91 ≤ x ≤ 97), meaning that in any trajectory, after 15 time units,
the temperature of the water is always between 91 and 97 degrees;
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• �≥15(ON → �<2OFF), meaning that, in any trajectory, after 15 time
units, any state where the burner is ON is followed within 2 time units by
a state where the burner is OFF.

5.3 Equivalence relations and abstraction

Abstraction methods are used to simplify models and make their analysis
more tractable. Several equivalence relations have been studied for subclasses
of hybrid systems. For example, it can be shown that transition systems of
timed automata admit finite state abstractions, called region graphs, that
are time-abstract bisimilar, see [7] for details. Those equivalence results are
used to prove decidability of verification problems on subclasses of hybrid
automata [26,32] and allow the use of well-known model-checking procedures
that are guaranteed to terminate in the presence of finite quotients [35]. Other
techniques that are not exact but use overapproximations have been proposed
and have proven useful in practice: the approximation schema proposed in
Section 4.3 is detailed and proven correct in [30]. Other interesting works
about overapproximations can be found, among others, in [5, 9, 24].

5.4 Control synthesis

In this introduction, we have shown how we can model and verify controllers
using hybrid automata. In our example, we have proposed a controller for the
system and proven that the controller was correct for a list of requirements. A
more ambitious goal than algorithmic (controller) verification is algorithmic
(controller) synthesis. References about control synthesis include [14, 17, 31,
33,50].

5.5 Semantics and robustness

The semantics of hybrid automata that we defined in this chapter can be
described as perfect. For example, it is possible to model, with this semantics,
a controller that takes a given transition when a variable of the environment
has exactly a given value. This can be considered as unrealistic because any
implementation of such a controller will measure its environment through
sensors that have finite precision. Alternative semantics that can be considered
as robust are proposed in [11,22,23,37].

5.6 Tool support and case studies

Several tools for the automatic analysis of hybrid automata have been im-
plemented. The tools Kronos [21] and Uppaal [16] can be used to analyze
the subclass of timed automata. The tool HyTech [29] allows the analysis of
linear hybrid automata. The tool CHARON [10] and the tool d/dt [12] allow
the analysis of a more general class of hybrid automata.
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Those tools have been applied successfully to a large set of case studies
in a variety of application domains. Interesting case studies can be found
in [2, 15,39,48,49].
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1 Introduction

The term hybrid systems is used in the literature to refer to systems that
feature an interaction between diverse types of dynamics. Most heavily stud-
ied in recent years are hybrid systems that involve the interaction between
continuous dynamics (with a dense state space and evolution determined by
differential or difference equations) and discrete dynamics (with a finite or
countable state space and evolution according to finite state machines, Petri
nets, or other discrete models of computation). The study of this class of
systems has to a large extent been motivated by applications to embedded
systems and control. Embedded systems by definition involve the interaction
of digital devices with a predominantly analog environment. In addition, much
of the design complexity of embedded systems comes from the fact that they
have to meet specifications such as hard real-time constraints, scheduling con-
straints, etc. that involve a mixture of discrete and continuous requirements.
Therefore, both the model and the specifications of embedded systems can
naturally be expressed in the context of hybrid systems. Motivated by the
observation that embedded systems often also have to deal with an uncer-
tain and potentially adversarial environment, researchers have in recent years
extended their study of hybrid systems beyond continuous and discrete dy-
namics, to include probabilistic terms. This has led to the more general class
of stochastic hybrid systems.

Control problems have been at the forefront of hybrid systems research
from the very beginning. The reason is that many important applications
with prominent hybrid dynamics come from the area of embedded control.
For example, hybrid control has played an important role in applications to
avionics [43,60], automated highways [34,41], automotive control [6], air traf-
fic management [60, 61], industrial process control [23], and manufacturing
and robotics [51, 57]. The corresponding problems in stochastic hybrid sys-
tems have found applications to insurance pricing [19], capacity expansion
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models for the power industry [19], flexible manufacturing and fault tolerant
control [26], and the control of communication networks [31].

The control problems that have arisen in these applications differ, first of
all, in the way in which they treat uncertainty. Generally, the problems can
be grouped into three classes:

1. Deterministic. Here it is assumed that there is no uncertainty; control
inputs are the only class of inputs considered.

2. Non-deterministic. In this case inputs are grouped into two classes, con-
trol and disturbance. The design of a controller for regulating the control
inputs assumes that disturbance inputs are adversarial. Likewise, the re-
quirements are stated as worst case: the controller should be such that
the specifications are met for all possible actions of the disturbance. From
a control perspective, problems in this class are typically framed in the
context of robust control, or game theory.

3. Stochastic. Again, both control and disturbance inputs are considered.
The difference with the non-deterministic case is that a probability dis-
tribution is assumed for the disturbance inputs. This extra information
can be exploited by the controller and also allows one to formulate finer
requirements. For example, it may not be necessary to meet the specifi-
cations for all disturbances, as long as the probability of meeting them is
high enough.

In addition, the control problems studied in the literature differ in the specifi-
cations they try to meet. Generally, according to the specification the problems
can also be grouped into three classes:

1. Stabilization. Here the problem is to select the continuous inputs and/or
the timing and destinations of discrete switches to make sure that the
system remains close to an equilibrium point, limit cycle, or other invariant
set. Many variants of this problem have been studied in the literature.
They differ in the type of control inputs considered (discrete, continuous,
or both) and the type of stability specification (stabilization, asymptotic or
exponential stabilization, practical stabilization, etc.). Even more variants
have been considered in the case of stochastic hybrid systems (stability in
distribution, moment stability, almost sure asymptotic stability, etc.).

2. Optimal control. Here the problem is to steer the hybrid system using
continuous and/or discrete controls in a way that minimizes a certain
cost function. Again, different variants have been considered, depending
on whether discrete and/or continuous inputs are available, whether cost
is accumulated along continuous evolution and/or during discrete transi-
tions, whether the time horizon over which the optimization is carried out
is finite or infinite, etc.

3. Language specifications. Control problems of great interest can also be
formulated by imposing the requirement that the trajectories of the closed-
loop system are all contained in a set of desirable trajectories. Typical
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requirements of this type arise from reachability considerations, either of
the safety type (along all trajectories the state of the system should remain
in a “good” region of the state space), or of the liveness type (the state of
the system should eventually reach a “good” region of the state space along
all trajectories). Starting with these simple requirements, progressively
more and more complex specifications can be formulated: the state should
visit a given set of states infinitely often, given two sets of states, if the
state visits one infinitely often it should also visit the other infinitely
often, etc. These specifications are all related to the “language” generated
by the closed-loop system and have been to a large extent motivated by
analogous problems formulated for discrete systems based on temporal
logic [46].

In this chapter we provide an introduction to the problems addressed in
all these areas. In Section 3 we formulate a number of hybrid stabilization
problems, state the main approaches to solving these problems, and provide
references to publications where more details can be found. In Sections 4
and 5 we do the same with optimal control problems and language specifica-
tion problems, respectively. In each of these three sections emphasis is placed
separately on the three types of disturbances: deterministic, non-deterministic,
and stochastic.

To be able to clearly state the different control problems of interest, we
start by introducing a simple hybrid system model (Section 2). We stress that
this hybrid model is meant to be used only for illustration purposes. It is not
the model used in any of the references, nor does it claim to be a general model
for controlled hybrid systems. Its one advantage is that it is simple enough
to be understood by the non-specialist but also general enough to be used to
formulate most of the control problems of interest (with the notable exception
of stochastic control problems, whose formulation requires considerably more
mathematical sophistication). More general and appropriate models can be
found in the references and other chapters of this volume.

2 A Simple Hybrid Control Model

Hybrid control problems have been formulated for both continuous- and
discrete-time systems. As usual, continuous-time problems present more tech-
nical difficulties. In this section we introduce a model suitable for formulating
continuous-time control problems for deterministic hybrid systems. We also
discuss briefly the simplifications that arise if discrete-time systems are con-
sidered and the complications involved in extending the model to stochastic
systems. As discussed above the model introduced here is “minimalist” in the
sense that it includes the minimum set of features necessary to clarify the
distinctions among the different control problems considered in subsequent
sections.
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2.1 Syntax: Non-deterministic systems

Since we are interested in hybrid dynamics, the dynamical systems we consider
involve both a continuous state (denoted by x) and a discrete state (denoted
by q). To allow us to capture the different types of uncertainties discussed
above, we also assume that the evolution of the state is influenced by two
different kinds of inputs: controls and disturbances. We assume that inputs of
each kind can be either discrete or continuous, and we use υ to denote discrete
controls, u to denote continuous controls, δ to denote discrete disturbances,
and d to denote continuous disturbances.

The dynamics of the state are determined through four functions: a vector
field f that determines the continuous evolution, a reset map r that determines
the outcome of the discrete transitions, a “guard” set that determines when
discrete transitions can take place, and a “domain” set Dom that determines
when continuous evolution is possible. The following definition formalizes the
details.

Definition 1 (Hybrid game automaton). A hybrid game automaton
(HGA) characterizes the evolution of

• discrete state variables q ∈ Q and continuous state variables x ∈ X,
• discrete control inputs υ ∈ Υ and continuous control inputs u ∈ U and
• discrete disturbance inputs δ ∈ ∆ and continuous disturbance inputs d ∈ D
by means of four functions

• a vector field f : Q×X × U ×D → X,
• a domain set Dom : Q× Υ ×∆→ 2X ,
• guard sets G : Q×Q× Υ ×∆→ 2X , and
• a reset function r : Q×Q×X × U ×D → X.

As usual, 2X stands for the set of all subsets (power set) of X; in other words,
Dom and G are set-valued maps. For simplicity, we assume that X = Rn,
U ⊆ Rm, and D ⊆ Rp for integers n, m, and p. A similar definition can also
be formulated for discrete-time hybrid systems, simply by considering f as a
transition function rather than as a vector field. In this case the discrete-time
hybrid system can be considered as a simple discrete-time system, with state
space Q×X and a set-valued transition relation

R(q, x, u, d, υ, δ) =

= [{q} × f(q, x, u, d)] ∪

⎡⎣ ⋃
{q′∈Q : x∈G(q,q′,υ,δ)}

{q′} × r(q, q′, x, u, d)

⎤⎦ ,
if x ∈ Dom(q, υ, δ) and ⋃

{q′∈Q : x∈G(q,q′,υ,δ)}
{q′} × r(q, q′, x, u, d)
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otherwise. Even though this abstraction appears convenient and is suitable for
certain classes of problems, it is often desirable to exploit additional structure
by developing more detailed (rather than more abstract) models of discrete-
time hybrid systems.

To avoid pathological situations (lack of solutions, deadlock, chattering,
etc.) one needs to introduce technical assumptions on the model components.
Typically, these include continuity assumptions on f and r, compactness as-
sumptions on U and D, and convexity assumptions on

⋃
u∈U f(q, x, u, d) and⋃

d∈D f(q, x, u, d), etc. These assumptions aim to ensure, among other things,
that for all q ∈ Q, x0 ∈ X and u(·), d(·) measurable functions of time, the
differential equation

ẋ(t) = f(q, x(t), u(t), d(t))

has a unique solution x(·) : R+ → X with x(0) = x0. Additional assumptions
are often imposed to prevent deadlock, a situation where it is not possible
to proceed by continuous evolution or by discrete transition. A typical as-
sumption to prevent this situation is that the set Dom(q, υ, δ) is open and if
x 
∈ Dom(q, υ, δ) then x ∈

⋃
q′∈QG(q, q′, υ, δ). Finally, in many publications

assumptions are introduced to prevent what is called the Zeno phenomenon, a
situation where the solution of the system takes an infinite number of discrete
transitions in a finite amount of time. The Zeno phenomenon can prove par-
ticularly problematic for hybrid control problems, since it may be exploited
either by the control or by the disturbance variables. For example, a con-
troller may appear to meet a safety specification by forcing all trajectories of
the system to be Zeno; [37,61] provide examples of this situation that arise in
the deterministic water tank benchmark problem and in a non-deterministic
collision avoidance problem from air traffic management. This situation is
undesirable in practice, since the specifications are met not because of suc-
cessful controller design but because of modeling over-abstraction. In addition,
Zeno controllers require infinitely fast switching and cannot be implemented
in practice. For these reasons, the Zeno phenomenon is usually forbidden by
direct assumptions. In some cases, structural assumptions are introduced on
the model to prevent Zeno solutions (e.g., by enforcing a lower bound on the
time between discrete transitions or the time to traverse each discrete state
cycle).

Many of the assumptions discussed here can be relaxed, replaced by other
variants, or dropped altogether; for example, if we consider relaxed controls in
optimal control problems, convexity and compactness assumptions are typi-
cally not needed. For discrete-time hybrid systems, most of these assumptions
are unnecessary. For example, deadlock and the Zeno phenomenon are typi-
cally not issues for discrete-time systems.

2.2 Example: A four-gear car

Fig. 1 shows a simplified discrete model of a car with a gear box having four
gears; transitions between any gears are allowed in practice, but they are
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gear = 2

gear = 2gear = 1

gear = 3

gear = 3

gear = 4

gear = 1 gear = 2 gear = 3 gear = 4

Fig. 1. A hybrid system modeling a car with four gears

x2

a1(x2)
a2(x2) a3(x2)

a4(x2)

Fig. 2. The efficiency functions of the different gears

omitted in the figure to keep it simple. We would like to couple this model
with a continuous model to capture the longitudinal motion of the car along
the road; lateral dynamics will be ignored.

Let x1 denote the longitudinal position of the car and let x2 denote its
velocity. The model has two control inputs: the gear selection, denoted by
gear ∈ {1, . . . , 4}, and the throttle position, denoted by u ∈ [umin, umax]. Gear
shifting is necessary because little power can be generated by the engine at
very low or very high engine speeds. The function αi represents the efficiency
of gear i as a function of speed. Typical shapes of the functions αi are shown
in Fig. 2. In addition to the controls, the model also has a disturbance input,
d ∈ [−θmin, θmax] which represents the inclination of the road.

In our context, the four-gear car can be modeled by an HGA with four
discrete states (q ∈ {1, 2, 3, 4} = Q, one for each gear), two continuous states
(the position and velocity of the vehicle, x ∈ R2 = X), one discrete input
(υ ∈ {1, 2, 3, 4} = Υ , representing the gear shift commands), one continuous
input (u ∈ [umin, umax], representing the engine throttle command), and one
continuous disturbance (d ∈ [−θmax, θmax], representing road inclination). The
continuous dynamics are governed by the vector field
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f(q, x, u, d) =
[

x2
aq(x2)u+mg sin(d)

]
,

and the domain of continuous evolution is given by

Dom(q, υ) =

{
R2 if υ = q

∅ otherwise.

This forces discrete transitions to take place whenever the driver requests a
gear switch and allows the discrete state to remain the same otherwise. The
guard sets are given by

G(q, q′, υ) =

{
R2 if υ = q′ and q 
= q′

∅ otherwise.

Finally, the reset function leaves the continuous state unchanged, i.e.,

r(q, q′, x, u, d) = x.

Several interesting control problems can be formulated for this simple car
model. For example, what is the optimal control strategy to drive between
two points in minimum time? The problem is not trivial if we include the
reasonable assumption that each gear shift takes a certain amount of time.
The optimal controller, which can be modeled as a hybrid system, may be
derived using the theory of optimal control of hybrid systems.

2.3 Semantics: Solutions or runs

To formally define the solutions of this class of hybrid systems, we recall the
following notion from [42].

Definition 2 (Hybrid time set). A hybrid time set τ = {Ii}Ni=0 is a finite
or infinite sequence of intervals of the real line, such that

• for all i < N , Ii = [τi, τ ′
i ];

• if N < ∞, then either IN = [τN , τ ′
N ], or IN = [τN , τ ′

N ), possibly with
τ ′
N =∞;

• for all i, τi ≤ τ ′
i = τi+1.

Since the dynamical systems considered here are time invariant, without loss
of generality we can assume that τ0 = 0. It easy to see that, although more
complicated than the usual time sets (the real numbers for continuous-time
systems or the integers for discrete-time systems), hybrid time sets are reason-
ably well-behaved mathematical objects. For example, each hybrid time set
is totally ordered, whereas the set of all hybrid time sets is partially ordered.
One can therefore naturally define prefixes and suffixes of a hybrid time set,
maximal elements of a collection of hybrid time sets, etc. For discrete-time
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hybrid systems, the introduction of hybrid time sets is unnecessary, since the
set of integers or natural numbers can typically be used.

Roughly speaking, the solution of an HGA (often called a “run” or an
“execution”) is defined over a hybrid time set τ and involves a sequence of
intervals of continuous evolution followed by discrete transitions. Starting at
some initial state (q0, x0) the continuous state moves along the solution of the
differential equation

ẋ = f(q0, x, u, d)

as long as it does not leave the set Dom(q0, υ, δ). The discrete state remains
constant throughout this time. If at some point x reaches a set G(q0, q′, υ, δ)
for some q′ ∈ Q, a discrete transition can take place. The first interval of τ
ends and the second one begins with a new state (q′, x′) where x′ is determined
by the reset map r. The process is then repeated. Notice that considerable
freedom is allowed when defining the solution in this “declarative” way: in
addition to the effect of the input variables, there may also be a choice be-
tween evolving continuously or taking a discrete transition (if the continuous
state is in both the domain set and a guard set) or between multiple discrete
transitions (if the continuous state is in many guard sets at the same time).

The following concept helps to formalize the above discussion.

Definition 3 (Hybrid trajectory). Given a set of variables, a, that take
values in a set A, a hybrid trajectory over this set of variables is a pair (τ, a)
where τ = {Ii}Ni=0 is a hybrid time set and a = {ai(·)}Ni=0 is a sequence of
functions ai(·) : Ii → A.

The solutions of the HGA can now be defined as hybrid trajectories over its
state and input variables.

Definition 4 (Run). A run of an HGA is a hybrid trajectory (τ, q, x, υ, u, δ, d)
over its state and input variables that satisfies the following conditions:

• Discrete evolution: for i < N ,
1. xi(τ ′

i) ∈ G(qi(τ ′
i), qi+1(τi+1), υi(τ ′

i), δi(τ
′
i)).

2. xi+1(τi+1) = r(qi(τ ′
i), qi+1(τi+1), xi(τ ′

i), ui(τ ′
i), di(τ ′

i)).
• Continuous evolution: for all i with τi < τ ′

i

1. ui(·) and di(·) are measurable functions.
2. qi(t) = qi(τi) for all t ∈ Ii.
3. xi(·) is a solution of the differential equation

ẋi(t) = f(qi(t), xi(t), ui(t), di(t))

over the interval Ii starting at xi(τi).
4. xi(t) ∈ Dom(qi(t), υi(t), δi(t)) for all t ∈ [τi, τ ′

i).

For discrete-time hybrid systems the definition of a run is again much simpler.
A run can simply be defined as a finite or infinite sequence of states and inputs,
{qi, xi, ui, di, υi, δi}Ni=0, such that for all i

(qi+1, xi+1) ∈ R(qi, xi, ui, di, υi, δi).
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2.4 Classification of control action

The preceding model allows control and disturbance inputs to influence the
evolution of the system in a number of ways. In particular, control and dis-
turbance can

1. Steer the continuous evolution through the effect of u and d on the vector
field f .

2. Force discrete transitions to take place through the effect of υ and δ on
the domain Dom.

3. Affect the discrete state reached after a discrete transition through the
effect of υ and δ on the guards G.

4. Affect the continuous state reached after a discrete transition through the
effect of u and d on the reset function r.

Notice that the model implicitly restricts the influence of the discrete inputs
υ and δ to the timing and discrete destination of discrete transitions and the
influence of the continuous inputs u and d to continuous evolution and the
continuous destination of discrete transitions. At this level of generality all
inputs could, in fact, be allowed to influence all aspects of the evolution of
the system. Caution should be taken, however, when doing this, since experi-
ence suggests that it tends to severely complicate the technicalities associated
with the definition of runs, ensuring that runs exist for all inputs, preventing
chattering strategies, etc. Experience also suggests that this type of mixing of
discrete and continuous inputs is rarely needed in practice.

Another issue that arises is the type of controllers one allows for selecting
the control inputs u and υ. The most common control strategies considered
in the hybrid systems literature are, of course, static feedback strategies. In
this case the controller can be thought of as a map (in general set valued) of
the form

g : Q×X → 2Υ×U .

For controllers of this type, the runs of the closed-loop system can easily be
defined as runs, (τ, q, x, υ, u, δ, d), of the uncontrolled system such that for all
Ii ∈ τ and all t ∈ Ii

(υi(t), ui(t)) ∈ g(qi(t), xi(t)).

It turns out that for certain kinds of control problems (for example, reach-
ability problems) one can restrict attention to feedback controllers without
loss of generality. For other problems, however, one may be forced to consider
more general classes of controllers: dynamic feedback controllers that incor-
porate observers for output feedback problems, controllers that involve non-
anticipative strategies for gaming problems, piecewise constant controllers to
prevent chattering, etc. Even for these types of controllers, it is usually intu-
itively clear what one means by the runs of the closed-loop system. However,
unlike feedback controllers, a formal definition would require one to formu-
late the problem in a compositional hybrid systems framework and formally
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define the closed-loop system as the composition of a plant and a controller
automaton.

2.5 Stochastic hybrid systems

The controlled hybrid system model presented above allows one to capture
a number of interesting and important hybrid phenomena. Many of the de-
terministic and non-deterministic hybrid control problems considered in the
literature can be recast in this framework. The model, however, does not con-
tain any stochastic terms. The formal definition of stochastic hybrid models
requires considerable mathematical overhead, even in the simplest cases. Here
we briefly describe the types of stochastic phenomena that can appear in hy-
brid systems, only to familiarize the reader with the issues that arise; more
details can of course be found in the references.

Stochastic terms can enter hybrid dynamics in a number of different places:

1. Continuous evolution may be governed by stochastic differential equations.
2. Discrete transitions may take place spontaneously, at a given, possibly

state-dependent, rate (as they do for example in discrete Markov chains).
Some authors also consider forced transitions, which take place whenever
the continuous state tries to leave a given set (the equivalent of the Dom
set introduced above).

3. The destination of discrete transitions may be given by a probability ker-
nel.

As for deterministic and non-deterministic systems, one can also consider
controls that influence the same places: for example, controls that steer con-
tinuous evolution through controlled diffusions, influence the rate at which
discrete transitions take place, determine the boundaries at which they are
forced, or influence the probability distribution that determines the destina-
tion of discrete transitions.

Clearly, all these alternatives allow for the formulation of countless variants
of control problems. The literature on the control of stochastic hybrid systems
is therefore diverse. In Table 1 we summarize the modeling choices made in
some of the references listed in subsequent sections.

3 Stabilization of Hybrid Systems

The problem of stabilizing hybrid systems is designing controllers such that
the runs of the closed-loop system remain close and possibly converge to a
given invariant set. An invariant set is a set of states with the property that
runs starting in the set remain in the set forever. More formally, W ⊆ Q×X
is an invariant set if for all (q̂, x̂) ∈ W and all runs (τ, q, x, υ, u, δ, d) starting
at (q̂, x̂),

(qi(t), xi(t)) ∈W, ∀Ii ∈ τ, ∀t ∈ Ii.
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Table 1. Overview of stochastic hybrid models

Characteristics [18,19] [26,27] [11,49] [47,68] [31] [36] [15]
Stochastic continuous
evolution

√ √ √ √ √

Forced
transitions

√ √ √ √

Spontaneous
transitions

√ √ √ √ √

Probabilistic
state reset

√ √ √ √ √

Continuous
control

√ √ √ √

Transition
rate control

√ √

Forcing
control

√ √

Continuous reset
control

√ √

The most common invariant sets are those associated with equilibria, points
x̂ ∈ X that are preserved under both discrete and continuous evolution, i.e.,

f(q, x̂, u, d) = 0 and r(q, q′, x̂, u, d) = x̂

for all q, q′ ∈ Q. An equilibrium x̂ naturally defines an invariant set Q× {x̂}.
The definitions of stability can naturally be extended to hybrid systems

by defining a metric on the hybrid state space. An easy way to do this is to
consider the Euclidean metric on the continuous space and the discrete metric
on the discrete space (dD(q, q′) = 0 if q = q′ and dD(q, q′) = 1 if q 
= q′) and
define the hybrid metric by

dH((q, x), (q′, x′)) = dD(q, q′) + ‖x− x′‖.

The metric notation can be extended to sets in the usual way:

dH((q, x),W ) = inf
(q′x′)∈W

dH((q, x), (q′, x′)).

Equipped with this metric, the standard stability definitions (Lyapunov sta-
bility, asymptotic stability, exponential stability, practical stability, etc.) nat-
urally extend from the continuous to the hybrid domain. For example, an
invariant set, W , is called stable if for all ε > 0 there exists ε′ > 0 such that
for all (q, x) ∈ Q × X with dH((q, x),W ) < ε′ and all runs (τ, q, x, υ, u, δ, d)
starting at (q, x),

dH((qi(t), xi(t)),W ) < ε, ∀Ii ∈ τ, ∀t ∈ Ii.
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Stability of hybrid systems has been extensively studied in recent years
(see the overview papers [22, 40]). By comparison, the work on stabilization
problems is relatively sparse. A family of stabilization schemes assumes that
the continuous dynamics are given, for example, stabilizing controllers have
been designed for each f(q, ·, ·, ·). Procedures are then defined for determining
the switching times (or at least constraints on the switching times) to ensure
that the closed-loop system is stable, asymptotically stable, or practically sta-
ble [32, 55, 62, 66]. Stronger results are possible for special classes of systems,
such as planar systems [35, 64]. For non-deterministic systems, in [25] an ap-
proach to the practical exponential stabilization of a class of hybrid systems
with disturbances is presented. For a brief overview of stabilization problems
for stochastic hybrid systems the reader is referred to [67].

4 Optimal Control of Hybrid Systems

In optimal control problems it is typically assumed that a cost is assigned
to the different runs of the hybrid system by means of a cost function. The
objective of the controller is then to minimize this cost among all possible
runs by selecting the values of the control variables appropriately. Typically,
the cost function assigns a cost to both continuous evolution and discrete
transitions. For example, for the cost assigned to a run (τ, q, x, υ, u, δ, d) with
τ = {Ii}Ni=0, the cost function may have the form

N∑
i=0

[
∫ τ ′

i

τi

l(qi(t), xi(t), ui(t), di(t))dt

+ g(qi(τ ′
i), xi(τ ′

i), qi+1(τ ′
i+1), xi+1(τi+1), ui(τi), di(τi), υi(τ ′

i), δi(τ
′
i)) ] ,

where l : Q×X × U ×D → R is a function assigning a cost to the pieces of
continuous evolution and g : Q×X×Q×X×U×D×Υ×∆→ R is a function
assigning a cost to discrete transitions. Different variants of optimal control
problems can be formulated, depending on, e.g., the type of cost function, the
horizon over which the optimization takes place (finite or infinite), or whether
the initial and/or final states are specified.

As with continuous systems, two different approaches have been developed
for addressing such optimal control problems. One is based on the maximum
principle and the other on dynamic programming. Extensions of the maximum
principle to hybrid systems have been proposed by numerous authors; see, for
example, [28, 52, 56, 58]. Computational tools based on this theory have also
been developed [56,65]. The solution of the optimal control problem with the
dynamic programming approach typically requires the computation of a value
function, which is characterized as a viscosity solution to a set of variational
or quasi-variational inequalities [10,14]. This approach has also been extended
to classes of stochastic hybrid systems; see, for example, [11, 24, 26]. Compu-
tational methods for solving the resulting variational and quasi-variational



www.manaraa.com

An Overview of Hybrid Systems Control 531

inequalities are presented in [7, 16, 50]. For simple classes of systems (e.g.,
timed automata [1]) and simple cost functions (e.g., minimum time prob-
lems) it is often possible to exactly compute the optimal cost and optimal
control strategy, without resorting to numerical approximations; see, for ex-
ample, [2, 4, 12,45].

A somewhat different optimal control problem arises when one tries to
control hybrid systems using model predictive or receding horizon techniques.
Generally, the aim here is to use a model to predict the future evolution of
the system under different inputs and then employ optimization algorithms
to select the inputs that promise the “best” future. The initial part of these
inputs is applied to the system, a new measurement is taken (providing feed-
back), and the process is repeated. For hybrid systems, such a model predictive
control approach has primarily been studied in discrete time; see, for exam-
ple, [8, 48]. The toolbox of [39] provides functions for the numerical solution
of hybrid model predictive control problems (and much more).

5 Language Specification Problems

Another type of control problem that has attracted considerable attention
in the hybrid systems literature revolves around language specifications. One
example of language specifications is the safety specifications. In this case a
“good” set of states W ⊆ Q×X is given and the designer is asked to produce
a controller that ensures that the state always stays in this set; in other words,
for all runs (τ, q, x, υ, u, δ, d) of the closed-loop system

∀Ii ∈ τ ∀t ∈ Ii, (qi(t), xi(t)) ∈W.

The name “safety specifications” (which is given a formal meaning in computer
science) intuitively refers to the fact that such specifications can be used to
encode safety requirements in a system to ensure that nothing bad happens,
e.g., in an air traffic management system to ensure that aircraft do not come
closer to one another than a certain minimum distance.

Safety specifications are usually easy to meet (e.g., if aircraft never take
off, mid-air collisions are impossible). To make sure that in addition to be-
ing safe the system actually does something useful, liveness specifications are
usually also imposed. The simplest type of liveness specification deals with
reachability: given a set of states W ⊆ Q ×X, design a controller such that
for all runs (τ, q, x, υ, u, δ, d) of the closed-loop system

∃Ii ∈ τ ∃t ∈ Ii, (qi(t), xi(t)) ∈W.

In the air traffic context a minimal liveness type requirement is to make sure
that aircraft eventually arrive at their destinations. Mixing different types of
specifications like the ones given above one can construct arbitrarily complex
properties, e.g., ensure that the state visits a set infinitely often, ensure that
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it reaches a set and stays there forever after, etc. Such complex language
specifications are usually encoded formally using temporal logic notation [46].

Controller design problems under language specifications have been stud-
ied very extensively for discrete systems in the computer science literature,
mostly under the name synthesis problems (see [59] for an overview). More
recently, a control perspective was given on this topic by Ramadge, Wonham,
and co-workers [53]. The approach was then extended to classes of hybrid sys-
tems such as timed automata (systems with continuous dynamics of the form
ẋ = 1, [5, 33]) and rectangular automata (systems with continuous dynamics
of the form ẋ ∈ [l, u] for fixed parameters l, u, [63]). For systems of this type,
exact and automatic computation of the controllers may be possible using
model checking tools [9, 21, 30]. In all these cases the controller affects only
the discrete aspects of the system evolution, i.e., the destination and timing of
discrete transitions. More general language problems (e.g., where the dynam-
ics are linear, the controller affects the continuous motion of the system) can
be solved automatically in discrete time using methods from mathematical
programming [39].

Extensions to general classes of hybrid systems in continuous time have
been concerned primarily with computable numerical approximations of reach-
able sets using polyhedral approximations [3,17,29,54], ellipsoidal approxima-
tions [13], or more general classes of sets (e.g., defined using the solutions of
the continuous system [20,38]). A useful link in this direction has been the re-
lation between reachability problems and optimal control problems with an l∞
penalty function [44, 60]. This link has allowed the development of numerical
tools that use partial differential equation solvers to approximate the value
function of the optimal control problems and hence indirectly characterize
reachable sets [50].

6 Concluding Remarks and Open Problems

The topic of hybrid control has attracted considerable attention from the
research community in recent years. This has produced a number of theoretical
and computational methods, which are now available to the designer and have
been used successfully in a wide range of applications. There are still, however,
many details that need to be clarified, as well as substantial problems that
have not been studied in sufficient detail. We conclude this overview by listing
some of these problems (by no means an exhaustive list).

A number of interesting problems arise in the area of dynamic feedback,
which is still unexplored to a large extent. The rapid development in the design
of hybrid observers witnessed in recent years poses the question of how the
system will perform if the state estimates that the observers produce are used
in state feedback. General principles (like the separation principle in linear
systems) are probably too much to hope for in a general hybrid setting, but
substantial progress may still be possible for specific subclasses.
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A second area that, despite numerous contributions, still poses formidable
problems is the area of hybrid games. As in the robust control of contin-
uous systems, gaming appears in hybrid systems when one adopts a non-
deterministic point of view to the control of uncertain systems. Unlike contin-
uous systems, however, even fundamental notions such as “information” and
“strategy” are still the topic of debate in hybrid systems. It is hoped that ad-
vances in this front will eventually lead to a robust control theory for classes
of uncertain hybrid systems.

Finally, stochastic hybrid systems pose a number of challenges. For exam-
ple, the formulation and solution of language specifications (even of the sim-
plest safety type) for stochastic hybrid systems is still to a large extent open.
Progress in this area could come by blending results for stochastic discrete
event systems with results on the l∞ optimal control of stochastic systems.
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1 Introduction and Overview

Errors in safety-critical systems such as embedded controllers may have dras-
tic consequences and can even endanger human life. It is therefore crucially
important to verify the correctness of such systems in a logically precise man-
ner during system design itself. This chapter is an introduction to model
checking—an automated and practically successful approach for the formal
verification of the correctness of hardware and software systems.

The origins of model checking date back to the early 1980s, when Clarke
and Emerson [8] and, independently, Queille and Sifakis [26] introduced a new
algorithmic approach for the verification of computer systems. Their approach
amounts to checking the satisfaction of a logical specification over a system
model which is represented by an annotated directed graph; hence, the term
model checking. Prior to that, the use of temporal logic for the analysis and
specification of computer systems had been advocated by Pnueli [25], and
model checking has in fact been employing variants of temporal logic as the
predominant specification language ever since. Experiments with early model
checkers quickly made clear that the size of the model represents the crucial
technical barrier for realizing the full potential of model checking in practi-
cally relevant verification tasks. In turn, the state explosion problem is the key
to appreciating the technical achievements in model checking during the last
decades. At the time of this writing, model checking techniques have achieved
practical significance for the hardware and software industries, routinely an-
alyzing digital circuit designs and programs, with more than 10100 system
states in some cases.

The aim of this chapter is to introduce those important lines of research
which transformed model checking from a method of primarily theoretical
interest into a powerful tool for the analysis of computer hardware and soft-
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ware. We shall focus in particular on those subjects which have shaped our
thinking about model checking in the verification group of Carnegie Mellon
University, most notably symbolic model checking and abstraction. The devel-
opment of symbolic model checker [6, 24] was arguably a turning point in the
formal methods field. Employing a combination of binary decision diagrams
and fixed-point algorithms, the symbolic model verifier (SMV) became the
first model checker to verify models with hundreds of Boolean variables and
a tool to benchmark new ideas for more than a decade. Thus, after a brief
theoretical introduction into logical foundations of model checking in Section
2, we will describe the methodology behind SMV in Section 3.1; we also cover
bounded model checking, a more recent orthogonal symbolic model checking
paradigm which is based on SAT solvers. Sections 3.2 and 3.3 finally are de-
voted to abstraction, the key principle underlying the big advances in software
verification during the last few years. The focus in these sections will be on
counterexample-guided abstraction refinement as well as predicate abstrac-
tion, both of which constitute key features of modern software verification
tools.

Most of the material included in this chapter is self-contained, requir-
ing only a general mathematical maturity. However, we explicitly advise the
reader that the space restrictions imposed by the handbook format render it
impossible to provide either a comprehensive coverage of the subject or even
an extended bibliography which gives full credit for all presented concepts
impossible. The papers and books cited here should serve mainly as entry
points to the literature, with an emphasis on newer papers not yet listed in
the standard literature. The most evident omission in this chapter is an ex-
tensive treatment of the automata-theoretic approach to model checking [30];
just like temporal logic model checking, the alternative automata-theoretic
approach has also produced powerful model checkers such as SPIN. A more
comprehensive survey on model checking including extensive citations can be
found in [12], more detailed accounts on logical questions in [13, 15], an in-
troduction to SPIN and the automata-theoretic method in [21], and an easily
accessible primer on logic and verification in [22].

2 Fundamentals of Model Checking

A model checker is an algorithm which determines whether a system K satis-
fies a specification φ, formally K |= φ. In contrast to stochastic methods such
as testing, a positive result of the model checker provides a logically precise
assertion of system correctness—albeit not in terms of a step-by-step-proof,
but by virtue of the construction and correctness of the model checking al-
gorithm. If the system K is found to violate the specification φ, i.e., K 
|= φ,
then most model checkers will compute a diagnostic counterexample C which
helps to localize the source of the error.
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The fundamental notion of model checking has been adopted to diverse
application areas and formal methods even beyond verification; these areas
cannot all be treated in detail within the scope of this chapter. We shall
therefore concentrate on the classical model checking framework where the
system K is given as a Kripke structure, and the specification φ is a temporal
logic formula.

Kripke structures

The notion of a state is at the center of model checking. A state is a momentary
description of a system at a given point in time, similar to a point in a physical
phase space. When a system has only a finite number of possible states, we
speak of a finite state system.

A Kripke structure describes the dynamics of a finite state system by a
finite directed graph whose vertices denote the states and whose edges denote
transitions between the states. The states are labelled by atomic propositions
which denote the properties of each state. For example, the states of the Kripke
structure can be taken to describe the different states of a microprocessor, and
the labels describe the values of the registers associated with a state. In the
simple examples used in this chapter, the atomic propositions will typically
just have the form of Boolean variables; in practice, atomic formulas often
describe properties of the internal variables of the real-life system we model,
e.g., “counter == 5” or “x == -1”.

Formally, a Kripke structure is a tuple K = (S, S0, R, L,AP) where S is
a finite set of states, S0 ⊆ S is the set of initial states, R ⊆ S × S is the
transition relation, AP is the set of atomic properties, and L : S → 2AP is
the labelling function. R is required to be total, i.e., for each s ∈ S there exists
t ∈ S such that (s, t) ∈ R. When the context is understood, S0 and AP are
often omitted. For simplicity, we will assume in this chapter that S0 = {s0}
contains a single initial state.

A path π is an infinite sequence of states π = p0, p1, . . . such that for all i,
(pi, pi+1) ∈ R. For i ≥ 0, we define πi = pi, pi+1, . . . to be the path starting at
pi, and π[i] = pi. Note that the totality of R guarantees that all finite paths
can be extended infinitely.

Example 1. The Kripke structure M in Fig. 1 shows a simple example of mu-
tual exclusion between two processes A and B. Label CX denotes that process
X is in the critical state, and label TX denotes that X is trying to enter its
critical section. By visual inspection, the reader will easily verify that mutual
exclusion is guaranteed, i.e., that no state can be reached where both CA and
Cb hold. Note that this example of mutual exclusion is very simplified: no
fairness guarantees are given and a process may stay in the critical section
forever.

Several remarks about the use of Kripke structures in model checking are
in place here:
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Fig. 1. A Kripke structure modelling a trivial mutual exclusion protocol

(a) Kripke structures are a versatile mathematical model we consider in model
checking. Practical model checkers use specific programming languages and
not Kripke structures as their input language. The complexity issues arising
from direct compilation of a program into a Kripke structure constitute
the central algorithmic challenge of model checking (the “state explosion
problem”) and will be addressed in Section 3.1.

(b) Kripke structures are in general non-deterministic, i.e., from a given state
s there will be more than one outgoing transition. Non-determinism is a
natural way to describe the effects of external input to a system. In Sec-
tion 3.2 we will see that non-determinism also arises when we approximate
the behavior of large systems by relatively small Kripke structures.

(c) Kripke structures are closely related to finite automata, finite transition
systems, Moore machines, process algebraic expressions and similar con-
cepts whose differences are to a large extent rooted in pragmatic aspects
and tradition. In principle, every finite state system can be represented by
a Kripke structure. In Section 3.3 we will investigate extensions of model
checking to deal with infinite state systems.

Temporal logic

Given the atomic propositions of the Kripke structure, we can use Boolean
logic to describe compound properties of single states. For example, we write
K, s |= f ∧ ¬g to denote that state s of system K has label f , but not label
g. However, simple Boolean logic does not account for the temporal dynamics
of systems: In Boolean logic we cannot express properties such as “f is an
invariant”, “f always precludes g”, or “f will persist up to the time when g
occurs”. This is where the temporal logics LTL, CTL and CTL� come into
play.

We will first describe the linear time logic (LTL) which is defined over
paths of the system. LTL extends Boolean logic by two operators U and X.
Given a path π = p0, p1, . . . , the Boolean and temporal operators have the
following recursive semantics:
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K, π |= f iff f ∈ L(π[0]) where f ∈ AP
K, π |= φ ∧ ψ iff K, π |= φ and K, π |= ψ
K, π |= ¬φ iff K, π 
|= φ

K, π |= Xφ iff K, π1 |= φ
“ φ is true in the next state”

K, π |= φUψ iff there is an i ≥ 0 such that K, πi |= ψ
and for all j with 0 ≤ j < i we have K, πj |= φ
“ φ is true until ψ becomes true”

K |= φ iff for all paths π starting in s0, we have K, π |= φ.

Disjunction φ∨ψ and implication φ→ ψ are as usual defined by ¬(¬φ∧¬ψ)
and ¬(φ∧¬ψ), respectively. Moreover, Fψ) and ¬(φ∧¬ψ), respectively. More-
over, Fφ is defined trueUφ, and Gφ is defined ¬F¬φ. With these definitions, Fφ
intuitively means “φ will be true at some time in the future” and Gφ means
“φ will always be true in the future.”

Note that LTL specifications describe properties of paths; an LTL specifi-
cation holds true on a Kripke structure, if it holds true on every path starting
at the initial state s0. Thus, an LTL specification contains an implicit universal
quantification over all paths starting at s0.

We will now introduce the computational tree logics CTL� and CTL which
enable us to quantify over paths explicitly. CTL� extends LTL by an operator
A as follows:

K, π |= Aφ iff for all paths σ starting in state π[0], we have K, σ |= φ.

Existential path quantification Eφ is defined as an abbreviation for ¬A¬φ. The
important specification logic CTL is the syntactic fragment of CTL� which
uses the LTL operators and the CTL operators only pairwise, i.e., CTL con-
tains exactly the following temporal operators: AX,EX,AU,EU,AF,EF,AG,EG.
For example, the CTL� formula AXXf is not in CTL, since the second occur-
rence of X is not preceded by E or A. Finally, ACTL (ACTL�) is the fragment
of CTL (CTL�) where negation is restricted to atomic formulas, and only the
path quantifier A is allowed.

CTL and LTL specifications

Since CTL specifications can quantify repeatedly over paths, CTL and CTL�

are examples of branching time logics, while LTL is a linear time logic. It
can be shown that the expressive power of CTL and LTL is not comparable,
and both are strictly contained in CTL�. The algorithms and paradigms for
CTL and LTL model checking are sufficiently different so as to provoke a
controversial discussion in the literature as to which is preferable, branching
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time or linear time logic. Practical applications employ variants of either CTL
or LTL.

Example 2. In the example Kripke structure M used previously, the mutual
exclusion property is specified in CTL as AG¬(Ca∧Cb). The liveness property
that each of the processes enters its critical region infinitely often is given by
the CTL formula AG(AF(Ca)∧AF(Cb)). The two properties are also expressible
in LTL by G¬(Ca ∧ Cb) and GF(Ca) ∧ GF(Cb), respectively.

To shed more light on the difference between CTL and LTL, let us consider
the equivalence relation between Kripke structures induced by CTL and LTL
specifications, i.e., we say that two Kripke structures are equivalent if there
is no CTL (or LTL) specification which holds true for one, but not for the
other. For LTL, this equivalence relation is known as trace equivalence, i.e.,
two Kripke structures are trace equivalent iff they have the same paths from
the initial state. For CTL, in contrast, the equivalence relation is bisimulation,
a central notion in process algebra which we describe in more detail below.

Bisimulation and simulation

Bisimulation can be defined by a combinatorial two-player game [28] where
one player (the spoiler) attempts to show that two Kripke structures A and
B are different, and the second player (the duplicator) attempts to show that
the structures are equivalent. The game starts with two pebbles placed on
the initial states of the two structures. Each round of the game proceeds as
follows: (i) If the pebbles are located at states with different labels, the spoiler
wins, and the game terminates. (ii) The spoiler chooses one Kripke structure,
and moves the pebble along an edge in this Kripke structure. (iii) In the
other Kripke structure, the duplicator moves the other pebble, and the game
continues at step (i). The Kripke structures are bisimilar if the spoiler does
not have a winning strategy.

If the spoiler has a winning strategy, i.e., if the Kripke structures are
not bisimilar, then the strategy can already be expressed by a CTL formula
which uses the temporal operators AX and EX and distinguishes A from B.
Conversely, a distinguishing specification gives rise to a winning strategy for
the spoiler.

Closely related to bisimulation is the notion of simulation, which orders
Kripke structures with respect to their behaviors. For two Kripke structures,
A and B, simulation A * B can be defined by a similar two-player game
as above, with the following restriction: the spoiler always plays on Kripke
structure A, and the duplicator always plays on Kripke structure B. If the
spoiler does not have a winning strategy, then A * B holds true. Intuitively,
in this case, B has more behavior than A, as the duplicator can duplicate
every move on B which the spoiler does on A. Simulation has the important
property that it preserves ACTL� specifications: If A * B and B |= φ for an
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Fig. 2. Simulation versus bisimulation

ACTL� specification φ, then A |= φ. We will see that this relationship has
crucial algorithmic applications in model checking.

It is easy to see that bisimulation equivalence implies trace equivalence:
suppose the Kripke structure A has a path π1 not contained in B. Then there
exists a finite prefix π′

1 of π1 which is not present in B. It is now easy to
construct a CTL specification of the from EX(. . . ∧ EX(. . . ∧ EX(. . .))) which
stipulates the existence of π′

1. Example 3 demonstrates a classical case where
we have trace equivalence, but not bisimulation equivalence.

Example 3. Fig. 2 demonstrates a case where two Kripke structures are trace
equivalent but not bisimilar. Both describe a simplified vending machine for
soda (at $1 per serving) and apple juice (at $2). In the right machine, money
is inserted in separate slots, and thus, the first dollar determines the purchase.
It is easy to see that both structures have the same traces, i.e., they are trace
equivalent, but not bisimilar. This is also reflected in the bisimulation game:
When the spoiler moves the pebble to the shaded state in the left structure he
keeps a future choice between juice and soda, but in the right structure, the
duplicator has to decide on his tastes at this moment. It is easy to see that
both structures have the same traces, i.e., they are trace-equivalent, but not
bisimilar. This is also reflected in the bisimulation game: When the spoiler
moves the pebble to the shaded state in the left structure, he keeps a future
choice between juice and soda, but the duplicator has to decide on his tastes
at this moment in the right structure.

Similar situations occur, for example, in computer security when instead of
coins we enter passwords which enable us to call operating system functions.
In such situations, the difference between bisimulation and trace equivalence
may become crucial.

Principle algorithmic aspects of model checking

In contrast to many other applications of logic in computer science, most ques-
tions related to temporal logics and model checking are decidable, and indeed
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have often reasonable complexity. Quite surprisingly, the problem of deciding
K |= φ can be solved in linear time O(|φ| × (|S|+ |R|)) for CTL. This explicit
CTL model checking algorithm proceeds bottom-up on the formula structure
which yields the factor |φ| above. For each subformula φ′, the algorithm labels
the states of K which satisfy φ′ in time O(|S|+ |R|). For LTL and CTL�, the
model checking problem is complete for the complexity class PSPACE. De-
ciding the validity of specifications, i.e., determining whether a specification
is always true (independent of the Kripke structure) is EXPTIME-complete
for CTL, PSPACE-complete for LTL and 2EXPTIME-complete for CTL�.
In practice, however, the complexity bounds obtained from these general ab-
stract considerations are usually not sufficient to verify industrially relevant
systems. This question will be addressed in the next section.

3 State Explosion and Efficient Verification Methods

In most practical applications of model checking, the size of the state space is
too large by several magnitudes as to allow naive verification algorithms which
compile the input into a Kripke structure, and perform the model checking
algorithm thereafter. Even an extremely simple system containing three 32-bit
integer variables has a theoretical state space of (232)3. A quick calculation
shows that for a terahertz processor which can evaluate one state per system
cycle, it will take around 109 years to enumerate all states. Since the state
space is in general exponential in the memory a program uses, it is entirely
unrealistic to perform model checking on an explicit Kripke structure. This
principal problem, commonly referred to as the “state explosion problem,”
is the core issue in most scientific research in model checking. The practical
success of a model checking technique depends most crucially on its ability to
alleviate the state explosion. We distinguish several principal ways to address
state explosion.

• Symbolic verification: In this approach, which made model checking a
practical technique, the transition relation of the Kripke structure is en-
coded in a Boolean formalism (either plain Boolean formulas or specific
data structures such as ordered binary decision diagrams (OBDDs) [5]),
thereby obtaining a potentially exponential compression factor. Specific
“symbolic” model checking algorithms are devised to operate on such sys-
tem representations. We will describe symbolic model checking methods
for CTL and LTL below.

• State space exploration: Alternatively to symbolic representation, a
model checking algorithm may also attempt to explore the state space for
specification violations on the fly, i.e., by a systematic depth-first search
starting from the initial state. This method is based on the insight that
LTL specifications can be transformed into trace equivalent Büchi au-
tomata [12] which monitor the state space exploration. While the size of
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the state space sets a principal limit to this approach, it is successful in
finding errors, in particular in combination with abstraction and reduction
methods (described next).

• Abstraction and reduction methods: In this category we subsume
more aggressive methods which are typically orthogonal to both sym-
bolic and exploration techniques. Their common characteristic is their
attempt to restrict the state space by semantic considerations, i.e., prop-
erties known about the system or derived from its description. Typical
examples of such methods include abstraction [11], where system states
are partitioned into equivalence classes, partial order reduction [18], which
curbs the state space explosion incurred by concurrency, or symmetry re-
ductions [9, 16], which employ the natural symmetry between repeated
system components. In Section 3.2 we shall describe abstraction and
counterexample-based abstraction refinement in more detail.

3.1 Symbolic model checking

Recall from above that the characteristic step in symbolic model checking is to
represent the transition relation R of a Kripke structure K = (S, S0, R, L,AP)
in terms of a Boolean function fR in such a way that every state s ∈ S is
described by a unique Boolean vector s̄, and fR(s̄, t̄) = true iff (s, t) ∈ R.
Since for natural binary encoding the size of the Boolean vector is logarithmic
in |S|, the size of fR may—in principle—also be polynomial or even linear
in log |S|. While there is no mathematical guarantee for this compression to
occur (in fact, information theoretic counting arguments easily show that such
a compression is very rare), practical systems tend to have many regularities,
and often allow significant compression.

Note that in the computation of fR, the model checker does not have ac-
cess to the Kripke structure K (which is too large by assumption), but only
to the input program. In this setting, choosing binary representations s̄ for
states s is usually a very natural step, since each system state s describes a
program state at a given time, and thus corresponds to specific values of the
program variables; these program variables themselves have natural binary
representations which the model checker can reuse. In fact, a close correspon-
dence between symbolic variables and program variables is often advanta-
geous: knowledge about the semantic relationship between symbolic variables
can facilitate both compression and abstraction.

CTL verification: verification by fixed point computation

Recall that in the specification logic CTL, every LTL operator is immediately
preceded by either E or A. Since the semantical definitions of K, π |= Aφ and
K, π |= Eφ depend only on the first state π[0] of path π, formulas with a leading
A or E are called state formulas. A model checking algorithm can associate
each CTL state formula φ with the set of states [[φ]] where φ holds true. For
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CTL formulas φ and Kripke structures K, the set [[φ]] can be computed by a
fixed-point algorithm which can be implemented symbolically.

To illustrate the principles of symbolic model checking for CTL, let us
consider the specification EFφ (“a state with property φ is reachable”). Given
the set [[φ]] of states where φ holds true, [[EFφ]] is inductively defined as
follows:

• If s ∈ [[φ]], then s ∈ [[EFφ]].
• If s ∈ [[EFφ]] and R(t, s), then t ∈ [[EFφ]].
• Nothing else is in [[EFφ]].

This gives rise to the fixed-point characterization

EFφ ≡ µY.φ ∨ EX Y

where µY.f(Y ) denotes the least fixed-point of formula f(Y ). The fixed-point
extension of temporal logic is called the µ-calculus, and has been studied
extensively, see [12] for detailed definitions and references. From the µ-calculus
characterization of EFφ we can derive the following fixed-point algorithm to
compute [[EFφ]].

Y := ∅
repeat

Y ′ := Y ;
Y := [[φ]] ∪ pre(Y );

until Y = Y ′

where pre(Y ) denotes the pre-image operator

pre(Y ) := {s | ∃t.(s, t) ∈ R ∧ t ∈ Y }.

A closer study shows that all CTL formulas can be expressed using fixed
points, propositional logic, and the temporal operator EX, i.e., pre-image com-
putation. It remains to be shown as to how the fixed-point algorithms can be
implemented symbolically.

The crucial idea is to represent not only R by fR, but also sets of states
by Boolean functions. A set Y of states is represented by its characteristic
Boolean function Y (z̄) :=

∨
s∈Y z̄ ≡ s̄ which is true iff z̄ is the binary repre-

sentation of a state in Y . For two sets Y and Z, its union Y ∪Z is represented
by Y (z̄)∨Z(z̄), and similarly for other set operations. Pre-image computation
can also be expressed easily in this framework:

pre(Y (s̄)) = ∃t̄.fR(s̄, t̄) ∧ Y (t̄).

Since Boolean quantification can be eliminated, the result of pre(Y (s̄)) is
again a Boolean function. We conclude that all operations in the fixed-point
algorithm can be computed symbolically.

For a practical implementation, it is necessary to have a data structure
for Boolean functions which (i) facilitates good compression capabilities, but
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(ii) makes it easy to recognize that a fixed point has been reached. Ordi-
nary Boolean functions have the disadvantage that deciding the termination
condition Y (z̄) ≡ Y ′(z̄) of the fixed-point algorithm is coNP-complete, and
thus a computationally hard problem. A successful trade-off is achieved by
OBDDs [5]. OBDDs are compact (although somewhat less so than Boolean
functions), and, importantly, they have canonical representations which makes
it easy to decide Y (z̄) ≡ Y ′(z̄) efficiently.

OBDDs

Let AP be the set of propositional variables, and < a linear order on AP1.
An OBDD O over AP is an acyclic graph (V,E) whose non-terminal vertices
(nodes) are labelled by variables from A, and whose edges and terminal nodes
are labelled by 0, 1. Each non-terminal node v has out-degree 2, such that one
of its outgoing edges is labelled 0 (the low edge or else-edge), and the other is
labelled 1 (the high edge or then-edge). If v has label ai and the successors of
v are labelled aj , ak, then ai < aj and ai < ak. In other words, for each path,
the sequence of labels along the path is strictly increasing with respect to <.

Each OBDD node v represents a Boolean function Ov. The terminal nodes
of O represent the constant functions given by their labels. A non-terminal
node v with label ai whose successors at the high and low edges are u and
w, respectively, defines the function Ov := (ai ∧ Ou) ∨ (¬ai ∧ Ow). For every
variable order < and Boolean function f there exists a canonical minimal
OBDD O over AP which represents the Boolean function f . Given any OBDD
for f which respects <, the canonical OBDD O can be computed in polynomial
time. Thus, with OBDDs, set operations including equality testing of sets can
be efficiently complemented. Pre-image computation, however, is much harder;
in fact, it is one of the major bottlenecks in verification. Another problem
with OBDDs is the prevalence of state explosion: for certain functions, the
size of the minimal OBDD may be exponential in AP, and moreover the
size crucially depends on the variable order <. A simple example of a binary
decision diagram (BDD) is given in Fig. 3.

LTL verification: bounded model checking.

Bounded model checking [3] is a new method which leverages the surprising
power of recent SAT solvers, i.e., algorithms which on input of a Boolean
formula search for a satisfying assignment2. Recall that LTL specifications
express properties which have to hold over all paths; consequently, a coun-
terexample for an LTL property is given by a single path which violates the

1In this section we assume for simplicity that all states in the Kripke structure
are uniquely identified by their labels, i.e., that the labelling function L is injective.

2Note that Boolean satisfiability is a prototype NP-complete problem, and thus
we cannot expect a SAT solver to scale polynomially for all inputs. However, state-
of-the-art SAT-solvers are remarkably successful at a large portion of those formulas
which occur in practical verification tasks.
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Fig. 3. A BDD for (y ∧ z) ∨ (y ∧ ¬z ∧ x). Note that the size of the diagram in this
case is linear in the number of Boolean variables.

specification. Consider for example a specification of the form Gb, i.e., “always
b”. Then a counterexample for Gb is a path where at some point ¬b holds.
Suppose that for a state s, b(s̄) is the Boolean formula expressing that b holds
at state s. Then the formula

fR(s̄0, s̄1) ∧ fR(s̄1, s̄2) ∧ · · · ∧ fR(s̄k−1, s̄k) ∧
∨

0≤i≤k

¬b(s̄i)

is satisfiable if and only if a counterexample of size ≤ k exists; consequently,
a SAT solver can be used to decide the existence of a counterexample. Sim-
ilarly, it can be shown that for any fixed counterexample length k, any LTL
specification can be translated into a SAT instance. Moreover, the satisfying
assignment computed by the SAT solver can be used easily to compute the
counterexample.

Bounded model checking has been used successfully for both hardware and
software, and has outperformed BDD-based methods on various examples.
The evident drawback of bounded model checking, however, is its inherent
incompleteness: unless the bound k is chosen to be significantly larger than
|S|, bounded model checking provides no assertion about the total absence of
counterexamples. Consequently, bounded model checking is mainly considered
a method to find errors rather than a complete verification tool.

3.2 Counterexample-guided abstraction refinement

Abstraction reduces the state space by removing irrelevant features of a Kripke
structure. Given a Kripke structure K, an abstraction is a Kripke structure
K̂ such that K̂ is significantly smaller than K, and K̂ preserves a useful class
of specifications for K. Consequently, the expensive task of model checking
K can be reduced to the more feasible task of model checking K̂. We know
from above that in order to preserve all CTL specifications, K and K̂ must
be bisimilar. But bisimilarity, by its very definition, expresses that K and K̂
are behaviorally equivalent. Consequently, K̂ still models a lot of irrelevant
behavior and will therefore be quite large in general.



www.manaraa.com

Temporal Logic Model Checking 551

A more practical approach is to employ the fact explained in Section 2 that
simulation preserves ACTL� formulas, i.e., A * B and B |= φ imply A |= φ.
Consequently, for an abstract system K̂ where K * K̂ holds, a successful
run of the model checker over K̂ implies correctness over the original Kripke
structure K, without model checking K. The converse implication, however,
will not hold in general: an ACTL� property which is false in K̂ may still be
true in K. In this case, the abstract counterexample obtained over K̂ cannot
be reconstructed for the concrete Kripke structure K, and is called a spurious
counterexample [10], or a false negative.

An important instance of simulation-based abstraction is existential ab-
straction [11, 14] where the abstract states are essentially equivalence classes
of concrete states; a transition between two abstract states holds if there
was a transition between any two concrete member states in the correspond-
ing equivalence classes. Formally, an abstraction function h is a surjection
h : S → Ŝ where Ŝ is the set of abstract states. The surjection h induces an
equivalence relation ≡ on the state space S where d ≡ e iff h(d) = h(e). The
abstract Kripke structure K̂ = (Ŝ, Ŝ0, R̂, L̂,AP) derived from h is defined as
follows:

Ŝ0 = {d̂ | ∃d ∈ S0 . h(d) = d̂}
R̂ = {(d̂1, d̂2) | ∃d1, d2 ∈ S . h(d1) = d̂1 ∧ h(d2) = d̂2 ∧R(d1, d2)}

L̂(d̂) =
⋃

h(d)=̂d

L(d)

We also write K̂ = K/≡ to express the dependence of K̂ on ≡. An atomic
proposition f ∈ AP respects an abstraction function h if for all d and d′ in
the domain S, (d ≡ d′) ⇒ (d |= f ⇔ d′ |= f). When the specifications con-
tain only atomic propositions respecting h, we can without loss of generality
assume that in both K and K̂, AP is restricted to the propositions occurring
in the specifications. Then existential abstraction indeed guarantees K * K̂
as intended.

However, determining a good abstraction function h is a difficult task: If
K̂ is too large, then verification remains infeasible. If, on the other hand, K̂
is too small, then spurious counterexamples are likely to occur, as illustrated
by the next example. The example also illustrates that abstraction typically
introduces non-determinism.

Example 4. Fig. 4 shows two abstract Kripke structures M̂1 and M̂2 obtained
from the original Kripke structure M by two different equivalence relations
≡1 and ≡2. M describes a simplified bus arbiter that controls access on two
buses. The arbiter chooses one of the two buses for any request before giving
a grant. It asserts A, B and C to suggest the slave to use bus 1; otherwise,
it asserts D, E and F to suggest the slave to use bus 2 and then gives a
grant. The slave is supposed to probe which of the lines have been asserted
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Fig. 4. The Kripke structure M on the left is existentially abstracted in two ways,
yielding abstract Kripke structures M̂1 (center figure) and M̂2 (right figure). Note
that M̂1 contains an infinite path which never reaches the state labelled Grant; being
unique to the abstract model, this path is called a spurious path.

when it receives the grant and use the appropriate bus. Let us consider the
specification AG(request→ AFgrant) which says that every request is finally
granted. By manual inspection we see that the specification holds true for M.
The first abstraction M̂1 of the arbiter, however, is too coarse, and does not
allow us to prove correctness of the specification: we get a counterexample
involving a self-loop, as indicated by the dashed lines in the figure. A finer
abstraction M̂2 passes the specified property and hence, the property is also
true for our original Kripke structure M. Note that in both cases M * M̂1 and
M * M̂2, i.e., all universal properties on the abstract model are preserved.
In the case of M̂1, however, preservation does not help, since M̂2 exhibits too
much information loss for the specification to hold.

Counterexample-guided abstraction refinement (CEGAR) is a natural
approach which resolves this situation by using an adaptive algorithm which
starts with a coarse abstraction and gradually improves the abstraction func-
tion by analyzing spurious counterexamples. CEGAR-style approaches have
been investigated by several researchers beginning with the localization re-
duction of Kurshan [23] where the model is abstracted/refined by remov-
ing/adding variables from the system description. The first systematic ac-
count of CEGAR for CTL model checking was given in [10]. We describe the
CEGAR loop using the equivalence relation ≡ induced by h in Fig. 5.

In the CEGAR loop, the abstraction is refined until the property is ei-
ther verified or disproved by a non-spurious counterexample. Note that the
CEGAR loop involves two crucial steps in addition to model checking: the
computation of the initial relation ≡, and the computation of the refined ab-
straction. The initial abstraction is usually obtained by static analysis of the
input program (cf. also Section 3.3), and the refinement is achieved by pro-
jecting Ĉ back onto K, determining where the spurious behavior occurs, and
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Counterexample Guided Abstraction Refinement

R≡ := initial state equivalence;
result := empty;
repeat

K̂ := K/R≡
call model checker for K̂ |= φ

if K̂ |= φ
then result := “specification true”;
else compute counterexample Ĉ;

if Ĉ is spurious
then R≡ := refine(K, Ĉ, R≡);
else result := Ĉ;

until result not empty;

Fig. 5. General scheme for CEGAR. For better readability, the relation ≡ is written
R≡ in the program text.

locally refining ≡ to eliminate Ĉ. Since Ĉ typically is much smaller than K̂, the
projection of Ĉ back onto K involves only a small portion of the state space
of K, and is therefore feasible in many practical cases. CEGAR frameworks
have become a widely used paradigm in verification, and are routinely used
for both hardware and software.

3.3 Model checking for infinite state systems

Model checking was originally designed for the verification of finite state sys-
tems. Although the first practically useful applications of model checking were
oriented towards hardware verification, where the finite state restriction comes
naturally, the method was conceived of as an approach to software verification
as well. The early papers on model checking clearly drew their motivations
from the software area, focusing in particular on concurrency properties to be
verified over the synchronization skeleton of a program, i.e., a finite abstract
model which preserves the relevant behavior for interprocess communication.
It is still the case that abstraction is one of the key methods to be used for
software verification; in fact, model checking and abstract interpretation [14]
share many common techniques which deserve further exploration. In this sec-
tion, we will concentrate on predicate abstraction [19], a particularly impor-
tant abstraction method which underlies the recent advancements in software
verification exemplified by tools such as BLAST, SLAM and MAGIC [2,7,20].
We present a variant of predicate abstraction as it is used in MAGIC.

Predicate abstraction

For the analysis of software, the simplest abstraction which arguably repre-
sents the program behavior in a meaningful way is the control flow graph
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(CFG) which can be viewed as a Kripke structure where the states are pro-
gram counter positions, and the transitions denote non-deterministic changes
of the control flow. Note that the CFG can be seen as an existential abstract
model where the abstraction function h abstracts away everything except the
program counter information. It is evident that for many properties of interest,
the CFG does not contain sufficient information for verification.

The technique of predicate abstraction [19] is based on the observation that
what often counts in the analysis of a program is not so much the actual values
of the variables, but rather their relation to each other. Important relations
between variables are expressed, for example, in the control conditions which
occur in if-statements and in loop headers. Thus, instead of keeping 64 bits for
two integer variables x, y in our global state, we may have a single bit which
keeps the truth value of the predicate x > y if this is the property of interest.
In predicate abstraction, we define k such predicates, and extend the CFG by
the different evaluations of the predicates. The state space of the new system
is 2k times the size of the CFG, and by choosing the number k of predicates,
we can obtain a trade-off between preciseness and state explosion. Thus, in
our model, each state of the extended CFG can be described by a formula Ψ
of the form

(ProgramCounter = i) ∧
∧

1≤i≤k

ψi,

where the ψi are predicates or negated predicates ranging over the vari-
ables of the program. Such a formula Ψ can be identified with an abstract
state representing all concrete states ( i.e., memory contents ) which satisfy
Ψ . However, the tricky part in predicate abstraction is to define the transi-
tion relation: Suppose that we have a transition in the CFG between program
counter positions i and j through a simple statement statement, and 2k

abstract states each for i and j, i.e., Ψi,1, . . . , Ψi,2k and Ψj,1, . . . , Ψj,2k . Poten-
tially, the single transition in the CFG gives rise to up to (2k)2 transitions in
the extended CFG. We actually include a transition from Ψi,a to Ψj,b if the
weakest precondition required for Ψj,b to hold after execution of statement is
consistent with Ψi,a, i.e., if

Ψi,a ∧WP[statement, Ψj,b]

is logically satisfiable. Deciding satisfiability is in general a hard question, and
is often delegated to an automated theorem prover or a decision procedure.

It is not hard to prove that the model obtained by predicate abstraction
fits into the simulation-based approach to abstraction; in fact, it is not even
necessary for the theorem prover to always terminate. When a theorem prover
does not produce a definite answer in due time, we can overapproximate the
result by pretending that the theorem prover asserted consistency. It can be
shown that the resulting model is still a sound abstract model in this case;
if this happens too often, however, the quality of the model will deteriorate
towards a very coarse model with extensive spurious behavior. Importantly,
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predicate abstraction provides a natural and clean interface between model
checking and theorem proving, playing to the strengths of both methods.
Predicate abstraction is very successful when verifying control-intensive soft-
ware such as device drivers or many embedded programs. For complicated
data structures, in particular dynamic data structures, predicate abstraction
is potentially applicable, but the logics and corresponding decision procedures
are in most cases still beyond the state of the art.

Other approaches to infinite systems

Let us finally discuss the question of verification of infinite systems on a
broader scale. Precisely speaking, most of the systems we consider are not
infinite, but rather parameterized: they are described by a finite program
text, and the actual size of the state space depends on a parameter (e.g.,
the memory size) which is not known in advance, and is often assumed to be
arbitrarily large. Besides memory size, other sources of unbounded behavior
include recursion depth, the preciseness of floating-point operations, dynamic
thread creation, protocols with unlimited number of participants and hybrid
systems where parts of the system or the environment are modeled by differen-
tial equations as in control theory. The different flavors of infinity we encounter
in applications clearly need to be matched by a correspondingly rich set of
tools, each tailored for a specific source of infinity. However, in contrast to
finite state verification, we cannot realistically expect to find methods which
apply uniformly to all kinds of infinite state systems. Due to space limitations,
we will just briefly mention some of the promising current approaches.

Classically, Petri nets have been used to model concurrent processes using
a single transition graph. More recently, verification methods for pushdown
systems have been described [1, 17] which enable the direct modelling of un-
bounded calling stacks. An approach mainly geared at parameterized systems
is regular model checking [4] where the infinite transition relation is described
by finite automata, rendering many reachability properties decidable. Impor-
tant progress in modelling dynamic data structures has been made in a three-
valued framework [27]. A promising special form of predicate abstraction for
hybrid systems has recently been proposed by Tiwari [29] who suggested the
use of predicates describing analytical properties of functions such as dg

dx > 0.

4 Conclusion

In the twenty-five years since its invention, model checking has developed into
a highly active research area of its own right which combines algorithms, logic,
(discrete) mathematics and of course application knowledge. Although model
checking is usually simpler to apply than theorem proving, it is still not always
easy for engineers with the right application knowledge but without formal
training in verification to use model checking to its full capability. As expressed
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in Rushby’s notion of “disappearing formal methods,” we expect that for
many settings model checking will finally become a push-button technology
similar to compilers in which the trade-off between the preciseness and the
computational cost of the correctness analysis can be controlled by a few
simple parameters. Generally though, the principal undecidability of virtually
all questions in software verification makes clear that there is no silver bullet
for verification, and there will always be a need to design model checking
methods specific to problem classes.

While verification of hardware and software systems will evidently remain a
core concern of model checking, there are also exciting new avenues of research
which often involve the combination of traditional model checking techniques
with continuous mathematics, most notably the verification of stochastic, hy-
brid and biological systems.

Acknowledgments

The authors extend their gratitude to Stefan Katzenbeisser for his careful
proofreading.

References

1. R. Alur, K. Etessami, and P. Madhusudan. A Temporal Logic of Nested Calls
and Returns. In Proc. Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 2988 of LNCS, pages 467–481, 2004.

2. T. Ball and S. K. Rajamani. Automatically Validating Temporal Safety Prop-
erties of Interfaces. In Proc. Model Checking Software, 8th International SPIN
Workshop, volume 2057 of LNCS, pages 103–122, 2001.

3. A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking
using SAT procedures instead of BDDs. In Proc. 36th Conference on Design
Automation (DAC), pages 317–320, 1999.

4. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular Model Checking.
In Proc. 12th Int. Conf. Computer Aided Verification (CAV), volume 1855 of
LNCS, pages 403–418, 2000.

5. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8), pages 677–691, 1986.

6. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
Model Checking: 1020 States and Beyond. In Proceedings of the Fifth Annual
IEEE Symposium on Logic in Computer Science, 1990.

7. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular Verification of
Software Components in C. In Proc. 25th Int. Conference on Software Engi-
neering (ICSE), pages 385–395, 2003. Extended version in IEEE Transactions
on Software Engineering, 2004.

8. E. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Logics of Programs: Workshop, volume
131 of LNCS, pages 52–71, 1981.



www.manaraa.com

Temporal Logic Model Checking 557

9. E. Clarke, T. Filkorn, S. Jha. Exploiting Symmetry In Temporal Logic Model
Checking. Proc. Computer Aided Verification (CAV), volume 697 of LNCS,
pages 450–462, 1996.

10. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proc. 12th Int. Conf. Computer Aided Verification
(CAV), volume 1855 of LNCS, pages 154–169, 2000. Extended version in J. ACM
50(5): 752–794, 2003.

11. E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512–1542,
September 1994.

12. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Cambridge,
MA, 1999.

13. E. Clarke and H. Schlingloff. Model checking. In J. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, pages 1367–1522. Elsevier, Amster-
dam, 2000.

14. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proc. Symposium on Principles of Programming Languages (POPL), pages 238–
252, 1977.

15. E. Emerson. Temporal and modal logic. In J. van Leeuven, editor, Handbook of
Theoretical Computer Science, Vol. B., pages 995–1072. Elsevier, Amsterdam,
1990.

16. E.A. Emerson and A.P. Sistla. Symmetry and model checking. Proc. Computer
Aided Verification (CAV), volume 697 of LNCS, pages 463–478, 1996.

17. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient Algorithms for
Model Checking Pushdown Systems. In Proc. 12th Int. Conf. Computer Aided
Verification (CAV), volume 1855 of LNCS, pages 232–247, 2000.

18. P. Godefroid. Using partial orders to improve automatic verification methods. In
Proc. Computer Aided Verification (CAV), volume 531 of LNCS, pages 176–185,
1990.

19. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In Proc.
Computer Aided Verification (CAV), volume 1254 of LNCS, pages 72–83, 1997.

20. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction.
In Proc. ACM SIGPLAN-SIGACT Conference on Principles of Programming
Languages, pages 58–70, 2002.

21. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading, MA, 2003.

22. M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, London, 1999.

23. R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Prince-
ton University Press, Princeton, NJ, 1994.

24. K. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic Publishers, Dordrecht, 1993.

25. A. Pnueli. The temporal logic of programs. In Proc. 18th Symposium on Foun-
dations of Computer Science (FOCS), pages 46–67, 1977.

26. J. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. 5th Int. Symposium in Programming, volume 137 of LNCS,
pages 337–351, 1982.



www.manaraa.com

558 E. Clarke, A. Fehnker, S.K. Jha, and H. Veith

27. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. In Proc. ACM Transactions on Programming Languages and Systems 24,
3, pages 217–298, 2002.

28. C. Stirling. Bisimulation, Modal Logic and Model Checking Games. Logic
Journal of the IGPL, 7(1), pages 103–124, 1999.

29. A. Tiwari and G. Khanna. Series of Abstractions for Hybrid Systems. In Proc.
5th Int. Workshop on Hybrid Systems: Computation and Control (HSCC 2002),
volume 2289 of LNCS, pages 465–478, 2002.

30. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. In Infor-
mation and Computation, 115(1): pages 1–37, 1994.



www.manaraa.com

Switched Systems

Daniel Liberzon∗

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, IL 61821, U.S.A.
liberzon@uiuc.edu

1 Introduction

This chapter is concerned with dynamical systems described by a combina-
tion of ordinary differential equations and discrete switching events. Although
systems theory has traditionally focused on either continuous or discrete be-
havior, many (if not most) of the dynamical systems encountered in practice
involve both types of dynamics. Important classes of such systems are pro-
vided by networked control systems, in which information shared by contin-
uous subsystems is updated in a discrete fashion, and embedded systems, in
which computer software interacts with physical devices.

Dynamical systems that are described by an interaction between contin-
uous and discrete dynamics are usually called hybrid systems. The field of
hybrid systems has a strong interdisciplinary flavor, and different communi-
ties have developed different viewpoints. One approach, favored by researchers
in computer science, is to concentrate on studying the discrete behavior of the
system, while the continuous dynamics are assumed to take a relatively simple
form. Basic issues in this context include well-posedness, simulation, and ver-
ification. Many researchers in systems and control theory, on the other hand,
tend to regard hybrid systems as continuous systems with switching and place
a greater emphasis on properties of the continuous state. The main issues then
become stability analysis and control synthesis. The book [18] provides a good
overview of both of these perspectives.

Switched systems are basically a result of considering hybrid systems from
the latter point of view. To define more precisely what we mean by a switched
system, consider a family {fp : p ∈ P} of sufficiently regular functions from Rn

to Rn, parameterized by some index set P. Let σ : [0,∞)→ P be a piecewise
constant function of time, called a switching signal. A switched system is then
described by the differential equation
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DARPA/AFOSR MURI F49620-02-1-0325 grants.
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ẋ = fσ(x). (1)

One usually assumes here that the switching signal σ has a finite number of
discontinuities—called switching times or simply switches—on every bounded
time interval. The value of σ at a given time t might depend on t, or x(t),
or both, or may be generated by a more sophisticated mechanism involving
memory (see [10] for details).

A complete hybrid model giving rise to (1) would involve a specification of
dynamics governing the evolution of both x and σ, viewed as the continuous
state and the discrete state of the system, respectively. Departing from this
viewpoint, we neglect the details of the discrete behavior and instead consider
all possible switching signals σ from a certain class. Thus switched systems can
be viewed as higher-level abstractions of hybrid systems, although they are of
interest in their own right. Typically, such an abstraction yields a system that
is simpler to describe but possesses more solutions than the original system of
interest. For a more detailed discussion of the relationship between switched
and hybrid systems, see [6].

We note that, going one level of abstraction further, we arrive at the
differential inclusion

ẋ ∈ {fp(x) : p ∈ P}.
Differential inclusions are well studied in the mathematical literature [1].
Loosely speaking, they have a higher degree of regularity than switched
systems, achieved by allowing extra solutions. In particular, arbitrarily fast
switching phenomena (known as chattering or sliding modes) are automati-
cally covered by this framework; these issues are also discussed in [10,18].

Implicit in (1) is the assumption that, at switching times, the state x re-
mains continuous and only the velocity ẋ undergoes an abrupt change. If we
allow x to instantaneously jump to a different value, we obtain a switched
system with impulse effects. Traditionally, impulsive systems are actually de-
fined as systems with jumps in the state but not in the velocity [2]. It is
clear that switched systems have many similarities to (and draw inspiration
from) impulsive systems. Impulsive systems are directly relevant to networked
control systems, where some variables are updated at the instants when new
information arrives (see [11,16] and the references therein).

In this chapter we concentrate on analysis issues for switched systems of
the form (1). However, such analysis is heavily motivated by control synthesis
questions arising in the field of switching control. Suppose that we are given
a process, typically described by a continuous-time control system, and need
to find a controller such that the closed-loop system displays a desired be-
havior. In some cases, this can be achieved by applying a continuous static or
dynamic feedback control law. In other cases, a continuous feedback law that
solves the problem may not exist. A possible alternative in such situations
is to incorporate logic-based decisions into the control law and implement
switching among a family of controllers. This yields a switched (or hybrid)
closed-loop system. Classes of systems naturally treated by switching control
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techniques include nonholonomic systems, systems with large-scale modeling
uncertainty, and systems with sensor and/or actuator limitations. The last
category is very broad and includes in particular networked and embedded
control systems. The design of switching control strategies for the above sys-
tem classes is addressed in [10].

As we mentioned earlier, our main concern will be with properties of the
continuous state x of the switched system (1). What makes switched systems
interesting and challenging is that such properties can be gained or lost as
a result of switching. In other words, it is in general neither necessary nor
sufficient that each of the individual subsystems

ẋ = fp(x), p ∈ P (2)

have the property of interest.
In most of what follows, we take asymptotic stability (in the sense of Lya-

punov) as a representative example of a desired property. Stability is the most
fundamental and extensively studied issue in the literature on switched sys-
tems (and dynamical systems in general), and it is very suitable for illustrating
the main difficulties. At the end of this chapter, we provide some remarks and
references on other system properties.

2 The Stability Problem

We assume that the reader is familiar with basic concepts of Lyapunov’s sta-
bility theory for continuous-time systems ([9] is a good reference). Stability
definitions for switched systems are obtained by straightforward modifica-
tion of the standard stability concepts for non-switched systems. Here they
are always formulated with respect to the origin, which is assumed to be an
equilibrium, and the initial time t0 = 0. For example, given a fixed switch-
ing signal σ, we say that the switched system (1) is stable (in the sense of
Lyapunov) if for every ε > 0 there exists a δ > 0 such that

|x(0)| ≤ δ ⇒ |x(t)| ≤ ε ∀ t ≥ 0.

We say that (1) is globally asymptotically stable if it is stable and for every
pair of positive numbers ε and δ there exists a T > 0 such that

|x(0)| ≤ δ ⇒ |x(t)| ≤ ε ∀ t ≥ T.

In particular, if there exist positive constants c and λ such that all solutions
of (1) satisfy the inequality

|x(t)| ≤ c|x(0)|e−λt ∀ t ≥ 0,

then (1) is called globally exponentially stable. Local versions of the last two
properties can also be defined in the standard way.
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Instead of just (asymptotic, exponential) stability for each particular
switching signal, a somewhat stronger property is often desirable, namely,
asymptotic or exponential stability that is uniform over the set of all switch-
ing signals (not to be confused with the more common usage which refers
to uniformity with respect to the initial time for time-varying systems). This
uniformity is defined by requiring that the values of the constants whose exis-
tence is stipulated in the above definitions (δ, T , c, and λ) be independent of
the choice of the switching signal σ. The resulting notions of global uniform
asymptotic stability and global uniform exponential stability will be abbrevi-
ated as GUAS and GUES, respectively. (In the case of constrained switching,
it also makes sense to consider stability properties that are uniform over all
switching signals from a certain class [6].)

To understand the issues arising in stability analysis of switched systems,
consider the situation where P = {1, 2} and x ∈ R2, so that we are switch-
ing between two systems in the plane. First, suppose that the two individual
subsystems are asymptotically stable, with trajectories as shown on the left
in Fig. 1 (the solid curve and the dotted curve). For different choices of the
switching signal, the switched system might be asymptotically stable or un-
stable (these two possibilities are shown in Fig. 1 on the right).

Fig. 1. Switching between stable systems

Similarly, Fig. 2 illustrates the case when both individual subsystems are
unstable. Again, the switched system may be either asymptotically stable
or unstable, depending on a particular switching signal. (We point out that
interesting phenomena such as the ones demonstrated by these figures are
only possible in dimensions 2 and higher.)

From these two examples, the following facts can be deduced:

• Unconstrained switching may destabilize a switched system even if all
individual subsystems are stable.

• It may be possible to stabilize a switched system by means of suitably
constrained switching even if some (or all) individual subsystems are un-
stable.

Motivated by these considerations, we will be studying the following two
main problems:



www.manaraa.com

Switched Systems 563

Fig. 2. Switching between unstable systems

(1) Stability under arbitrary switching: find conditions that guarantee (uni-
form) asymptotic stability of a switched system for arbitrary switching
signals.

(2) Stability under constrained switching: if a switched system is not asymp-
totically stable for arbitrary switching, identify those switching signals for
which it is asymptotically stable.

The first problem is relevant when the switching mechanism is uncon-
strained, unknown, or too complicated to be useful in the stability analysis.
Stability under arbitrary switching is a very desirable property. When the sub-
systems being switched are obtained as feedback interconnections of a given
process with different stabilizing controllers, it means that one does not need
to worry about stability and can concentrate on other issues such as perfor-
mance. While studying the first problem, one is led to investigate possible
sources of instability, which in turn provides insight into the more practical
second problem.

In the context of the second problem, it is natural to distinguish between
two situations. If some or all of the individual subsystems are asymptotically
stable, then it is of interest to characterize, as completely as possible, the class
of switching signals that preserve asymptotic stability (such switching signals
clearly exist; for example, just let σ(t) ≡ p, where p is the index of some
asymptotically stable subsystem). On the other hand, if all individual subsys-
tems are unstable, then the task at hand is to construct at least one stabilizing
switching signal, which may actually be quite difficult or even impossible.

The latter problem is seen to be a synthesis problem and will not be
treated in this chapter (see [10] for more information on this problem). We will
thus assume throughout that all individual subsystems (2) are asymptotically
stable. (This assumption is not always realistic for networked and embedded
control systems, but a similar analysis applies when the total time spent in
unstable modes is sufficiently small; see [10] for references.) The task is then
to determine what additional requirements on the systems from (2) must be
imposed to guarantee stability of the switched system (1). Unless specified
otherwise, original references and further details on the results discussed in
the next two sections can be found in the book [10].
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3 Stability Under Arbitrary Switching

3.1 Common Lyapunov functions

Uniform stability properties of the switched system (1) are intimately related
to the existence of a function that serves as a Lyapunov function for all in-
dividual subsystems (2). Given a positive definite continuously differentiable
function V : Rn → R, we will say that it is a common Lyapunov function for
the family of systems (2) if there exists a positive definite continuous function
W : Rn → R such that we have

∂V

∂x
fp(x) ≤ −W (x) ∀x, ∀ p ∈ P.

Theorem 1 If all systems in the family (2) share a radially unbounded com-
mon Lyapunov function, then the switched system (1) is globally uniformly
asymptotically stable (GUAS).

This result is well known and can be derived in the same way as the stan-
dard Lyapunov stability theorem (cf. [9]). The main point is that the rate of
decrease of V along solutions, characterized byW , is not affected by switching,
hence asymptotic stability is uniform with respect to σ. In the special case
when both V and W are quadratic (or, more generally, are bounded from
above and below by monomials of the same degree in |x|), it is easy to show
that the switched system is globally uniformly exponentially stable (GUES).

In the following, we will be concerned with identifying classes of switched
systems that are GUAS. The most common approach to this problem con-
sists of searching for a common Lyapunov function shared by the individual
subsystems. A justification of this approach comes from the converse Lya-
punov theorem for switched systems, which says that the GUAS property of
a switched system implies the existence of a common Lyapunov function. For
such a converse Lyapunov theorem to hold, the family of systems (2) needs
to satisfy suitable technical conditions. We omit the details but mention that
these conditions automatically hold when the index set P is finite.

A useful result, which can be derived from the converse Lyapunov the-
orem, says that if the switched system (1) is GUAS, then all “convex com-
binations” of the individual subsystems from the family (2) must be glob-
ally asymptotically stable. An informal interpretation of this result comes
from the fact that one can mimic the behavior of the convex combination
ẋ = αfp(x) + (1− α)fq(x), α ∈ [0, 1] by means of fast switching between the
subsystems ẋ = fp(x) and ẋ = fq(x), spending the correct proportion of time
(α versus 1− α) on each one. (For the same reason, the existence of a stable
convex combination in the case of unstable subsystems leads naturally to the
design of a stabilizing switching signal.) Stability of all convex combinations
often serves as an easily checkable necessary condition for GUAS (it is not
sufficient).



www.manaraa.com

Switched Systems 565

A particular case of interest is when all individual subsystems are linear,
yielding a switched linear system

ẋ = Aσx. (3)

Then GUES is equivalent to the seemingly weaker property of local attractiv-
ity for every fixed switching signal. For switched linear systems, it is natural
to consider quadratic common Lyapunov functions, i.e., functions of the form

V (x) = xTPx, (4)

where P is a positive definite symmetric matrix such that for some positive
definite symmetric matrix Q we have

AT
p P + PAp ≤ −Q ∀ p ∈ P. (5)

One reason why quadratic common Lyapunov functions are attractive is
that (5) is a system of linear matrix inequalities (LMIs), and there are efficient
methods for solving finite systems of such inequalities numerically using tools
from convex optimization. A general reference on LMIs is [3], and the survey
paper [4] discusses them specifically in the context of switched linear systems.
An alternative method for computing quadratic common Lyapunov functions
is presented in [12]. It is in general not sufficient to work with quadratic com-
mon Lyapunov functions. However, GUES of a switched linear system can
always be verified by a common Lyapunov function that is homogeneous of
degree 2.

3.2 Commutation relations

The stability problem for switched systems can be studied from several dif-
ferent angles. We now explore a particular direction, namely, the role of com-
mutation relations among the systems being switched.

Consider the switched linear system (3), and assume for the moment that
P = {1, 2} and that the matrices A1 and A2 commute: A1A2 = A2A1. We
can write the latter condition as [A1, A2] = 0, where the commutator, or Lie
bracket [·, ·], is defined as

[A1, A2] := A1A2 −A2A1. (6)

It is well known that in this case we have eA1eA2 = eA2eA1 . This means that
the flows of the two individual subsystems ẋ = A1x and ẋ = A2x commute.
Now consider an arbitrary switching signal σ, and denote by ρi and τi the
lengths of the time intervals on which σ equals 1 and 2, respectively. The
solution of the system produced by this switching signal is

x(t) = · · · eA2τ2eA1ρ2eA2τ1eA1ρ1x(0) = · · · eA2τ2eA2τ1 · · · eA1ρ2eA1ρ1x(0)

= eA2(τ1+τ2+... )eA1(ρ1+ρ2+... )x(0).
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Since at least one of the series ρ1 + ρ2 + · · · and τ1 + τ2 + · · · converges to
∞ as t→∞, the corresponding matrix exponential converges to zero in view
of the stability of the matrices A1 and A2 (recall that asymptotic stability of
individual subsystems is assumed). We have thus proved that x(t) → 0 for
an arbitrary switching signal. Generalization to the case when P has more
than two elements is straightforward. Since for switched linear systems global
attractivity for every σ implies GUES, we have the following result.

Theorem 2 If {Ap : p ∈ P} is a finite set of commuting Hurwitz matrices,
then the corresponding switched linear system (3) is GUES.

There is also a more direct way to arrive at this result, which is based on
constructing a common Lyapunov function for the family of linear systems

ẋ = Apx, p ∈ P (7)

by means of an elegant iterative procedure.
To extend the above result to switched nonlinear systems, we first need

the notion of a Lie bracket, or commutator, of two vector fields. This is the
vector field defined as follows:

[f1, f2](x) :=
∂f2(x)
∂x

f1(x)−
∂f1(x)
∂x

f2(x).

If the Lie bracket of two vector fields is identically zero, we will say that the
two vector fields commute. The following result is a direct generalization of
Theorem 2. Similarly to the linear case, it can be proved either by direct
analysis of the flow or by an iterative construction of a common Lyapunov
function.

Theorem 3 If {fp : p ∈ P} is a finite set of commuting vector fields and
the origin is a globally asymptotically stable equilibrium for all systems in the
family (2), then the corresponding switched system (1) is GUAS.

Another approach is to linearize the individual subsystems and apply the
linear results together with Lyapunov’s indirect method. If the linearization
matrices are Hurwitz and commute, then a quadratic common Lyapunov func-
tion for the linearized systems, constructed as explained earlier, serves as a
local common Lyapunov function for the original family of nonlinear sys-
tems (2).

Consider again the switched linear system (3). In view of the previous
discussion, it is not surprising that when the matrices Ap , p ∈ P do not
commute, stability of the switched system is still related to the commutation
relations between them. A useful object which reveals the nature of these
commutation relations is the Lie algebra g := {Ap : p ∈ P}LA generated by
the matrices Ap , p ∈ P, with respect to the standard Lie bracket (6). This
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is a linear vector space of dimension at most n2, spanned by the given matri-
ces and all their iterated Lie brackets. The structure of matrix Lie algebras
guaranteeing GUES of the corresponding switched linear system has been
completely characterized. The nonlinear case is much less explored, although
some results going beyond Theorem 3 have recently been obtained in [14].

3.3 Systems with special structure

The stability problem for general switched systems is very difficult. Therefore,
it is of interest to identify specific classes of systems for which some useful
results can be obtained. For example, if {Ap : p ∈ P} is a compact set of Hur-
witz matrices in triangular form, then the switched linear system (3) is GUES.
This can be proved either directly, proceeding from the bottom component of
x upwards, or by constructing a common Lyapunov function. It turns out that
in this case, it is possible to find a quadratic common Lyapunov function of
the form (4) with P a diagonal matrix. On the other hand, it can be shown by
a counterexample that in the case of switching among globally asymptotically
stable nonlinear systems, the triangular structure alone is not sufficient for
GUAS.

As we explained in Section 1, switched systems often arise from the feed-
back connection of different controllers with the same process. Such feedback
switched systems therefore assume particular interest in control theory. The
fact that the process is fixed imposes some structure on the closed-loop sys-
tems, which sometimes facilitates the stability analysis.

For example, consider the system

ẋ = f(x, u), y = h(x)

and assume that it is (strictly) passive, in the sense that there exist a positive
definite continuously differentiable function V : Rn → R (called a storage
function) and a positive definite function W : Rn → R such that we have

∂V

∂x
f(x, u) ≤ −W (x) + uTh(x).

It is easy to see that for every K ≥ 0, the closed-loop system obtained by
setting u = −Ky is asymptotically stable, with Lyapunov function V . In other
words, V is a common Lyapunov function for the family of closed-loop systems
corresponding to all nonpositive definite feedback gain matrices. It follows
that the switched system generated by this family is uniformly asymptotically
stable (GUAS if V is radially unbounded). Clearly, the function V also serves
as a common Lyapunov function for all nonlinear feedback systems obtained
by setting u = −ϕ(y), where ϕ satisfies yTϕ(y) ≥ 0 for all y. In the single-
input, single-output (SISO) case, this reduces to the sector condition

0 ≤ yϕ(y) ∀ y.
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For linear systems, the famous Kalman–Yakubovich–Popov lemma provides
a frequency-domain characterization of passivity in terms of positive realness
of the transfer matrix g. There is also a generalization, known as the circle
criterion, which says that the above result holds if the function

1 + k2g

1 + k1g

is strictly positive real for some k2 > k1 ≥ 0 and ϕ satisfies the more restrictive
sector condition

k1y
2 ≤ yϕ(y) ≤ k2y

2 ∀ y.
We note that Popov’s criterion, which leads to more powerful conditions for
absolute stability of feedback systems, does not directly extend to switched
systems in the same fashion, because it yields a Lyapunov function that ex-
plicitly depends on the nonlinearity (and thus does not provide a common
Lyapunov function).

A different (but related) set of results is provided by the small-gain theo-
rem. Consider the output feedback switched linear system

ẋ = (A+BKσC)x. (8)

Assume that A is a Hurwitz matrix and that ‖Kp‖ ≤ 1 for all p ∈ P, where
‖ · ‖ denotes the matrix norm induced by the Euclidean norm on Rn. Then
the classical small-gain theorem implies that (8) is GUES if

‖C(sI −A)−1B‖∞ < 1,

where ‖ · ‖∞ denotes the standard H∞ norm of a transfer matrix. This con-
dition is satisfied if and only if there exists a solution P > 0 of the algebraic
Riccati inequality

ATP + PA+ PBBTP + CTC < 0.

The function V (x) = xTPx then serves as a quadratic common Lyapunov
function for the family of linear systems

ẋ = (A+BKpC)x, p ∈ P

and actually also for the family of nonlinear feedback systems

ẋ = Ax+Bϕp(Cx), p ∈ P,

provided that each ϕp satisfies

|ϕp(y)| ≤ |y| ∀ y.

Additional flexibility is gained if input-output properties of the process and
the controllers are specified but one has some freedom in choosing state-space
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realizations. In fact, given a strictly proper transfer matrix of the process and
a finite family of transfer matrices of stabilizing controllers, there always exist
realizations of the process and the controllers such that the corresponding
closed-loop systems share a quadratic common Lyapunov function.

For switched linear systems in two dimensions, there are many results
which rely on planar geometry (and do not have counterparts in higher di-
mensions). In particular, necessary and sufficient conditions for GUES and for
the existence of a quadratic common Lyapunov function are available.

4 Stability Under Constrained Switching

4.1 Multiple Lyapunov functions

There is a useful tool for proving stability of switched systems which relies on
multiple Lyapunov functions, usually one or more for each of the individual
subsystems being switched. To fix ideas, consider the switched system (1) with
P = {1, 2}. Suppose that both systems ẋ = f1(x) and ẋ = f2(x) are (globally)
asymptotically stable, and let V1 and V2 be their respective Lyapunov func-
tions. We are interested in the situation where a common Lyapunov function
for the two systems is not known or does not exist. In this case, one can try
to investigate stability of the switched system using V1 and V2.

In the absence of a common Lyapunov function, stability properties of the
switched system depend on the switching signal σ. Let ti, i = 1, 2, . . . be the
switching times. If it so happens that the values of V1 and V2 coincide at each
switching time, i.e., Vσ(ti−1)(ti) = Vσ(ti)(ti) for all i, then Vσ is a continuous
Lyapunov function for the switched system, and asymptotic stability follows.
This situation is depicted in Fig. 3(left).

t

σ=1 σ=1 σ=1σ=2 σ=2 σ=2

Vσ(t)(t)

t

σ=1 σ=1 σ=1σ=2 σ=2σ=2

Vσ(t)(t)

Fig. 3. Two Lyapunov functions (solid graphs correspond to V1, dashed graphs
correspond to V2): (left) continuous Vσ, (right) discontinuous Vσ

In general, however, the function Vσ will be discontinuous. While each Vp

decreases when the pth subsystem is active, it may increase when the pth



www.manaraa.com

570 D. Liberzon

subsystem is inactive. This behavior is illustrated in Fig. 3(right). Let us look
at the values of Vp at the beginning of each interval on which σ = p. The
switched system is asymptotically stable if these values form a decreasing
sequence for each p.

Theorem 4 Let (2) be a finite family of globally asymptotically stable sys-
tems, and let Vp , p ∈ P be a family of corresponding radially unbounded
Lyapunov functions. Suppose that there exists a family of positive definite con-
tinuous functions Wp, p ∈ P with the property that for every pair of switching
times (ti, tj), i < j such that σ(ti) = σ(tj) = p ∈ P and σ(tk) 
= p for
ti < tk < tj, we have

Vp(x(tj))− Vp(x(ti)) ≤ −Wp(x(ti)). (9)

Then the switched system (1) is globally asymptotically stable.

Multiple Lyapunov function results such as Theorem 4 are useful when the
class of admissible switching signals is constrained in a way that ensures the
desired relationships between the values of Lyapunov functions at switching
times. The situation described by Fig. 3(left) may arise in the case of state-
dependent switching, i.e., if the switches are triggered when the state trajectory
crosses some switching surfaces, or guards, in the state space. If the switching
surfaces are constructed in such a way that the values of different Lyapunov
functions on these surfaces coincide, then Vσ is indeed a continuous function
of time. For switched linear systems, the corresponding conditions can also be
cast as LMIs [4]. Stability analysis for state-dependent switching is also often
facilitated by the fact that properties of each individual subsystem are of
concern only in the regions where this system is active. For example, consider
the first (stable) switching strategy in Fig. 1; it can be analyzed by a single
Lyapunov function, even though a common Lyapunov function does not exist
(as is clear from the existence of the second, unstable switching strategy).

The more general situation shown in Fig. 3(right) is capable of covering the
case of time-dependent switching, i.e., switching signals having certain time
patterns not affected by the state. It is well known that a switched system is
stable if the switching is sufficiently slow, so as to allow the transient effects
to dissipate after each switch. In the next subsection we discuss how such
slow switching conditions can be formulated and justified using multiple Lya-
punov functions. These techniques are relevant for networked control systems,
because they help characterize the relationship between the information rate
and stability. They are also important for switching control design, where slow
switching conditions can be explicitly incorporated into—or derived from—
the switching logic.

4.2 Stability under slow switching

The simplest way to specify slow switching is to introduce a number τd > 0
and restrict the class of admissible switching signals by demanding that the
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switching times t1, t2, . . . satisfy the inequality ti+1 − ti ≥ τd for all i. This
number τd is usually called the dwell time (because σ “dwells” on each of its
values for at least τd units of time).

When all linear systems in the family (7) are asymptotically stable, the
switched linear system (3) is asymptotically stable if the dwell time τd is suffi-
ciently large. The required lower bound on τd can be explicitly calculated from
the exponential decay bounds on the transition matrices of the individual sub-
systems (see, e.g, [15, Lemma 2]). Under suitable assumptions, a sufficiently
large dwell time also guarantees asymptotic stability of the switched system
in the nonlinear case. Probably the best way to prove most general results of
this kind is by using multiple Lyapunov functions.

To see how this works, consider the example where P = {1, 2} and both
systems in the family (2) are globally exponentially stable. Then there exist
Lyapunov functions V1 and V2 which for some positive constants a, b, and c
satisfy

a|x|2 ≤ Vp(x) ≤ b|x|2 (10)

and
∂Vp

∂x
fp(x) ≤ −c|x|2 (11)

for p = 1, 2. Combining (10) and (11), we obtain

∂Vp

∂x
fp(x) ≤ −2λVp(x), p = 1, 2,

where λ := c/2b. This implies that

Vp(x(t0 + τd)) ≤ e−2λτdVp(x(t0))

whenever σ(t) = p for t ∈ [t0, t0 + τd). Suppose that σ takes the value 1 on
[t0, t1) and 2 on [t1, t2), where ti+1 − ti ≥ τd, i = 0, 1. From the preceding
inequalities we have

V1(t2) ≤
b1
a2
V2(t2) ≤

b1
a2
e−2λ2τdV2(t1) ≤

b1b2
a1a2

e−2(λ1+λ2)τdV1(t0).

It is now straightforward to compute an explicit lower bound on τd which
guarantees that the hypotheses of Theorem 4 are satisfied, implying that the
switched system (1) is globally asymptotically stable:

τd >
1

2(λ1 + λ2)
log

b1b2
a1a2

.

In the context of controlled switching, specifying a dwell time may be too
restrictive. If, after a switch occurs, there can be no more switches for the
next τd units of time, then it is impossible to react to possible system failures
or unacceptable performance during that time interval. Thus it is of interest
to relax the concept of dwell time, allowing the possibility of switching fast
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when necessary and then compensating for it by switching sufficiently slowly
later.

The concept of average dwell time from [8] serves this purpose. Let us
denote the number of discontinuities of a switching signal σ on an interval
(t, T ) by Nσ(T, t). We say that σ has average dwell time τa if there exist two
positive numbers N0 and τa such that

Nσ(T, t) ≤ N0 +
T − t
τa

∀T ≥ t ≥ 0. (12)

For example, if N0 = 1, then (12) implies that σ cannot switch twice on any
interval of length smaller than τa. Switching signals with this property are
exactly the switching signals with dwell time τa. In general, if we discard the
first N0 switches, then the average time between consecutive switches is at
least τa.

It turns out that the property discussed earlier—namely, that asymptotic
stability is preserved under switching with a sufficiently large dwell time—
can be extended to switching signals with average dwell time. However, for
switched nonlinear systems this involves additional constraints on the multiple
Lyapunov functions. Under suitable conditions, a useful class of hysteresis-
based switching logics is known to guarantee the existence of an average dwell
time. See [8, 10] for details.

4.3 Results of LaSalle type

In the foregoing, we have been working with Lyapunov functions which are
strictly decreasing along solutions. Another possibility is to work with weak
Lyapunov functions, i.e., functions that are merely nonincreasing along so-
lutions. The well-known LaSalle’s invariance principle utilizes such func-
tions [9]. It implies, in particular, that the system ẋ = f(x) is globally asymp-
totically stable if there exists a positive definite, radially unbounded, contin-
uously differentiable function V : Rn → R whose derivative along solutions
satisfies ∂V

∂x f(x) ≤ −W (x) ≤ 0 for all x, and if moreover the largest positively
invariant set contained in the set {x : W (x) = 0} is equal to {0}.

The second condition can be regarded as observability with respect to the
auxiliary output y := W (x). One generalization of this result to switched
linear systems goes as follows.

Theorem 5 Consider the family of linear systems (7) with P a finite set and
a switching signal σ with switching times ti, i = 1, 2, . . . . Assume that the
following conditions hold:

1. For each p ∈ P there exists a positive definite symmetric matrix Pp satis-
fying

AT
p Pp + PpAp ≤ −CT

p Cp

for some matrix Cp such that (Cp, Ap) is an observable pair.
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2. There exists a τ > 0 such that for every T ≥ 0 we can find a positive
integer i for which ti+1 − τ ≥ ti ≥ T .

3. For each p ∈ P and every pair of switching times ti < tj such that σ(ti) =
σ(tj) = p, we have

xT (tj)Ppx(tj) ≤ xT (ti+1)Ppx(ti+1).

Then the switched linear system (3) is globally asymptotically stable.

For further results and discussion on the linear case, see [6]. The recent pa-
per [7] presents an extension of the above result to switched nonlinear systems
and non-quadratic weak Lyapunov functions, which relies on a suitable non-
linear observability notion and which yields as a corollary a version of Popov’s
criterion for switched feedback systems. The usefulness of these results stems
in part from the fact that it is sometimes easier to find weak Lyapunov func-
tions nonincreasing along solutions and satisfying conditions such as the last
one in Theorem 5 (or even a common weak Lyapunov function for a given
family of systems) than to find strictly decreasing Lyapunov functions satis-
fying the condition (9) of Theorem 4 (or, in particular, a common Lyapunov
function). Another version of LaSalle’s theorem for hybrid systems, which uses
a single weak Lyapunov function, appeared in [20].

5 Other Concepts

In this chapter, we took stability as the most representative and well-studied
property to highlight the main issues. There are many other concepts of in-
terest besides stability, especially for switched systems with inputs and/or
outputs. The classical Kalman controllability and observability conditions can
be extended to switched linear systems; see the references in [10] as well as
the recent survey [17]. Input/output (or input/state) properties character-
izing robustness of switched systems to disturbances are especially relevant
for networked and embedded control systems. References on this subject in-
clude [5,13,19]. These and other properties of switched systems are currently
under active investigation, and the literature on the subject is rapidly growing.
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1 Introduction

One of systems theory’s most useful and fundamental ideas is that of inter-
connecting simple systems in order to build complex ones. This is usually
accomplished through the use of two important tools. One is a set of theoret-
ical results that help predict the behavior and performance of the composed
system given the properties of its components and the manner in which they
are connected. The other is the ability to regard the interconnection as ideal in
the sense that it neither corrupts nor delays data or—in situations where that
is not the case—to “separate” its design from that of the other components
(e.g., controllers).

The development in recent years of embedded and network technologies
has given rise to the area of Networked Control Systems (NCSs), where sensors,
actuators and computing elements are connected by means of a network or
other shared medium. At the same time, the attempt to expand the scope of
systems theory into this new domain has made the assumptions stated above
increasingly difficult to justify. The goal of this chapter is to expose some of
the complications that arise when a control system includes a network (taken
to mean a shared communication medium in the most generic sense) and to
introduce a small collection of basic results on the control of systems that
operate under communication constraints.

The very technologies that enable one to construct NCSs impose limita-
tions in communication that make the interconnection of components non-
trivial from the point of view of control. Some of the issues that arise include

• Delays in transmitting information between components (e.g., from a sen-
sor to a controller). These delays could be fixed or time varying (e.g.,
randomly distributed).
∗This work was supported by the National Science Foundation under Grant No.

EIA0088081 and by ARO ODDR&E MURI01 Grant No. DAAD19-01-1-0465 (Cen-
ter for Communicating Networked Control Systems, through Boston University).
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• The possibility of data failing to reach its destination (this is not only
a function of the communication medium but also of the protocol being
used; TCP/IP is a well-known example).

• Bottlenecks; they could occur because the shared network can only ac-
commodate a limited number of simultaneous communications between
components or has limited throughput. Bottlenecks could also occur be-
cause of computational constraints, e.g., the CPU on which the controller
is implemented can only perform a limited amount of computation per
unit time.

These constraints can be captured mathematically through a variety of
techniques, some of which will be reviewed in the sequel. However, the exis-
tence of the constraints has the effect of complicating what are otherwise well-
understood control problems (e.g., stabilization, estimation, linear quadratic
regulator (LQR) tracking and others). The basic mechanism by which this oc-
curs will become clear in the development; for now it could be summarized by
stating that when a control system is subject to communication constraints,
the policies that govern how the communication medium is used can have a
direct effect on the design of the control policy and vice versa. In the same
setting, optimal control must now be regarded jointly with optimal commu-
nication, and the goal is to simultaneously optimize the controller and com-
munication policies governing the operation of an NCS, whenever possible.
In cases where that may be difficult, one may attempt to make the problem
easier to solve by assuming, for example, that the communication policy is
fixed while designing a controller or vice versa.

Possible responses to these challenges include amending existing theoret-
ical tools to apply to the new domain and developing new ones from first
principles. Details such as the communication protocol and the operating sys-
tem of the computer on which control is implemented can also influence the
design of both control and communication policies. Here we will focus on how
communication constraints affect the control and omit the implementation
details, which are nevertheless discussed in other chapters of this book.

In the next sections we will give an overview of some of the available theo-
retical tools for addressing analysis and design problems involving NCSs, and
for elucidating the interaction between control and communication decisions
in systems with limited communication. We will focus mainly on stabilization
and estimation. We begin by outlining a basic model for NCSs before going on
to discuss (in Section 3) some feedback control problems for NCS. The basic
viewpoint is that of sensor and actuator elements competing for the “atten-
tion” (in the form of time on the shared network) of a remote controller. The
effects of transmission delays and dropped packets are outlined in Sections 3.3
and 3.4. Section 4 reviews basic results on feedback control and estimation
of NCSs, this time emphasizing bit rates (instead of time) as the measure of
“attention.”
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2 A Basic Model of Networked Control Systems

Fig. 1 depicts a generic NCS; the system consists of a plant, controller and
network across which all sensor and actuator data must be sent. We use u(·) ∈

Fig. 1. A basic NCS, showing the underlying plant, its controller and the commu-
nication network that connects them

R
m and y(·) ∈ R

p to denote the input and output of the plant, respectively.
The quantities ȳ(·) and ū(·) denote the input and output of the controller,
respectively. In general, these will differ from y and u because of the presence
of the network. For example, u may be a delayed version of ū, if the network
imposes only a delay. If the network cannot simultaneously carry signals for
all m actuators, then some of the elements of u may be outdated compared
to ū. Finally, if signals are quantized before being transmitted it may be
that different elements of the vector u are quantized versions of the elements
of ū but with different accuracies. From a control design viewpoint, these
considerations raise important questions like: “which sensor (actuator) should
receive the most attention (in terms of time, frequency of communication or
bit rate) by the controller?”

3 Modeling Medium Access Constraints

For now, we will ignore any transmission delays and quantization effects asso-
ciated with controller/plant communication and focus instead on the bottle-
necks created by the inability of the network to accommodate all sensors and
actuators simultaneously. If transmission of a single sensor measurement takes
ts seconds, one may choose to “packetize” data from all sensors and transmit
them every p · ts seconds (what we refer to as single-packet transmission) or
to sample one sensor at a time with frequency 1/ts (multiple packet trans-
mission). In the latter case, some sensors and actuators have access to the
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controller while others wait. This situation is illustrated in Fig. 2, where two
sets of switches control access to the communication medium. Let the plant

Fig. 2. Switch model

be linear time invariant (LTI), evolving in discrete time (the last assumption
is not essential but it will simplify the discussion to follow):

x(k + 1) = Ax(k) +Bu(k); x ∈ R
n
, u ∈ R

m (1)
y(k) = Cx(k); y ∈ R

p
. (2)

Suppose that the communication medium connecting the sensors to the con-
troller has nσ (1 ≤ nσ < p) output channels. At any one time, only nσ of p
sensors can access these channels to send their output to the controller, while
others have to wait. Likewise, actuators share nρ (1 ≤ nρ < m) input chan-
nels to communicate with the controller, and at most nρ of them can do so
simultaneously.

Of course, when a sensor (actuator) temporarily stops communicating with
the controller (plant), the latter must decide how to handle the interruption.
This takes place in the blocks denoted by H in Fig. 2. One option is for H
to implement a zero-order hold (ZOH) so that the receiver uses the most re-
cently transmitted value until communication is re-established. This has some
appealing aspects but may increase the complexity of the control problem as
we shall see. Another possibility is for the receiver to “ignore” the sensors or
actuators that have gone off-line, in a way which will be made precise below.

The communication status of each sensor at time k can be encoded in the
binary-valued function σi(k), i = 1, ..., p with σi(k) : Z %→ {0, 1}, where 1
means “accessing” and 0 means “not accessing”. This leads to the following
intuitive definition [8, 11].

Definition 1. An m-to-n communication sequence is a map σ(k) : Z %→
{0, 1}m, satisfying ‖σ(k)‖2 = n, ∀k.
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The medium access status of the plant’s sensors and actuators can then be rep-
resented by a pair of p-to-nσ and m-to-nρ communication sequences, labeled
σ and ρ, respectively. We will use σ (referred to as the output communication
sequence) and ρ (the input communication sequence) to denote the sequences
that govern the transmission of sensor and actuator data, respectively.

One is now faced with the problem of designing a pair of communication
sequences and a controller that together achieve a desired control objective
(e.g., stability). We will refer to the simultaneous selection of controller and
communication sequence(s) for an NCS as the joint problem. We distinguish
between two kinds of communication policies: static (or fixed), where a com-
munication sequence is determined off-line, and dynamic (or feedback based),
where communication decisions depend on the plant’s outputs and on the
access status of sensors and actuators.

Remark 1 (Selection of effective communication sequences). In general, the
joint problem is difficult to solve when it comes to instances of typical NCS
design problems, including stabilization and LQR tracking. When the joint
problem is intractable, there are several alternatives:

• A typical approach is to postulate a communication sequence and then
obtain a controller that satisfies the desired criteria. Such is the approach
in Section 3.1 for example.

• Under some formulations, it is possible to narrow down the set of accept-
able communication sequences and choose from that set. Sections 3.1 and
3.2 offer examples of this approach.

• Another alternative is to use heuristics or approximation methods in order
to construct sequences that perform “sufficiently well” [18,23].

• Finally, one could forgo the problem of choosing specific communication
sequences and instead propose a policy for determining the communication
on-line (as a function of time and sensor data, for example). We will discuss
this further in Section 3.2.

3.1 Stability with a static communication sequence

We first consider the following problem

Problem 1. For an NCS whose plant is governed by (2) and whose controller
can communicate with nρ and nσ actuators and sensors respectively at any one
time, find a pair of communication sequences σ, ρ, and a feedback controller
ū(k) = Γ (k)ȳ(k) so that the closed loop NCS is stable.

The solution to this problem is simplest if the controller and plant choose
to “ignore” sensors and actuators which are not actively communicating, by
assuming that the value of the corresponding output/input is simply zero. In
that case, ȳ(k), the output as seen by the controller is related to the actual
output y by
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ȳ(k) = diag(σ(k)) · y(k), (3)

where for v ∈ R
n, diag(v) ∈ R

n×n is the diagonal matrix formed using the
elements of v. A similar relationship holds for ū, u and the input communica-
tion sequence ρ, so that from the point of view of the controller, the plant to
be controlled is now time-varying:

x(k + 1) = Ax(k) +Bdiag(ρ(k))ū(k) (4)
ȳ(k) = diag(σ(k))Cx(k). (5)

The stabilization problem can now be solved as follows:

• Restrict the solution to periodic communication sequences, so that the
closed-loop dynamics (4) are periodic.

• Choose a periodic input (output) sequence that preserves the reachability
(observability) of the plant. This is always possible if the original plant is
controllable (observable) and A is invertible (as would be the case if (2)
were obtained by discretizing a continuous time plant).

• Construct a periodic stabilizing feedback controller [24].

Theorem 1 ([30]). Suppose A is invertible and the pair (A,B) of the plant
(1) is reachable. For any integer 1 ≤ nρ < m, there exist integers l, N > 0
and an N -periodic p-to-nρ communication sequence ρ such that the extended
plant (4) is l-step reachable, i.e., reachable on [i, i+ l] for any i.

A communication sequence that preserves reachability can be easily con-
structed by examining the columns of

R = [AN−1B · diag(ρ(0)), AN−2B · diag(ρ(1)), · · · B · diag(ρ(N − 1))]. (6)

An algorithm is given in [30]; similar statements hold for observability. If state
feedback is available (C = I, so that we can write x̄ = ȳ and y = x) then we
have the following.

Theorem 2 ([30]). Suppose that the extended plant (4) is l-step reachable
and that A is invertible. Given constants α > 1, η > 1 the feedback controller
u(k) = Γ (k)x̄(k), with

Γ (k) = −B̄T (k)(A−1)TW−1
ηα (k, k + l), (7)

is such that the closed loop NCS is uniformly exponentially stable [24] with
rate α, where B̄(k) = B · diag(ρ(k)) and

Wα(k0, kf ) =
kf −1∑
j=k0

α4(k0−j)Ak0−j−1B̄(j)B̄T (j)(Ak0−j−1)T .

For the case of output feedback (C 
= I), the controller must be preceded
by a state observer designed to reconstruct the plant’s state from the inter-
mittently arriving sensor data. The observer’s state x̂(k) is then used in lieu
of x̄(k) in the feedback controller. The (periodic) observer gains are selected
using a procedure similar to that for selecting Γ (k) (see [30] for details).
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The effects of a ZOH

The stabilization problem becomes significantly more complicated if a ZOH
is used when a sensor (actuator) relinquishes the network. In that case, the
feedback controller has access only to ȳ(k) (see Fig. 1), a vector composed
of the most up-to-date sensor data available at the kth step. As we have
mentioned, ȳ(k) 
= y(k) because not all elements of y(k) can be communicated
to the controller at time k. A similar situation holds for u and the signal that
actually arrives at the plant, ū. The communication sequences used at the
input and output stages of the plant determine which components of u and y
are updated at each time step. This leads to closed-loop dynamics of the form
[9]

x(k + 1) = Ax(k) +
2N−2∑
i=0

Fkix(k − i), (8)

where, assuming a constant feedback gain Γ (ū(k) = Γ ȳ(k)),

Fki
�
= B

� i
N (i−N−1)∑

j=min(i,N−1)

DW (k, j)ΓDR(k − j, i− j)C (9)

and

DR(k, i)
�
=
{

diag(ρ(k)) i = 0
diag(ρ(k − i))

∏i−1
j=0MR(k, j) i > 0

(10)

DW (k, i)
�
=
{

diag(σ(k)) i = 0
diag(σ(k − i))

∏i−1
j=0MW (k, j) i > 0

(11)

with MR(k, j)
�
= I − diag (ρ(k − j)), MW (k, j)

�
= I − diag (σ(k − j)).

If the communication is periodic in k then so are the parameters Fki, and
(8) can be written in first-order form as [9, 10]

χ(k + 1) = Fkχ(k), (12)

where χ = [xT
(k−2N+1) · · · xT

(k) x
T
(k+1)]

T ∈ R
(2N−1)n. Equation (12) is linear

time-varying, and describes the state evolution of the computer-controlled
system under output feedback and N -periodic communication. The new state
vector χ now includes past state values up to two communication periods.
The periodic form (12) can be rewritten as a time-invariant system of higher
dimension (equal to N(2N − 1)n) to obtain what is known as the “extensive
form” [9,10] of the original system:

Xe(k + 1) = AX e(k); Xe(k) ∈ R
(2N2−N)n

, (13)

whereA is affine in the entries of the feedback gain Γ . For fixed Γ , the problem
of selecting gains to guarantee stability is non-deterministic polynomial-time
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hard (NP-hard) [2,10], even for a fixed communication sequence. The work in
[10] describes a numerical approach to the problem, using simulated annealing
to choose Γ so that the eigenvalues of A are enclosed in a circle with the
smallest possible radius.

If we allow for time-varying feedback gains and assume state feedback,
then stabilizing gains can be designed for the periodic form of the NCS (12)
using results from linear periodic systems [15, 24]. On the other hand, the
output feedback case, as well as the problem of simultaneously designing the
communication sequences and controller, is not easy to approach. Some inter-
esting special cases include [14]; that work discusses the stabilization of NCSs
with time-varying decentralized controllers and gives criteria for stabilizability
and rules for sequence design, although the latter problem becomes complex
as the length of the sequence and number of possible interconnections grows.

3.2 Feedback-based communication

Feedback-based communication offers a sometimes attractive alternative to
the problem of selecting communication sequences for NCSs. The idea is to
let the position of the switches in Fig. 2 be determined by the state (or output)
of the NCS by defining a suitable mapping

σ(x, t) ∈ {0, 1}m, σ : R
n ×R+ → {0, 1}m (14)

for the output sequence σ, and another for the input sequence ρ. In contrast
to Section 3.1 where the controller and plant poll each other’s outputs, here
communication is interrupt driven. Such a choice has an obvious potential
advantage: if the policy σ is chosen carefully, the controller may be able to
respond immediately to changes in a sensor’s output if they are deemed im-
portant. Under static communication, that sensor would have to wait for its
turn, which could come much later, depending on the particular communica-
tion sequence chosen. On the other hand, static communication can guarantee
that every sensor and actuator will be polled. This offers a robustness advan-
tage, because it makes a “dead” sensor easy to detect, for example. Next, we
give two examples of dynamic communication policies.

A block-diagonal NCS

Consider a collection of continuous-time linear time-invariant (LTI) systems

ẋi(t) = Aixi(t) +Biui(t); i = 1, . . . , N (15)
xi(t) ∈ R

n
, ui(t) ∈ R

m

whose open-loop dynamics are unstable (Re{λ(Ai)} > 0, i = 1, . . . , N). Each
system communicates with a remotely located controller over an idealized
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Fig. 3. A collection of NCSs Gi(s) = I(sI − Ai)−1Bi driven by static feedback
controllers Ki via a network. Only k of N switches si can be closed at any one time
[12].

shared network, according to the static state feedback law1 ui(t) = Kixi(t)
(see Fig. 3).

The gains Ki are designed a priori so that Re{λ(Ai + BiKi)} < 0,
i = 1, . . . , N ; i.e., each system is stabilized in the absence of communica-
tion constraints. Controller-plant communication is limited in the sense that
a maximum of C < N plants may close their feedback loops at any one time.
We note that although there are no coupling terms in (15), the dynamics of the
systems are coupled because of the presence of the communication constraint;
if a system monopolizes the network others may not be stabilizable.

Problem 2. Find a feedback-based policy for establishing and terminating
communication between each system and its controller in a way that stabilizes
all systems in the collection.

To proceed, write the dynamics of each system in the collection as

ẋi(t) = Asi(t)xi(t); i = 1, . . . , N, (16)

where Asi(t) ∈ {Ao
i , A

c
i}, Ao

i
�
= Ai and Ac

i
�
= Ai + BiKi denote the open-

and closed-loop dynamics of the collection, and si(t) ∈ {0, 1} are piecewise
constant functions that indicate when the ith loop is closed (si(t) = 1).

The following result [11] gives a sufficient condition for the existence of
communication sequences that simultaneously stabilize the collective.

Theorem 3 ([11]). Consider the collection of networked LTI systems in (16)
and assume that at most C out of N systems are allowed to close their feedback

1The discussion applies in the case of output feedback as well.
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loops at any one time. For i = 1, ..., N , let V c
i (xi) = xT

i Pixi, Pi = PT
i >

0 be Lyapunov functions for the closed-loop systems, satisfying (Ac
i )

TPi +
PiA

c
i < λiPi < 0 when communication is available (feedback loop closed) and

(Ao
i )

TPi + PiA
o
i < µiPi otherwise (for some λi < 0 , µi > 0). Then, for any

T > 0, there exists a T -periodic communication sequence that stabilizes all N
systems if

N∑
i=1

µi

µi − λi
< C. (17)

See also [4] for a condition based on rate-monotonic scheduling.
The parameters µi, λi in (17) are not unique but can be optimized to yield

a less conservative bound. The optimization involves solving a set of bilinear
matrix inequalities (see [11] for details).

For simplicity, assume from now on that C = 1, i.e., only one system can
close its feedback loop at any one time, and consider the following communi-
cation policy [12].

Definition 2 (CLS-ε). Let i∗(t) denote the index of the system whose feed-
back loop is closed at time t.

• 1. Let t0 denote the current time. Set
i∗(t0) = arg max(‖xi(t0)‖).

• 2. When ‖xi∗(t)‖ = ε > 0, repeat from step 1.
This policy, which seeks to “Contain the Largest State” (CLS-ε), can be viewed
as the analog of the “Clear the Largest Buffer” policy, originally introduced
in the study of distributed manufacturing systems [22]. CLS-ε chooses the
system with the largest state and steers it near the origin, before selecting
again. We note that such a policy cannot stabilize the collection; at best, it
may guarantee that the systems are ε-captured, i.e., the ‖xi‖ will be arbitrarily
close to ε as t→∞.

If the systems under consideration have scalar dynamics, we can obtain a
necessary and sufficient condition for ε-capture.

Theorem 4 ([12]). Consider the collection of networked LTI systems de-
scribed in (16) with Asi(t) ∈ {Ao

i , A
c
i}, Ao

i > 0, Ac
i < 0, where at most C = 1

out of N systems are allowed to close their feedback loops at any one time and
where the binary-valued si(t) are determined by CLS-ε for any fixed ε > 0.

Then, all |xi(t)| will approach ε if and only if 2 φ
�
=
∑N

i=0
Ao

i

Ao
i −Ac

i
< 1. Fur-

thermore, if φ > 1 then there exists no stabilizing communication sequence.

CLS-ε can also be used to drive the systems to the origin by gradually de-
creasing the value of ε. Under CLS-ε, the switching rate is not bounded. It is
possible however to slightly modify the switching policy so that the switching
rate is bounded above by 1

τ [12]. The “minimum waiting” time τ > 0 will

2For k > 1, replace the right-hand side of the inequality with k.
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be the analog of the “setup time” in [22]. In that case (which will not be
discussed here due to space constraints) the states will remain bounded.

If the systems of (16) are multivariable, then it is possible that CLS may
fail to stabilize the collection but that there are other communication se-
quences that result in stability. In fact, there are well-known examples of
switched systems for which there exists a stabilizing switching sequence, even
when Ac and Ao are both unstable [3]. This suggests that, unlike the scalar
case, there may be no necessary condition for stability based solely on the
eigenvalues of the systems. However, sufficient conditions for stability or ε-
capture can be obtained if we are willing to make switching decisions based
not on the norms ‖xi‖ but rather on the exponential curves that bound the
Lyapunov functions from Theorem 3, or on the Lyapunov functions Vi them-
selves [12]. In the latter case, one typically obtains a less conservative switching
policy.

Theorem 5. The collection of systems in (16) will be ε-captured under the
interrupt-based communication policy obtained by replacing ‖xi(t)‖ by Vi(xi(t))
in the CLS-ε algorithm, if φ =

∑N
i=1

µi

µi−λi
< 1, where λi and µi are obtained

by solving Problem 1.

In the latter case, the Vi(xi(t)) are not pure exponentials and in fact may not
be monotonic between switching times; therefore the state whose Lyapunov
function is largest at a given switching time t may not always correspond to
the system whose envelope function is largest at t.

We note that in Theorems 4 and 5, the CLS-ε policy must continuously
attend to the states xi in order to decide when a switching must take place.
It is possible to modify matters so that making network access decisions re-
quires only intermittent feedback (sampling of the ‖xi‖) or no feedback at
all. In those cases, switching decisions are made based on a set of piecewise
exponential curves that bound the Lyapunov functions Vi [12].

Fully coupled NCS

Consider now an NCS where the plant is the following controllable LTI system:

ẋ = Ax+Bu; x(0) = x0 (18)
y = Cx; x ∈ R

n
, u ∈ R

m
, y ∈ R

p
. (19)

For now, assume a state feedback controller (y(t) = x(t)) and that only one of
the n sensors can communicate with the controller while others must wait. At
the input side of the plant, m actuators share a single input channel to com-
municate with the controller (what is discussed below can be easily extended
to the multiple-access case).

This time, define a communication sequence as the continuous-time analog
of Definition 1, namely σ(t) : R %→ {0, 1}M , with ‖σ(t)‖2 = N , ∀t, so that
a given output, say xi(t), is available to the controller only when σi(t) = 1;
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otherwise, we assume (as in Section 3.1) that a zero value will be used by
the controller for that sensor to generate the control signals, while the actual
output xi(t) will be ignored due to its being unavailable [31].

The state x and its value x̄ as seen from the controller (Fig. 1) are now
related similarly to those in Section 3.1 so that under static feedback, ū(t) =
K · x̄(t), the closed-loop dynamics of the NCS are

ẋ(t) = (A+B · diag(ρ(t)) ·K · diag(σ(t)))x(t). (20)

The medium access constraints are captured by cascading the plant with a
pair of time-varying operators which are obtained directly from the input
and output communication sequences. The stabilization problem can now be
solved in a straightforward way, in contrast to the case when a ZOH was used
between the communication medium and the plant.

By definition, ρ(t) can only have m possible values and σ(t) can only have
n possible values. Hence the closed loop NCS (20) is essentially a switched
system with m · n possible dynamics3:

ẋ = As(t)x (21)

where s(t) defines a switching rule, s(t) : R %→ {1, . . . ,m} × {1, . . . , n} and
As(t) takes values on the set {Aij : i = 1, . . . ,m; j = 1, . . . , n}, where Aij

denotes the closed-loop dynamics when actuator i and sensor j are accessing
the communication medium.

A stabilizing gain and communication policy can now be determined by
the following algorithm [31], using a result [6] from switched systems:

• Choose Γ ∈ R
p×m so that A+BΓ is stable.

• Choose scalars αij > 0, for 1 ≤ i ≤ m, 1 ≤ j ≤ p so that
∑
αij = 1.

• Write Γ =
∑

i,j αijKij where Kij are p ×m basis matrices, whose (i, j)
entry is the real variable kij and all other entries are zero.

• Notice that A+BΓ = A+B
∑
Kij =

∑
Aij .

• The communication policy selects at any time t the sensor and actuator
corresponding to the indices

i∗(t), j∗(t) = arg min
i,j

xT (t)(AT
ijP + PAij)x(t),

where P is such that (A + BΓ )TP + P (A + BΓ ) = −Q, for some Q =
QT > 0.

• The corresponding stabilizing feedback gain K is obtained by solving Γ =∑
αijKij for the Kij and setting K =

∑
ij Kij .

3When the communication medium has nρ (1 < nρ < m) input channels and nσ

(1 < nσ < m) output channels, then ρ(t) and σ(t) will have
(

m
nρ

)
and

(
n

nσ

)
possible

values, respectively. The closed-loop system will then switch between
(

m
nρ

) · (
n

nσ

)
possible dynamics.
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This policy and gain will stabilize the NCS (20). It is easy to see why: given
that A + BΓ is stable by choice of Γ , there exist positive definite matrices
P,Q such that (A+BΓ )TP + P (A+BΓ ) = −Q < 0, and for all x(t) 
= 0,∑

i,j

αijx
T (t)(AT

ijP + PAij)x(t) = −xT (t)Qx(t) < 0.

Because αij > 0 it follows that for all x(t) 
= 0 there always exist in-
dices i(x) ∈ {1, . . . ,m} and j(x) ∈ {1, . . . , n} such that xT (t)(AT

i(x)j(x)P +
PAi(x)j(x))x(t) < 0, which immediately gives us a choice of communication
policy that keeps the Lyapunov function V (t) = xT (t)Px(t) always decreas-
ing.

We note that for the same choice of A, different choices of αij ’s result in
different values of the feedback gainK. A larger αij leads to a smaller kij . This
fact gives us additional freedom in the design of K. By properly choosing αij ’s
we can make the controller K meet certain optimization or design criteria, or
force the communication policy to pay more “attention” to certain sensors
and actuators. A general communication policy might take the form [31]

Definition 3 (Weighted Fastest Decay (WFD)). For all t, let s(t) =
(i(t), j(t)) be determined by

s(t) = arg min
i,j

αijxT (t)[AT
ijP + PAij ]x(t), (22)

where the coefficients αij act as weights associated with the dynamics Aij.

This class of policies is stabilizing, provided that K has been designed accord-
ing to the algorithm given above. Modifications can also be made to ensure
that the switching rate is bounded [31].

Definition 4 ([26]). The system (21) is said to be quadratically stable if there
exists a positive definite quadratic function V (x) = xTPx, a positive number
ε and a switching rule s(t) such that d

dtV (x) < −εxT x for all trajectories x
of the system (21).

Theorem 6 ([31]). If A is stable, system (21) is quadratically stable under
the switching rule WFD.

The output feedback case can be handled by inserting a state observer
between the communication medium and the feedback controller (see [30] for
details in the discrete-time case).

3.3 The effects of transmission delays

We now discuss some of the effects of transmission delays on the stability of
NCSs. We begin with the structure illustrated in Fig. 4, where sensor data are
delayed by τs while actuator data are delayed by τa units of time. In practice,
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Fig. 4. NCS subject to transmission delays

these delays are induced not only by the finite speed at which data travel inside
the communication medium, but also by the details of the communication
protocol (e.g., single- or multiple-packet transmissions). For the remainder of
this section we will assume single-packet transmission, i.e., all elements of y(t)
are transmitted together.

Let the continuous-time LTI plant evolve according to (18). The signal
available to the controller is x(kh−τs). The (discrete-time) controller is given
by

ū(t) = −Kx(kh− τs); k = 0, 1, 2, ..., t ∈ [kh+ τs, (k + 1)h+ τs)

and arrives at the plant τa seconds later. Thus, from the point of view of
the plant, the total delay around a constant-gain feedback loop is the sum
τ = τs + τa, so that the plant is driven with a piecewise constant input which
is obtained from the delayed sensor data:

u(t) = −Kx(kh− τ); t ∈ [kh+ τ, (k + 1)h+ τ), k = 0, 1, 2, ... (23)

The question for this type of NCS is the following.

Question 1. Given K such that A+BK is stable, what is the maximum delay
τmax which can be tolerated before the NCS becomes unstable?

Constant delay

If τ is constant, then

Theorem 7 ([32]). The NCS with constant delay (23) is stable if the eigen-
values of

H =

⎡⎢⎣ eAh
∫ h

0 e
A(h−s)dsBK

eA(h−τ) −eAτ
(∫ h

0 e
A(h−s)ds−

∫ τ

0 e
A(h−s)ds

)
BK

⎤⎥⎦
lie inside the unit disc.
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Time-varying delays

If the loop delay τk varies from one transmission to the next, then the rate
at which new inputs arrive at the plant is not fixed. The system can be
analyzed by augmenting the state to include x(kh) as well as all inputs that
the plant receives in the interval [kh, kh+τk). The augmented state is z(kh) =
[xT (kh), uT ((k− l)h), ..., uT ((k− 1)h)]T , where the integer l is such that (l−
1)h < τk < lh for all k. The stability of the (linear) dynamics of z is equivalent
to the stability of the original NCS.

For example, if l = 1, then one must check the stability of the time-varying
linear system [32] z((k + 1)h) = Φ(k)z(kh) with z(kh) = [xT (kh), uT ((k −
1)h)]T and

Φ(k) =

⎡⎣ eAh −
∫ h−τk

0 eAsBdsK
∫ h

h−τk
eAsBds

−K 0

⎤⎦ . (24)

As the discussion above suggests, the problem becomes significantly more
complicated if τk varies in such a way that the integer l is not fixed.

We remark that it is sometimes possible to compensate for some of the
effects of transmission delays. If the plant has the ability to “time-stamp” its
sensor data before transmission, then the controller can use the time infor-
mation to compensate for the delay τs, assuming that plant and controller
have synchronized their clocks. The controller can then estimate the current
state of the plant by propagating (according to the dynamics (18)) the state
data it receives from the sensors, for an amount of time equal to that of the
sensor-to-controller delay. If the controller-to-actuator delay τa is constant,
then the controller can also compensate for the amount of time its data will
take to reach the plant. For further details, including the construction of a
delay-compensating state observer, see [32] and references therein. See also
[16,21] for discussions of NCS stability under random delays.

3.4 The effects of unreliable communication links

We now turn our attention to the possibility that the communication be-
tween plant and controller is unreliable, in the sense that sensor/actuator
data may fail to reach their destination. This situation, where data packets
are “dropped,” can arise because of network congestion, unreliable hardware,
or because of the transmission protocol used (the transmission control proto-
col (TCP) and user datagram protocol (UDP) are two well-known examples).

Consider an NCS, where the connections from controller to plant and plant
to controller (referred to as uplink and downlink, respectively) are unreliable,
in the sense that transmitted data may occasionally fail to reach its destina-
tion. To make things precise, let the plant be described by the discrete-time
LTI system



www.manaraa.com

590 D. Hristu-Varsakelis

x(k + 1) = Ax(k) + α(k)Bu(k), (25)
y(k) = β(k)x(k),

where α(k), β(k) ∈ {0, 1} indicate whether at time k the control (measure-
ment) signal reaches the plant (controller) or not. The assumption here is
that the vectors u and y are sent in single-packet transmissions, and that the
sequences {α(k)}, {β(k)} are i.i.d. Bernoulli, with Pr[α(k) = 0] = α and
Pr[β(k) = 0] = β being the link failure probabilities.

One can then pose the following problem.

Problem 3. For the system of (25) and given the link failure rates α, β, find
a control policy that minimizes

J = E
{ ∞∑

k=0

x(k)TQx(k) + α(k)u(k)TRu(k)
}
,

where E{·} denotes expected value.

This LQR problem (and its finite-horizon version) are discussed in [13]. A
related problem is the following.

Problem 4. For the system (25), what are the maximum link failure rates
α, β for which a stabilizing controller exists?

In [13] it is shown that the controller that minimizes J is given by a
feedback law similar to that for the standard LQR problem:

u∗(k) = G(k)x̂(k); x̂(k)
�
= E{x(k)}, (26)

where x̂(k) is an estimate of the state x obtained by

x̂(k) =
{
Ax̂(k) + α(k − 1)Bu(k − 1), β(k) = 0

x(k), β(k) = 1 , (27)

G(k) = −(R + BTK(k + 1)B)−1BTK(k + 1)A, and K(k) is determined by
the following recursive matrix equations:

P (k) = (1− α)ATK(k + 1)B(R+BTK(k + 1)B)−1BTK(k + 1)A (28)
K(k) = ATK(k + 1)A− P (k) +Q. (29)

The solution to the last set of equations as well as the answer to Problem 4
depend strongly on whether the communication protocol includes “acknowl-
edgment” (ACK) packets that allow the sender to know whether its transmis-
sion was received or not. If all receptions are acknowledged and ACK packets
are always received by the transmitter, then the separation principle [7] holds,
and the controller and estimator can be designed separately. If the protocol
does not support acknowledgment (e.g., UDP), then the controller does not
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know the “state of the channel,” i.e., whether α(k) was 0 or 1 and thus has no
way of knowing whether the sensor output it receives at time k + 1 includes
the effect of u(k).

In the case of the infinite-horizon LQR problem with acknowledgments, the
stabilizing controller and maximum link failure rate are given by the following
theorem.

Theorem 8 ([13]). Let B be square and full rank, and let (A,Q1/2) be ob-
servable. Suppose

max
i
|λi(A)| < min

{
1√
α
,
1
β

}
.

Then (i) K(k) converges to the positive definite solution of

K = ATKA+Q− (1− α)ATKB(R+BTKB)−1BTKA

and (ii) the closed-loop system is stable.

Without ACK packets the estimator is again given by (27). However, the
separation principle does not hold and the maximum tolerable link failure rate
is slightly reduced, as given the following theorem.

Theorem 9 ([13]). Let B be square and full rank, and let (A,Q1/2) be ob-
servable. Suppose

max
i
|λi(A)| < min

{√
1 + αβ

α+ αβ
,
1
β

}
.

Then (i) there exist K > 0, P > 0, such that for P (0) = 0 and all K(0) > 0,
the Riccati equations (29) converge to the positive definite solutions of

P = (1− α)ATKB(R+BTKB)−1BTKA (30)
K = ATKA− P +Q (31)

and (ii) the closed-loop system is stable.

The case where the system is subject to actuator noise and transmissions
are multiple-packet is discussed in [1]. In that work acknowledgment packets
can also be “dropped,” so that the separation principle does not hold. Thus
one has a system whose dynamics switch randomly between eight possible
dynamics, depending on whether the transmitted data (from either controller
or plant) arrived at its destination, and whether an acknowledgment failed to
arrive back to the sender. One can design a suboptimal controller/estimator
pair (by insisting on separation) and arrive at a set of necessary and sufficient
linear matrix inequality(LMI)-based conditions that relate the stability of the
closed-loop NCS (under the proposed controller/estimator structure) to the
link failure rates.
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For the special case where only the downlink is subject to unreliable com-
munication under single-packet transmission, and the controller u(k) = Kx̂(k)
uses ZOH,

x̂(k) =
{

x(k) if β(k) = 1,
x̂(k − 1) if β(k) = 0 (32)

a bound for the maximum allowable link failure rate is given in [32].

Theorem 10 ([32]). Consider the system of (25) where α(k) = 1 for all k,
i.e., only the downlink is subject to failures, with rate (1 − r), 0 < r ≤ 1. If
the controller K is such that A+BK is stable, then the closed-loop system is
exponentially stable for all

1
1− log (λ2

max(A+BK)) / log (λ2
max(A))

< r ≤ 1.

3.5 Communication sequences: Beyond stability-related problems

In addition to the stabilization problems discussed in the previous sections,
communication sequences have been used to capture communication con-
straints in problems related to tracking, optimal control and robust control.
For example, the work in [23] discusses LQR problems with communication
constraints, and [8] addresses least-squares output tracking for NCS. As we
have mentioned, the problem of finding optimal communication sequences
is typically a difficult one. Interesting heuristics that attempt to find near-
optimal communication sequences are explored in [18] (H2 and H∞ control
for NCS) and [17] (optimizing communication in LQR problems).

4 A Complementary Viewpoint: Control with Limited
Bit Rate

Up to now, we have concentrated on time-division based models for capturing
communication constraints and have treated the communication channel as
being able to transmit signals with infinite precision. This assumption works
well when channel throughput is high enough so that performance is not signif-
icantly affected by quantization errors. Aside from the fact that realistic chan-
nels can only accommodate a finite number of bits per second, re-examining
limited communication control where the limited resource is bits as opposed
to time can yield valuable insights as to how one could design controllers for
NCSs, and what data rates are required for adequate performance. The rest
of this section reviews some of the fundamentals when the feedback loop is
closed via digital channels which are subject to data rate limitations.



www.manaraa.com

Feedback Control with Communication Constraints 593

4.1 State estimation and stabilization with limited bit rate

Fig. 5 illustrates an NCS whose feedback loop is closed over a digital channel.
The channel can support a maximum rate of R bits per second (it takes
δ = 1/R seconds to transmit a single bit). Assume that the plant is continuous-

Fig. 5. A feedback loop which is closed over a communication channel with limited
bit rate. The controller acts on coded versions of the sensor data and produces inputs
that must be decoded before being applied to the plant

time LTI (18). Digital communication means that sensor and actuator data
must be sampled with finite precision (quantized) and coded in a string of bits
(or more generally, symbols from a D-ary alphabet). The coded observation is
sent to the controller, which decodes it and computes a new plant input, which
is again coded before being transmitted to the plant. There are various choices
with respect to the coding scheme used, including fixed- and variable-length
codes. A particularly useful subset of the latter category are prefix codes [5],
which allow the receiver to immediately recognize the end of a code word.

Question 2. What is a necessary (sufficient) bit rate to guarantee the existence
of a coding scheme and estimator for the state x?

Question 3. What is a necessary (sufficient) bit rate to guarantee the existence
of a coder, decoder and controller that stabilize the NCS?

Estimation

We begin by addressing Question 2. A “good” estimate of the state x seems
necessary in order for any controller to be effective. Under the assumptions
given in the previous section, the time required to transmit a measurement
of the state grows linearly with the number of bits sent. Therefore, precision
becomes counterproductive after a certain point: if one chooses to describe a
sensor reading too precisely, the controller will receive the digital description
later and the data will be outdated.
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To illustrate this trade-off, assume that fixed-length coding is used to send
data from the plant to the estimator, and that the plant is discrete time, with
no process or measurement noise:

x(k + 1) = fk(x(k)), x(k) ∈ R
n
, x(0) ∈ S0 ⊂ R

n
, k = 0, 1, 2, ... . (33)

The initial state x(0) is assumed to be drawn from a probability density with
compact support (e.g., a compact set S0) and the functions fk are Lipschitz:

‖fk(x)− fk(y)‖ ≤Mk‖x− y‖ ∀x, y ∈ R
n
.

At each time step k, an estimator receives R bits of information on the state
x(k) (propagation delays are ignored) and must produce an estimate x̂(k+1),
based on all past transmissions. One way to do this is to begin by partitioning
S0 into 2R disjoint regions and transmit the index of the region that contains
x(0). The estimator can then set the auxiliary variable z(0) to be any point
in that region (e.g., its centroid) and then propagate z(0) ahead according
to the dynamics (33) to generate the current estimate, i.e., at time k, set
x̂(k+1) = fk(z(k)). The key point is that if the error e(k) = x(k)− x̂(k) does
not grow too rapidly with k (equivalently, if the Lipschitz constants Mk are
not too large), the estimator can know with certainty that the state x(k + 1)
is contained in a subset S(k+1) whose size (in terms of diameter or Lesbegue
measure) is smaller than that of S(k). The new S(k+1) is then repartitioned
in 2R subsets and the procedure is repeated, further “narrowing down” the
expected value of the error. The following is a restatement of the main result
in [19].

Theorem 11 ([19]). Let the distribution of x(0) have compact support. Then,
there exist a coder and estimator (based on the successive partitioning idea
described above) such that

E‖x(k + 1)− x̂(k + 1)‖2 ≤ φ2

(∏k
0 Mi

2Rk/n

)
,

where φ is a constant that depends on the state dimension n, the bit rate R
and the size of the compact set that contains the initial state.

The last inequality gives a sufficient condition for the estimation error to
converge to zero. If the plant is linear (35), then the same condition specializes
to

R > n log2(max
i
λi(A)).

The work in [19] includes extensions of the last theorem in the case where the
distribution of x(0) is not compact. For additional insights into the problem of
state estimation under process and measurement noise, including an explicit
consideration of transmission delays, see [27].
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Stabilization: Explicit consideration of transmission delays

We now turn to the problem of stabilizing the NCS (Fig. 5) under the bit rate
constraints discussed in the previous section. We will assume for the moment
that controls are applied for arbitrarily short time intervals. The finite delay
between when y (or x) is measured and u is applied means that the system is
essentially uncontrolled for some time initially and cannot be asymptotically
stabilized unless the initial state and start time are known precisely. However,
one can ask for a slightly weaker type of stability.

Definition 5. An NCS is containable if for any ball N around the origin there
exists an open neighborhood of the origin M and coding and feedback control
laws such that any trajectory started in M remains in N for all time.

Question 3 can be answered (in the context of containability) by assuming
first that x(0) lies in some Lesbegue-measurable set S0. Suppose the plant is
continuous-time LTI (18). If the plant is unstable, then any uncertainty in
one’s knowledge of x(0) will be “amplified” as time goes on. On the other
hand, the coder must balance speed with precision (i.e., giving an “answer”
quickly versus transmitting more bits) when providing information on x.

We begin by asking how many bits it takes to “narrow down” the set that
contains x over consecutive transmissions, given the bit rate of 1/δ [28]. After
applying a control u to the plant over some interval [0, kδ], and in the absence
of any observations, the state must lie somewhere in the set

S1(S0, u, T ) = eAtS0 + g(u),

where g(u) is some vector in R
n and eAtS

�
= {eAtx : x ∈ S}.

If we let µ(S) denote the n-dimensional “volume” (more precisely the
Lesbegue measure) of the set S, we have

µ(K1(S0, u, T )) = det(eAt)µ(S0) = etr(A)tµ(S0).

As before, consider decomposing the set S0 into S0 = ∪N
i=0Ki where the

subsets Ki are such that all elements of Ki correspond to a unique code word
ci. The coder checks to see which of the Ki contains the state and transmits
the corresponding code word (using ci bits) to the controller, which in turn
sends di bits to the plant. The ci, di are assumed to be prefix codes. Then,
the set that contains the state at the end of the first transmission satisfies

µ(S1) = etr(A)(ci+di)δµ(Ki).

If the system is to be containable, then µ(S1) <
∑
µ(Ki) because S1 ⊂ S0 =

∪iKi. Summing over all Ki leads to

N∑
0

1
eδ(ci+di)trA

≥ 1 (34)



www.manaraa.com

596 D. Hristu-Varsakelis

as a necessary condition for containability. Moreover, if the same set of code
words is used for both observation and control, then the following can be
shown [28].

Theorem 12 ([28]). The NCS is containable only if e2tr(A)δ ≤ D.

In the case where y, x and u all have the same dimension n, one can obtain a
sufficient condition as well.

Theorem 13 ([28]). If (A,B) is controllable and C is invertible, then the
NCS (with binary code words) is containable if max‖x‖∞ ‖eδAx‖2n+1

∞ < 2.

Stabilization with “instantaneous” transmissions

The situation discussed in the last section makes a very useful connection
between the bit rate supported by the channel and the size of the alphabet
in which data is sent. It also shows explicitly that containability will be vio-
lated if one chooses to be too precise about measurements (34) and that—as
expected—increasing the size of the alphabet improves the bound because it
increases the amount of information carried by each bit around the loop. A
similar but slightly “tighter” condition can be obtained for the discrete-time
counterpart of (18) [20]:

x(k + 1) = Ax(k) +Bu(k); x(0) ∈ K0 ⊂ R
n (35)

y(k) = Cx(k), (36)

where we assume that the plant and controller are co-located, i.e., there is no
need for coding/decoding actuator data and only sensor measurements must
be transmitted through a digital channel at a rate of R bits per time step.

Theorem 14 ([20]). Assume that the system (35) is reachable and observable
and that its initial state x(0) is random, with a distribution which is absolutely
continuous with respect to the Lesbegue measure on R

n and has finite (r+ε)-th
absolute moment E‖x0‖r+ε <∞ for some r, ε > 0. Then, for a given data rate
R (bits per step k), a coder/controller that exponentially stabilizes the NCS
with rate ρ, i.e.,

lim
k→∞

ρ−krE‖x(k)‖r = 0,

exists if and only if

R >
∑

|λi|≥ρ

log2

∣∣∣∣λi(A)
ρ

∣∣∣∣ , (37)

where λi(A) are the eigenvalues of A.

The same condition on R is thoroughly explored in [25] in the context of
observability, controllability and exponential stability of the NCS (35). See



www.manaraa.com

Feedback Control with Communication Constraints 597

also [20, 29] for additional discussions of (37), including details of how vari-
ous choices of coding/quantization schemes affect the bounds on the bit rate
necessary for stability.

If C = I, the condition (37) is necessary and sufficient for the existence of
a stabilizing encoder/decoder/controller. In the case where the system (35) is
subject to bounded input noise,

x(k + 1) = Ax(k) +Bu(k) + w(k); ‖w(k)‖ < M (38)
y(k) = x(k), (39)

then (37) is necessary and sufficient for the existence of a coder, decoder and
controller for which the estimation error lim supk→∞ ‖x(k)−x̂(k)‖ is bounded,
where x̂(k) is the output of the decoder. Here, the existence of the encoder
is asserted over all encoders that have access to all past observations and
controls; both encoder and decoder are assumed to have knowledge of the
dynamics of the plant as well as one another.

5 Beyond this Introduction

This chapter explored some of the important results in the area of control
with limited communication, focusing mainly on stabilization and estimation
problems. Our goal was to give the reader a “flavor” of how communication
constraints enter into the solution of control problems and to describe some
of the available tools for designing (jointly when possible) effective controllers
and communication policies. We explored various types of communication
constraints, including transmission delays, unreliable communication links,
and what could be termed “bottlenecks.” The latter were due either to the
limited number of channels available for controller-plant communication or to
the limited throughput of a single channel shared by all sensors or actuators.

The area of NCSs is at the interface of several “core” fields within sys-
tems and control. Some of the results discussed here were built on previous
contributions in switched and hybrid systems (see related chapters in this
book), as well as results from more “mature” areas such as periodic systems
and information theory. An excellent collection of NCS-related references can
be found online at http://home.cwru.edu/ncs/allpubs.htm. Other areas that
may offer the reader additional useful viewpoints on the interplay of control
and communication, but were not mentioned in this chapter, include multirate
systems, scheduling, systems with delays and quantized control.
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1 Introduction

A networked control system (NCS) is a control system in which a data network
is used as a feedback medium. NCS is an important research area; see for
example [16] and [15, 18, 19]. The use of networks as media to interconnect
the different components in an industrial control system is rapidly increasing,
although the use of an NCS poses some challenges. One of the main problems
to be addressed when considering an NCS is the size of the bandwidth required
by each subsystem. It is clear that the reduction of bandwidth necessitated by
the communication network in an NCS is a major concern. This can perhaps
be addressed by two methods: the first method is to minimize the transfer
of information between the sensor and the controller/actuator; the second
method is to compress or reduce the size of the data transferred at each
transaction. Since shared characteristics among popular industrial networks
are a small transport time and a big overhead, using less bits per packet has a
small impact on the overall bit rate. So reducing the rate at which packets are
transmitted brings better benefits than data compression in terms of the bit rate
used. In this chapter, we consider the problem of reducing the packet rate of
an NCS using a novel approach called model-based NCS (MB-NCS). The MB-
NCS architecture makes explicit use of knowledge about the plant dynamics
to enhance the performance of a system. The MB-NCS was introduced in [11].

In Section 2 the basic MB-NCS setup is introduced for continuous plants.
Stability of the MB-NCS with no quantization and periodic transmissions is
considered. In Section 3 a performance measure is introduced for the previ-
ously presented MB-NCS. The stability of the MB-NCS with time-varying and
stochastic transmission times is studied in Section 4. Quantization schemes
are considered in Section 5. Finally, stability for a class of nonlinear systems
is studied in Section 6.
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2 Stability of Continuous Linear MB-NCS with
Constant Update Times

2.1 State feedback MB-NCS

We consider the control of a continuous linear plant where the state sensor
is connected to a linear controller/actuator via a network. In this case, the
controller uses an explicit model of the plant that approximates the plant
dynamics and makes possible the stabilization of the plant even under slow
network conditions.

PLANT

SENSORx=Ax+Bu
.

hnetwork

MODEL

x=Ax+Bu
.

x

update

K

u

Fig. 1. Proposed configuration of networked control system (NCS)

We will concentrate on characterizing the transfer time between the sensor
and the controller/actuator, which is the time between information exchanges.
The plant model is used at the controller/actuator side to recreate the plant
behavior so that the sensor can delay sending data since the model can provide
an approximation of the plant dynamics. The main idea is to perform the
feedback by updating the model’s state using the actual state of the plant that
is provided by the sensor. The rest of the time the control action is based on
a plant model that is incorporated in the controller/actuator and is running
open loop for a period of h seconds. The control architecture is shown in Fig. 1.

Our approach is novel in that it incorporates a model of the plant, the
state of which is updated at discrete intervals by the plant’s state. We present
a necessary and sufficient condition for stability that results in a maximum
transfer time. We make use of standard stability definition such as the ones
found in [1].

If information for all the states is available, then the sensors can send this
information through the network to update the model’s vector state. For our
analysis we will assume that the compensated model is stable and that the
transportation delay is negligible. We will assume that the frequency at which
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the network updates the state in the controller is constant. The idea is to find
the smallest frequency at which the network must update the state in the
controller, that is, an upper bound for h, the update time. Usual assumptions
in the literature include requiring a stable plant, or in the case of a discrete
controller, a smaller update time than the sampling time. Here we do not
make any of these assumptions and the plant may be unstable.

Consider the control system of Fig. 1 where the plant is given by ẋ =
Ax+Bu, the plant model by ˙̂x = Âx̂+B̂u, and the controller by u = Kx̂. The
state error is defined as e = x− x̂, and it represents the difference between the
plant state and the model state. The modeling error matrices Ã = A− Â and
B̃ = B− B̂ represent the difference between the plant and the model. We will
now express the combined state z(t) =

[
x(t)T e(t)T

]T in terms of the initial
condition x(t0). A necessary and sufficient condition for stability of the state

feedback MB-NCS will then be presented. Define Λ =
[
A+BK −BK
Ã+ B̃K Â− B̃K

]
.

Proposition 1 [13] The state feedback MB-NCS with initial conditions
z(t0) =

[
x(t0)T 0T

]T = z0 has the following response:

z(t) = eΛ(t−tk)
([

I 0
0 0

]
eΛh

[
I 0
0 0

])k

z0,

for t ∈ [tk, tk+1),with tk+1 − tk = h.

Theorem 1 [13] The state feedback MB-NCS is globally exponentially stable
around the solution z =

[
xT eT

]T = 0 if and only if the eigenvalues of

M =
[
I 0
0 0

]
eΛh

[
I 0
0 0

]
are strictly inside the unit circle.

One can gain insight into the closed-loop system behavior by noticing that

the non-zero eigenvalues of M =
[
I 0
0 0

]
eΛh

[
I 0
0 0

]
are exactly the eigenvalues

of another matrix:

N = e(Â+B̂K)h + eAh

∫ h

0
e−Aτ (Ã+ B̃K)e(Â+B̂K)τdτ. (1)

This can be shown either directly or by using the Laplace transform. The
second method involves replacing the update time variable h by the time vari-
able t, transforming the expression using the Laplace transform. The trans-
formed expression can then be easily manipulated. After isolating the upper
left block matrix, the inverse Laplace transform can be used to return to the
time domain [10].

First we observe that the eigenvalues of the compensated model ap-
pear in the first term of N . We can see the term ∆ = eAh

∫ h

0 e
−Aτ (Ã +

B̃K)e(Â+B̂K)τdτ as a perturbation on the desired eigenvalues, that is, the
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eigenvalues of the compensated model. Even if the eigenvalues of the original
plant were unstable, the perturbation ∆ can be made small enough by having
h and Ã+ B̃K small and thus minimizing their impact over the eigenvalues of
the compensated plant. We also observe that if the update time h is driven to
zero, then ∆ = 0. Also, it is possible to make ∆ = 0 by having a plant model
that is exact.

Example 1 Consider the following unstable plant (double integrator): A =[
0 1
0 0

]
, B =

[
0
1

]
. We will use the state feedback controller given by u = Kx

with K =
[
−1 −2

]
. Usually it is assumed that the actuator/controller will

hold the last value received from the sensor until the next time the sensor trans-
mits and a packet is received. Under this assumption the controller/actuator’s
model acts as a zero-order hold when updated. We will first analyze this sit-
uation. To do so, we will transform the plant model so that it holds the last
state update presented to it by the network. This is given by ˙̂x = Âx̂ + B̂u,

with Â =
[

0 0
0 0

]
and B̂ =

[
0 0

]T . Now we need to search for the biggest h

such that
[
I 0
0 0

]
eΛh

[
I 0
0 0

]
has its eigenvalues inside the unit circle. To do so

we plotted the maximum eigenvalue magnitude versus the update time. The
plot is shown in Fig. 2.

From Fig. 2 we see that the condition for stability is to have h < 1 second.
In fact, the test matrix M will have one eigenvalue with magnitude 1 for
h = 1 second and the system will be marginally stable. If we use the results
by [19] we would obtain that, in order to stabilize the system, we would need
to have h < 2.1304×10−4 seconds, which is very conservative. Simulations of
the system with update times of 2.1304 × 10−4 and 0.5 seconds are shown in
Fig. 3. Note that the plant was initialized with an initial condition of

[
1 1

]T .
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Fig. 2. Maximum eigenvalue magnitude of the test matrix M versus the update
time h
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Fig. 3. System response for h = 2.1304 × 10−4 and h = 0.5 sec.

It is clear that the performance obtained with h = 0.5 second is not too
different from the one obtained with h < 2.1304 × 10−4 seconds, but the dif-
ference in the amount of bandwidth used is large. If we were to use Ethernet
that has a minimum message size of 72bytes (including preamble bits and
start of delimiter fields), the data rate would be 2.7Mbits/sec for the case of
h < 2.1304× 10−4 seconds, and 1.2Kbits/sec for the case of h = 0.5 second.

Example 2 In real applications uncertainties can frequently be expressed as
tolerances over the different measured parameter values of the plant. This
can be mapped into structured or parametric uncertainties on the state space
matrices. Next an example is given on how Theorem 1 can be applied if two
entries on the A matrix of the model can vary within a certain interval.

model: Â =
[

0 1
0 0

]
, B̂ =

[
0
1

]
;

plant: A =
[

0 1 + ã12
0 + ã21 0

]
, B =

[
0
1

]
;

with ã12 = [−0.5, 0.5], ã21 = [−0.5, 0.5]

controller: K =
[
−1 −2

]
.

The system will now be tested for an update time of h = 2.5 seconds. The
following contour plot in Fig. 4 represents the magnitude of the maximum
eigenvalue of the test matrix M as a function of the (1,2) and (2,1) entries
of A parameters a12 and a21. Here the contour of height equal to one is the
relevant one to stability. It is easy to isolate the stable and unstable regions in
the uncertainty parameter plane. The stable region is between the lines labeled
as 1.

2.2 Output feedback MB-NCS

We have been considering plants where the full state vector is available at the
output. We now extend our approach to include plants where the state is not
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Fig. 4. Contour plot of maximum eigenvalue magnitude versus model error

directly measurable. In this case, in order to obtain an estimate of the plant
state vector, a state observer is used. It is assumed that the state observer is
collocated with the sensor. Again, we use the plant model, ˙̂x = Âx̂ + B̂u, to
design the state observer. The observer uses the plant output and generates
a copy of the plant input applied by the controller. See Fig. 2.2.

PLANT STATE OBSERVER

x=Ax+Bu
.

hnetwork

MODEL

x=Ax+Bu
.

x

update

K

u

y=Cx+Du
x=(A-LC)x+[B-LD L]
. u

y
y

x

Fig. 5. Proposed configuration of an output feedback MB-NCS

Having the sensor carry the computational load of an observer is justified
by the fact that typically sensors that can be connected to a network contain
an embedded processor. This processor is usually in charge of performing the
sampling and filtering and implementing the network layer services required to
connect to the network. Ishii and Francis give a similar justification in [17]. In
their approach an observer is placed at the output of the plant to reconstruct
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the state vector. The result is then quantized and sent over the network to
the controller.

The observer has as inputs the output and input of the plant. In the
implementation of this setup, to acquire the input of the plant, which is at
the other side of the communication link, the observer can have a version
of the model and controller and knowledge of the update time h. In this
way, the output of the controller, that is, the input of the plant, can be
simultaneously and continuously generated at both ends of the feedback path.
The only requirement is that the observer must ensure that the model has
been updated. This last requirement ensures that both the controller and
the observer are synchronized. The handshaking provided by most network
protocols can be used.

Again, we use the plant model, ˙̂x = Âx̂+ B̂u, to design the state observer.
See Fig. 2.2. The observer has the form of a standard state observer with gain
L. In summary, the system dynamic equations are, for t ∈ [tk, tk+1),

Plant: ẋ = Ax+Bu, y = Cx+Du

Model: ˙̂x = Âx̂+ B̂u, y = Ĉx̂+ D̂u
Controller: u = Kx̂

Observer: ˙̄x = (Â− LĈ)x̄+
[
B̂ − LD̂ L

] [
uT yT

]T
.

We now proceed in a similar way as in the previous case of full feedback. There
will be an update interval h, after which the observer updates the controller’s
model state x̂ with its estimate x̄. Define an error e that will be the difference
between the controller’s model state and the observer’s estimate: e = x̄ − x̂.
Also define the modeling error matrices in the same way as before: Ã = A−Â ,
B̃ = B − B̂ , C̃ = C − Ĉ , and D̃ = D − D̂. Define z =

[
xT x̄T eT

]T , and

Λo =

⎡⎣ A BK −BK
LC Â− LĈ + B̂K + LD̃K −B̂K − LD̃K
LC LD̃K − LĈ Â− LD̃K

⎤⎦ .
Theorem 2 [13] The output feedback MB-NCS is globally exponentially stable
around the solution z =

[
xT x̄T eT

]T = 0 if and only if the eigenvalues of

Mo =

⎡⎣ I 0 0
0 I 0
0 0 0

⎤⎦ eΛoh

⎡⎣ I 0 0
0 I 0
0 0 0

⎤⎦ are inside the unit circle.

The eigenvalues of the test matrixMo can be studied in a similar fashion as
in the state feedback case. By replacing h by t, applying the Laplace transform,
and isolating the nonzero upper left block of Mo we obtain
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P =

⎡⎢⎣
(
sI − Â− B̂K

)−1
+∆1 (sI −A)−1BK

(
sI − Â− B̂K

)−1

∆3

(
sI − Â+ LĈ

)−1
+∆2

⎤⎥⎦
with
∆1 = (sI −A)−1(Ã+ B̃K)(sI − Â− B̂K)−1

∆2 = (sI − Â+ LĈ)−1
(
B̃K −

(
Ã− LC̃

)
(sI −A)−1BK

)
(sI − Â− B̂K)−1

∆3 = (sI − Â+ LĈ)−1
(
Ã− LC̃ + B̃K −

(
Ã− LC̃

)
(sI −A)−1

(
Ã+ B̃K

))
·

(sI − Â− B̂K)−1

It is clear that if Ã→ 0 , B̃ → 0 , and C̃ → 0 then ∆1 → 0 , ∆2 → 0 , and
∆3 → 0. By doing so we obtain

PL = lim
∆→0

P =

⎡⎢⎣
(
sI − Â− B̂K

)−1
(sI −A)−1BK

(
sI − Â− B̂K

)−1

0
(
sI − Â+ LĈ

)−1

⎤⎥⎦ .
From here it can be seen that by making the error between the plant and
the model zero, the system’s compensated eigenvalues would be placed at
eig

{
e(Â+B̂K)h

}
∪ eig

{
e(Â−LĈ)h

}
. Similarly to the full state feedback case,

there are perturbation matrices ∆1, ∆2, and ∆3 that can be made small by
reducing the error between the actual plant and the model dynamic equations.
The perturbation is over a matrix that has the eigenvalues of the compensated
model. Finally, note that the separation principle of classic control, where
controller and observer can be designed independently, cannot be used here.

2.3 State feedback MB-NCS with network-induced delays

Previously we assumed that the network delays were negligible. This is usually
true for plants with slow dynamics relative to the network bandwidth. When
this is not the case, the network delay cannot be neglected. Network delays
can occur for many reasons. There are three important delay sources:

• Processing time
• Media access contention
• Propagation and transmission time.

The first one, processing time, occurs at both ends of the communication
channel. On the transmitter, the processing time is the time elapsed between
the time at which the transmitting process makes the request to the operating
system to transmit a message, to the time at which the message is ready to
be sent. On the receiver this is the time interval that occurs between the time
at which the last bit of the message is received by the receiver, and the time
at which the message is delivered by the operating system to the receiver
process.
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The media access contention time is the length of time the transmitter has
to wait until the communication channel is not busy. This is usually the case
when several transmitters have to share the same media.

The propagation and transmission time is the time the message takes to
be placed on the network media and to travel through the network to reach
the receiver. In local area networks the time the message takes to travel or
propagate through the media is small in comparison to that for wide area
networks or internetworks like the Internet. The time the message takes to be
placed on the network depends on the size of the message and the baud rate.

If the control network is a local area network, as is common practice in in-
dustry, the propagation and transmission time can be established beforehand
with good accuracy, and the same is true for the processing time. If real-time
operating systems are used, the processing time can be accurately calculated.
Finally, the media access contention delay can be fixed with the use of a com-
munication protocol with scheduling. Fast data communication networks like
Token Ring, Token Bus, and ArcNet fall into this category. Industry-oriented
control networks like Foundation Fieldbus also implement a scheduler through
their link active scheduler (LAS) . Even the inherently non-deterministic Eth-
ernet has addressed the problem of not having a specified contention time
with the so-called switched Ethernet.

In conclusion, most of these delays can at least be bounded if the network
conditions are appropriate.

In the following, we extend our results to include the case where transmis-
sion delay is present. We will assume that the update time h is larger than
the delay time τ . As before, we will assume that the update time h and delay
τ are constant. We will present here the case of full state feedback systems.

So, at times kh − τ the sensor transmits the state data to the con-
troller/actuator. This data will arrive τ seconds later. Therefore, at times kh
the controller/actuator receives the state vector value x (kh− τ). The main
idea is to use the plant model in the controller/actuator to calculate the
present value of the state. After this, the state estimate obtained can be used
to update the controller’s model as in previous setups. The system is depicted
in Fig. 6.

The propagation unit uses the plant model and the past values of the
control input u(t) to calculate an estimate of actual state x̆(kh) from the
received data x(kh− τ). This estimate is then used to update the model
which the controller will generate the control signal for the plant.

The system is described by the following equations:

Plant: ẋ = Ax+Bu

Model: ˙̂x = Âx̂+ B̂u
Controller: u = Kx̂, t ∈ [tk, tk+1)
Propagation unit: ˙̆x = Âx̆+ B̂u, t ∈ [tk+1 − τ, tk+1]
Update law: x̆← x, t = tk+1 − τ and x̂← x̆, t = tk+1.

(2)
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Fig. 6. Proposed configuration of a state feedback NCS in the presence of network
delays

We define the errors ê = x̆− x̂ and ĕ = x− x̆. We also make the following
definitions:

Ã = A− Â
B̃ = B − B̂ , Λd =

⎡⎣A+BK −BK −BK
Ã+ B̃K Â− B̃K −B̃K

0 0 Â

⎤⎦ , z =

⎡⎣xĕ
ê

⎤⎦ .
Theorem 3 [13] The state feedback MB-NCS with networked-induced delay
τ is globally exponentially stable around the solution z =

[
xT ĕT êT

]T = 0

if and only if the eigenvalues of MT =

⎡⎣ I 0 0
0 I 0
0 0 0

⎤⎦ eΛdτ

⎡⎣ I 0 0
0 0 0
0 I I

⎤⎦ eΛT (h−τ) are

inside the unit circle.

It is interesting to note that the results of Theorem 3 can be seen as a
generalization of Theorem 1. This can be shown by driving τ to zero.

Example 3 Here we present a numeric example with the same plant that we

have been using, A =
[

0 1
0 0

]
, B =

[
0
1

]
, with randomly generated plant model

Â =
[
−0.3444 0.9225
−0.3089 0.3560

]
, B̂ =

[
−0.0098
1.3159

]
, and controller K =

[
−1 −2

]
.

Fig. 7 shows the plots for the maximum eigenvalue magnitude as a function
of h for three different values of τ . The maximum value h can have to preserve
stability is reduced when τ is increased.
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Fig. 7. Maximum eigenvalue of test matrix M versus the update times h for τ= 0,
0.25, and 0.50 sec

3 A Performance Index for Linear MB-NCS with
Constant Update Times

The performance characterization of NCSs under different conditions is also
of major concern, along with stability. It is clear that, since the MB-NCS is
h-periodic, there is no transfer function in the normal sense whose H2 norm
can be calculated [2]. For linear time-invariant (LTI) systems the H2 norm can
be computed by obtaining the 2-norm of the impulse response of the system.
We will extend this definition to specify an H2 norm, or more accurately, to
define an H2-like performance index [2]. We will call this performance index
the extended H2 norm. We will study the extended H2 norm of the MB-NCS
with output feedback studied in Section 2.2. A disturbance signal w and a
performance or objective signal z are included in the setup.

We will start by defining the system dynamics.

Plant dynamics: Observer dynamics:
ẋ = Ax+B1w +B2u ˙̄x = (Â− LĈ2)x̄+ (B̂2 − LD̂22)u+ Ly
z = C1x+D12u Model dynamics:
y = C2x+D21w +D22u ˙̂x = Âx̂+ B̂2u

Controller:
u = Kx̂

(3)

Define the following:

Λ =

⎡⎣ A B2K −B2K

LC2 Â− LĈ2 + B̂2K + LD̃22K −B̂2K − LD̃22K

LC2 LD̃22K − LĈ2 Â− LD̃22K

⎤⎦
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M(h) =

⎡⎣ I 0 0
0 I 0
0 0 0

⎤⎦ eΛh, BN =

⎡⎣ B1
LD21
LD21

⎤⎦ , CN =
[
C1 D12K −D12K

]
.

Theorem 4 [21] The extended H2 norm, ‖G‖xh2, of the output feedback
MB-NCS described in (3) is given by ‖G‖xh2 = trace

(
BT

NXBN

)
where X is

the solution of the discrete Lyapunov equation
M(h)TXM(h)−X+Wo(0, h) = 0 and Wo(0, h) is the observability Gramian
computed as Wo(0, h) =

∫ h

0 e
ΛT tCT

NCNe
Λtdt.

Note that the observability Gramian can be factorized as Caux
TCaux =∫ h

0 e
ΛT tCT

NCNe
Λtdt. This allows one to compute the extended norm as the

regular H2 norm of a discrete LTI system.

Corollary 1 [21] Define Caux
TCaux =

∫ h

0 e
ΛT tCT

NCNe
Λtdt and the auxiliary

discrete system Gaux with parameters Aaux = M(h), Baux = BN , Caux and
Daux = 0; then the following holds:

‖G‖xh2 = ‖Gaux‖2 .

Example 4 We now present an example using a double integrator as the

plant. Let the plant dynamics be given by A =
[

0 1
0 0

]
, B1 =

[
0.1
0.1

]
,

B2 =
[
0 1

]T , C1 =
[
0.1 0.1

]
, C2 =

[
1 0

]
, D11 = 0 , D12 = 0.1 ,

D21 = 0.1 , D22 = 0 . We will use the state feedback controller K =
[
−1 −2

]
.

A state estimator with gain L =
[
20 100

]T is used to place the state observer
eigenvalues at –10. We will use a plant model with the following parame-

ters: Â =
[

0.1634 0.8957
−0.1072 −0.1801

]
, B̂2 =

[
−0.1686
1.0563

]
, Ĉ2 =

[
0.8764 0.1375

]
,

D̂22 = −0.1304.
In Fig. 8 we plot the extended H2 norm of the system as a function of

the update times. Note that as the update time of the MB-NCS approaches
zero, the value of the extended H2 norm approaches the H2 norm of the non-
networked compensated system. Also note the performance degradation as the
update time h is increased.

4 Stability of MB-NCS with Time-Varying Update
Times

In this section we relax our assumption that the update times h(k) are con-
stant. Here we study the state feedback MB-NCS shown in Fig. 1. The packets
transmitted by the sensor contain the measured value of the plant state and
are used to update the plant model on the actuator/controller node. These
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Fig. 8. Extended H2 norm of the system as a function of the update times

packets are transmitted at times tk . We define the update times as the times
between transmissions or model updates: h(k) = tk+1 − tk. Previously, we
made the assumption that the update times h(k) are constant. This might
not always be the case in applications. The transmission times of data pack-
ets from the plant output to the controller/actuator might not be completely
periodic due to network contention and the usual non-deterministic nature of
the transmitter task execution scheduler. Soft real-time constraints provide
a way to enforce the execution of tasks in the transmitter microprocessor.
This allows the task of periodically transmitting the plant information to
the controller/actuator to be executed at times tk that can vary according
to certain probability distribution functions. This translates into an update
time h(k) that can acquire a certain value according to a probability distri-
bution function. Most work on NCSs assumes deterministic communication
rates [17,20] or time-varying rates without considering the stochastic behavior
of these rates [9, 19]. Little work has concentrated on characterizing stability
or performance on an NCS under time-varying, stochastic communication.

We first study the stability properties of the feedback MB-NCS assuming
that the update times can take any values in an interval [hmin, hmax]. In
this case we will assume that we don’t have any statistical knowledge about
the update times. We analyze the stability properties of this system using
Lyapunov techniques. This is the strongest type of stability presented and
will provide a first cut on the characterization of the stability properties,
perhaps for comparison purposes.

Next, two types of stochastic stability are discussed, almost sure or
probability-1 asymptotic stability and mean square or quadratic asymptotic
stability. The first one is the one that most closely resembles deterministic
stability [3]. Mean square stability is attractive since it is related to optimal
control problems such as the linear quadratic regulator (LQR).
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Two different types of time-varying transmission times are considered for
each stochastic stability criterion. The first assumes that the transmission
times are independent and identically distributed with a probability distri-
bution function that may have support for infinite update times. The second
type of stochastic update time assumes that the transmission times are driven
by a finite Markov chain. Both models are common ways of representing the
behavior of network transmission and scheduler execution times.

4.1 Lyapunov stability of MB-NCS

The stability criterion derived in this section is the strongest and most con-
servative stability criterion. It is based on the well-known Lyapunov second
method for determining the stability of a system. We will assume that the
properties of h(k) are unknown but h(k) is contained within some interval.
This criterion is not stochastic but provides a first approach to stability for a
time-varying transmission times NCS.

Definition 1 The equilibrium z = 0 of a system described by ż = f (t, z)
with initial condition z(t0) = z0 is Lyapunov asymptotically stable at large
(or globally) if for any ε > 0 there exists β > 0 such that the solution of
ż = f (t, z) satisfies ‖z (t, z0, t0)‖ < ε , ∀t > t0 and lim

t→∞ ‖z (t, z0, t0)‖ = 0

whenever ‖z0‖ < β.

Theorem 5 [14] The state feedback MB-NCS is Lyapunov asymptotically sta-
ble for h ∈ [hmin, hmax] if there exists a symmetric positive definite matrix X
such that Q = X−MXMT is positive definite for all h ∈ [hmin, hmax] where

M =
[
I 0
0 0

]
eΛh

[
I 0
0 0

]
.

Theorem 5 may be used to derive an interval [hmin, hmax] for h for which
stability is guaranteed. It is clear that the range for h, that is, the interval
[hmin, hmax], will vary with the choice of X. Another observation is that the
interval obtained this way will always be contained in the set of constant
update times for which the system is stable (as derived using Theorem 1).
That is, an update time contained in the interval [hmin, hmax] will always be
a stable constant update time.

Several ways of obtaining the values for hmin andhmax can be used. One is
to first fix the value of Q, and obtain the solution X of the Lyapunov equation
in Theorem 5 for a value of h known to be stable. Then, using this value of
X, the expression X −MXMT can be evaluated for positive definiteness.
This can be repeated for all the values of h known to stabilize the system to
obtain the widest interval [hmin, hmax].
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4.2 Almost sure or probability-1 asymptotic stability

We will use the definition of almost sure asymptotic stability [3] that pro-
vides a stability criterion based on the sample path. This stability definition
resembles more the deterministic stability definition [4], and it is of practi-
cal importance. Since the stability condition has been relaxed, we expect to
see less conservative results than those obtained using the Lyapunov stability
considered in the previous section. We now define almost sure or probability-1
asymptotic stability.

Definition 2 The equilibrium z = 0 of a system described by ż = f (t, z)
with initial condition z(t0) = z0 is almost sure (or with probability-1) asymp-
totically stable at large (or globally) if for any β > 0 and ε > 0 the solution of

ż = f (t, z) satisfies lim
δ→∞

P

{
sup
t≥δ
‖z (t, z0, t0)‖ > ε

}
= 0 whenever ‖z0‖ < β.

This definition is similar to the one presented for deterministic systems
in Definition 1. We will examine the conditions under which the full state
feedback continuous networked system in Fig. 1 is stable.

MB-NCS with independent and identically distributed
transmission times

Here we will assume that the update times h(k) are independent and iden-
tically distributed (iid) with probability distribution function F (h). We now
present the conditions under which the full state feedback MB-NCS with iid
update times is asymptotically stable with probability-1. We will use a tech-
nique similar to lifting [2] to obtain a discrete LTI representation of the system.
It can be observed that the system can be described by

ξk+1 = Ωkξk, with ξk ∈ L2e and ξk = z(t+ tk), t ∈ [0, hk). (4)

Here L2e stands for the extended L2. It can be shown that the operator Ωk

can be represented as

(Ωkν)(t) = eΛt

[
I 0
0 0

] h(k)∫
0

δ(τ − h(k))ν(τ)dτ, (5)

where δ(t) represents the impulse function. Now we can restate the definition
on almost sure stability or probability-1 stability given in Definition 2 to better
fit the equivalent system representation (4).

Definition 3 The system represented by (4) is almost sure stable or stable
with probability-1 if for any β > 0 and ε > 0 the solution of ξk+1 = Ωkξk
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satisfies lim
δ̃→∞

P

{
sup
k≥δ̃

‖ξk(t0, z0)‖2,[0,tk] > ε

}
= 0 whenever ‖z0‖ < β. Here

the norm ‖·‖2,[0,h(k)] is given by ‖ξk‖2,[0,h(k)] =

(
h(k)∫
0
‖ξk(τ)‖2 dτ

)1/2

.

This definition allows us to study almost sure stability of systems such as
(4) when the probability distribution function for update times has infinite
support. Based on this definition, the following result can now be shown.

Theorem 6 [14] The state feedback MB-NCS, with update times h(j) that are
independent identically distributed random variable with probability distribu-
tion F (h) is globally almost sure (or with probability-1) asymptotically stable
around the solution z =

[
xT eT

]T = 0 if N = E
[(
e2σ̄(Λ)h − 1

)1/2
]
< ∞

and the expected value of the maximum singular value of the test matrix M ,

E [‖M‖] = E [σ̄M ], is strictly less than one, where M =
[
I 0
0 0

]
eΛh

[
I 0
0 0

]
.

Note that the condition may give conservative results if applied directly
over the test matrix. To avoid this problem and make the condition tighter
we may apply a similarity transformation over the test matrix M .

The condition on the matrix N ensures that the probability distribution
function for the update times F (h) assigns smaller occurrence probabilities to
increasingly long update times, that is, F (h) decays rapidly. In particular, we
observe that N can always be bounded if there exists hm such that F (h) = 0
for h larger than hm. We can also bound the expression inside the expecta-
tion to obtain E

[(
e2σ̄(Λ)h − 1

)1/2
]
< E

[
eσ̄(Λ)h

]
and formulate the following

corollary.

Corollary 2 The state feedback MB-NCS, with update times h(j) that are
independent identically distributed random variable with probability distribu-
tion F (h) is globally almost sure (or with probability-1) asymptotically sta-
ble around the solution z =

[
xT eT

]T = 0 if T = E
[
eσ̄(Λ)h

]
< ∞ and

the expected value of the maximum singular value of the test matrix M ,
E [‖M‖] = E [σ̄M ], is strictly less than one.

Note that the Corollary 2 condition T = E
[
eσ̄(Λ)h

]
<∞ is automatically

satisfied if the probability distribution function F (h) does not have infinite
support. It otherwise indicates that F (h) should roll off fast enough to coun-
teract the growth of M ’s maximum singular value as h increases.

Example 5 We use the unstable double integrator plant. We now assume
that h(k) is a random variable with a uniform probability distribution function
U (0.5, hmax). The plot of the expected maximum singular value of a similarity
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transformation of the original test matrix M is shown in Fig. 9. The similarity
transformation used here was one that diagonalizes the matrix M for h = 1.

We see that the maximum value for hmax is around 1.3 seconds (maximum
constant update time for stability is h = 1 second). So we see that the double
integrator with uniformly distributed update time between 0.5 and 1.3 seconds
is stable, while the same system but with a constant update time of 1 second
is unstable. This also represents an improvement over the result that we may
have obtained by using the previously discussed Lyapunov stability condition
in which the maximum update time obtainable would have been less than 1
second.
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Fig. 9. Average maximum singular value for h ∼ U (0.5, hmax) as a function of
hmax, zero dynamics plant model

The advantage of using a model-based approach resides in its ability to
reduce the amount of bandwidth required. The previous example shows sta-
bility conditions for a model that represents a zero-order hold, that is, the
control value is kept constant until the next update time. We will now show
the same plots for a model that better resembles the plant; this was done
by randomly perturbing the plant matrices. The plant model matrices are

Â =
[

0.0844 0.9353
0.0476 −0.0189

]
, B̂ =

[
0.0871
1.0834

]
. Fig. 10 shows that stability is main-

tained for update times that have uniform distribution with a max update time
of 5.5 seconds. This shows that improved knowledge over the plant dynamics
can translate into a significant improvement in terms of stability.

MB-NCS with Markov chain-driven transmission times

In certain cases it is appropriate to represent the dynamics of the update times
as driven by a Markov chain. A good example of this is when the network
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Fig. 10. Average maximum singular value for h ∼ U (0.5, hmax) as a function of
hmax, improved plant model

experiences traffic congestion or has queues for message forwarding. We now
present a stability criterion for the model-based control system in which the
update times h(k) are driven by a finite state Markov chain. Assume that the
update times can take a value from a finite set:

h (k) ∈ {h1, h2, ..., hN} and hi 
=∞, ∀i ∈ [1, N ]. (6)

Let us represent the Markov chain process by {ωk}with state space {1, 2, ..., N}
and transition probability matrix Γ and N ×N matrix with elements pi,j and
initial state probability distribution Π0 =

[
π1 π2 ... πN

]T . The transition
probability matrix entries are defined as pi,j = P{ωk+1 = j|ωk = i}. We can
now represent the update times more appropriately as h(k) = hωk

.
A sufficient condition for the almost sure stability of the system under

Markovian jumps is given in the following theorem.

Theorem 7 [14] The state feedback MB-NCS with update times h(k) =
hωk


= ∞ driven by a finite state Markov chain {ωk} with state space
{1, 2, ..., N} and transition probability matrix Γ with elements pi,j and ini-
tial state probability distribution Π0 =

[
π1 π2 ... πN

]T is globally almost sure

asymptotically stable around the solution z =
[
xT eT

]T = 0 if the matrix T
has all its eigenvalues inside of the unit circle, where

T =

⎡⎢⎢⎣
‖M |h1‖ 0 0 0

0 ‖M |h2‖ 0 0
0 0 ... 0
0 0 0 ‖M |hN

‖

⎤⎥⎥⎦ΓT ; M |hi =
[
I 0
0 0

]
eΛhi

[
I 0
0 0

]
.
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If Γ is irreducible it follows that, since ‖M‖ is non-negative, T is also
irreducible. Then it can be shown using the Perron–Frobenius theorem as in
[6], that T ’s maximum magnitude eigenvalue is real and is sometimes referred
to as the Perron–Frobenius eigenvalue.

4.3 Mean square or quadratic asymptotic stability

We now define the type of stability called mean square asymptotic stability.

Definition 4 The equilibrium z = 0 of a system described by ż = f (t, z) with
initial condition z(t0) = z0 is mean square stable asymptotically stable at large
(or globally) if the solution of ż = f (t, z) satisfies lim

t→∞E
[
‖z (t, z0, t0)‖2

]
= 0.

A system that is mean square stable will have the expectation of system
states converging to zero with time in the mean square sense. This definition
of stability is attractive since many optimal control problems use the squared
norm in their formulations. We will study the two cases of the previous section
under this new stability criterion.

MB-NCS with independent and identically distributed
transmission times

We present the conditions under which the state feedback networked control
system is mean square stable, and we also discuss how these conditions relate
to the ones for probability-1 stability.

Theorem 8 [14] The state feedback MB-NCS with update times h(j) that are
independent identically distributed random variable with probability distribu-
tion F (h) is globally mean square asymptotically stable around the solution
z =

[
xT eT

]T = 0 if K = E
[(
eσ̄(Λ)h

)2]
< ∞ and the maximum singu-

lar value of the expected value of MTM ,
∥∥E [

MTM
]∥∥ = σ̄

(
E
[
MTM

])
, is

strictly less than one, where M =
[
I 0
0 0

]
eΛh

[
I 0
0 0

]
.

We note the similarity between the conditions given by Theorems 6 and 8.
For the first one we require the expectation of the maximum singular value of
the test matrix to be less than one. However, for the second stability criterion
it is required to have the maximum singular value of the expectation of the
test matrix (multiplied by its transpose) to be less than one.

MB-NCS with Markov chain-driven transmission times

The type of stability criteria above depends on our ability to find appropriate
P (i) matrices. Several other results in jump system stability [5, 7] can be
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extended to obtain other conditions on stability of NCSs. Note though, that
most of the results available in the literature deal with similar but not identical
types of systems.

Theorem 9 The state feedback MB-NCS with update times h(k) = hωk

=

∞ driven by a finite state Markov chain {ωk} with state space {1, 2, ..., N}
and transition probability matrix Γ with elements pi,j is globally mean square
asymptotically stable around the solution z =

[
xT eT

]T = 0 if there exist
positive definite matrices P (1), P (2), . . . , P (N) such that⎛⎝ N∑

j=1

pi,j

(
H(i)TP (j)H(i)

)
− P (i)

⎞⎠ < 0,∀i, j = 1...N

with H(i) = eΛhi

[
I 0
0 0

]
.

5 Stability of Linear MB-NCS with Quantization

Here we extend our stability results to consider the case where quantization
errors occur. In particular, a state space MB-NCS is considered. Two static
quantizers are studied: the uniform quantizer and the logarithmic quantizer.
These are called static since they partition the state space into invariant re-
gions that are fixed in time. We also note that these quantizers represent
two of the most common data representations: fixed-point format for uniform
quantizers and floating-point format for logarithmic quantizers. We will as-
sume that the transmission times are constant. We will also assume that the
compensated networked system without quantization is stable, thus in view
of Theorem 1 there exists positive definite P that satisfies(

e(Â+B̂K)T
h +∆(h)T

)
P
(
e(Â+B̂K)h +∆(h)

)
− P = −QD, (7)

where ∆(h) = eAh
∫ h

0 e
−Aτ (Ã+B̃K)e(Â+B̂K)τdτ and with QD symmetric and

positive symmetric. Note that e(Â+B̂K)h+∆ (h) was previously defined in (1).

5.1 State feedback MB-NCS with uniform quantization

Define the uniform quantizer as a function q : Rn → Rn with the following
property, ‖z − q(z)‖ ≤ δ, z ∈ Rn, δ > 0.

Theorem 10 [21] The plant state of the state feedback MB-NCS satisfying
(7) and using the uniform quantizer will enter and remain in the region ‖x‖ ≤
R defined by
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R =
(
eσ̄(Â+B̂K)h +∆max(h)

)
r +

(
eσ̄(A)h +∆max(h)

)
δ

where r =

√
λmax((eAh−∆(h))T P (eAh−∆(h))T )δ2

λmin(QD)

and ∆max(h) =
∫ h

0 e
σ̄(A)(h−τ)σ̄

(
Ã+ B̃K

)
eσ̄(Â+B̂K)τdτ.

5.2 State feedback MB-NCS with logarithmic quantization

Define the logarithmic quantizer as a function q : Rn → Rn with the following
property, ‖z − q (z)‖ ≤ δ ‖z‖ , z ∈ Rn, δ > 0.

Theorem 11 [21] The state feedback MB-NCS satisfying (7) and using the
logarithmic quantizer is exponentially stable if

δ <

√√√√ λmin (QD)

λmax

(
(eAh −∆(h))T

P (eAh −∆(h))
) .

Example 6 For our example we will use the following plant model parame-

ters: A =
[

0 1
1 3

]
, B =

[
0
1

]
. The plant will be a perturbed version of our plant

model: Â =
[
−0.0689 0.9757
1.0396 3.0720

]
, B̂ =

[
0.0707
1.0187

]
. Both are unstable plants. The

controller is designed using the plant model: u =
[
−2 −5

]
x̂. This controller

places both eigenvalues of the compensated plant model at –1. Using an update
time of h = 0.6 second, we will test two logarithmic quantizer functions, q1
with a mantissa word length of 12 bits and q2 with mantissa word length of 13
bits. Their relative errors for the two-dimensional space they will work on are
for q1 : 0.33 and for q2 : 0.20. Initializing the plant at

[
2T 3T

]T , we observe
from Fig. 11 that the system working with quantizer q1 (δ = 0.33) is unstable,
while with q2 (δ = 0.20), it is stable (Fig. 11). By using Theorem 11 and a
QD = I we obtain a maximum relative error of 0.1241.

6 Stability of a Class of Non-Linear MB-NCS

We will determine sufficient conditions for the stability of a state feedback
MB-NCS when the plant and controller are non-linear. Let the plant, plant
model, and controller be given by

plant ẋ = f(x) + g(u); model ˙̂x = f̂(x) + ĝ(u); controller u = ĥ(x̂). (8)

Also, define e = x − x̂ as the error between the plant state and the plant
model state. From (8) we obtain
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Fig. 11. Plant state time response for q1 and q2

ẋ = f(x) + g
(
ĥ(x̂)

)
= f(x) +m(x̂);

˙̂x = f̂(x̂) + ĝ
(
ĥ(x̂)

)
= f̂(x̂) + m̂(x̂).

(9)

We will also assume that the plant model dynamics differ from the actual
plant dynamics in an additive fashion:

f̂(ς) = f(ς) + δf (ς); m̂(ς) = m(ς) + δm(ς). (10)

So we can rewrite (9) as

ẋ = f(x) +m(x̂)
˙̂x = f(x̂) +m(x̂) + δf (x̂) + δm(x̂) = f(x̂) +m(x̂) + δ(x̂).

(11)

We will now assume that f and δ satisfy the following local Lipschitz condi-
tions for x, y ∈ BL with BL a ball centered on the origin:

‖f(x)− f(y)‖ ≤ Kf ‖x− y‖ ; ‖δ(x)− δ(y)‖ ≤ Kδ ‖x− y‖ . (12)

At this point it is to be noted that if the plant model is accurate, the Lipschitz
constant Kδ will be small.

We will assume that the non-networked compensated plant model is ex-
ponentially stable when x̂(t0) ∈ BS , with x̂(t) ∈ Bh for t ∈ [t0, t0 + h) with
BS and Bh balls centered on the origin:

‖x̂(t)‖ ≤ α ‖x̂(t0)‖ e−β(t−t0), with α, β > 0. (13)

Theorem 12 [21] The non-linear MB-NCS with dynamics described by (8),
that satisfies the Lipschitz conditions described by (12) and with exponentially
stable compensated plant model satisfying (13) is asymptotically stable if(

1− α
(
e−βh +

Kδ

β

(
eKf h − e−βh

)( β

Kf + β

)))
> 0.



www.manaraa.com

Networked Control Systems: A Model-Based Approach 623

Theorem 12 presents a sufficient condition for stability of a class of non-linear
systems. Note that if the model has the exact same dynamics as the plant,
that is, if Kδ = 0, then the condition will be satisfied for arbitrarily large h.

Example 7 We use the inverted pendulum in Fig. 12 as an example.

τk
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L

x1

x2
.

.

=
x2-

g
L

sin( ) -- x1
k
m x2

+
0
1

mL2

x1

Fig. 12. Inverted pendulum

The parameters for the plant are g = 10, L = 10, k = 0.1, and m = 1.01.
The model parameters are the same as the plant ones, except for the mass,
which is m = 1.00. Finally, the controller is given by τ =

[
−316 316

]
x̂.

Using the following Lipschitz and exponential stability constants: Kf = 1.0507,
Kδ = 0.0450, α = 1.5, and β = 0.6, Theorem 12 predicts stability for update
times between 0.55 and 2.55 seconds. Simulations show that the system is
unstable for h greater than approximately 4.5 seconds.

7 Conclusions

The MB-NCS control architecture presented in this chapter represents a nat-
ural way of placing critical information about the plant on the network to
reduce the data traffic load. By making the sensor and actuator more “intel-
ligent” the NCS is able to predict the future behavior of the plant and send
the precise information at critical times to ensure plant stability.

The MB-NCS is only one of the various approaches to networked con-
trol. We study these systems since their benefits and properties make them
well suited for a variety of practical applications. Furthermore, the control
structures presented appear to be amenable to detailed analysis.
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1 Introduction

This chapter discusses properties of feedback control systems containing loop
delays (dead-time systems), and approaches to controller design for such sys-
tems. Consider the feedback system depicted in Fig. 1, where P is a plant, C
is a controller, r is a reference signal, d is a disturbance, u is a control sig-
nal, and y is an output (measurement) signal. It is assumed throughout that
both the measured signal y and the control signal u are delayed by hy and hu

units of time, respectively. This is reflected in Fig. 1 by the two delay blocks
containing the delay element Dh defined by

xo(t) = Dh xi(t) ⇐⇒ xo(t) = xi(t− h(t)).

It is readily seen that Dh is linear (superposition property holds) and, when-
ever h is constant, is time invariant and BIBO stable (a constant time shift
changes neither the magnitude nor the energy of a signal). In the time-
invariant case Dh can be described by transfer function formalism. It can
be shown that the transfer function of Dh is e−sh (in continuous time) or
z−h (in discrete time). Note that whereas the latter is a finite-dimensional
(h-dimensional, to be precise) transfer function, the former is not as it is an
irrational function of s.

Loop delays arise naturally in numerous control applications, both from
delays in processes and control interfaces and from the use of delays to model

r

d

uy P CDhu

Dhy

Fig. 1. Unity feedback system with loop delays (dead-time system)
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Fig. 2. Simplified unity feedback system with input delay

complicated physical phenomena and model reduction. In particular, loop
delays are practically inevitable in systems controlled via communication net-
works as data is delayed due to buffering and propagation delays.

The presence of loop delays typically imposes strict limitations on achiev-
able feedback performance. With delays in measurement channels, the con-
troller receives “outdated” information about process behavior. Similarly, with
delays in actuation channels, control action cannot be applied “on time” thus
reducing the efficiency of the compensation of the effect of disturbances, etc.

The presence of loop delays also complicates controller design considerably.
In the continuous-time case, complications are caused by the fact that the
delay element is infinite dimensional, so that many classical methods cannot be
applied directly. In the discrete-time case, the presence of the delay element is
considered somewhat less technically challenging as the finite-dimensional z−h

can be easily absorbed into the plant. Yet this approach might be misleading
as it typically increases the problem dimension and blurs the structure of the
delay element.

The purpose of this chapter is to give a short exposition of problems aris-
ing in feedback control systems due to loop delays. To this end, the basic
properties of dead-time systems will be described and some approaches to
controller design for such systems will be presented. As our purpose here is
to provide a flavor of the underlying ideas, we mostly limit the discussion to
the simplest case of time-invariant single-input/single-output (SISO) systems
in continuous time and attempt to avoid heavy mathematical details. For the
same reason we consider only the input delay case, i.e., we assume that hy = 0,
see Fig. 2. For more detailed and general discussions the reader is refereed to
[1–4] and the references therein.

2 Effects of Loop Delays on Closed-Loop Dynamics

In this section we study how the presence of loop delays affects the dynamics
of closed-loop control systems. We will consider frequency-domain properties
in connection with the Nyquist stability criterion and classical loop-shaping
arguments (§2.1), location of the roots of the characteristic polynomial of the
system in Fig. 2 (§2.2), the effect of the delay on the state-space realization
of the system (§2.3), and some approaches to the rational approximation of
the delay element (§2.4).
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2.1 Frequency response and Nyquist arguments

Arguably, the most “painless” incorporation of loop delays into the classical
analysis takes place when frequency-domain Nyquist criterion arguments are
applied to the system in Fig. 2. The reason is that these arguments are based
on the open-loop frequency response, the effect of the loop delay on which
is rather simple. Indeed, consider the loop transfer function of the system in
Fig. 2:

L(s) = Lr(s)e−sh,

where the transfer function Lr(s) = P (s)C(s) is assumed to be rational (finite
dimensional). It is readily seen that the frequency response of L is

L(jω) = Lr(jω)e−jωh = |Lr(jω)|e j arg Lr(jω)e−jωh = |Lr(jω)|ej(arg Lr(jω)−ωh).

The magnitude of L(jω) is not affected by the delay element. The latter,
however, introduces an additional phase lag in L(jω) that grows linearly with
the frequency ω and is proportional to the delay h, namely, ωh radians.

The arguments above imply that the frequency response plots of L(s) can
be produced from those of its rational part Lr(s) using the following simple
rules, which are illustrated by the plots in Fig. 3 for Lr(s) = 2

s+1 and h = 0.25.

Bode diagram: the magnitude plot does not change while the phase plot is
shifted down by 180

π ωh degrees (exponentially decaying function in the
logarithmic scale).

Nyquist diagram: every point on the diagram is rotated clockwise by ωh ra-
dians.

Nichols chart: every point on the chart is shifted to the left by 180
π ωh degrees.

The remarkable aspect of the stability analysis of dead-time systems us-
ing the frequency-response methods is that the Nyquist criterion is literally
applicable to such systems. This fact was first noticed by Ya. Z. Tsypkin in
1946 and its proof follows by the principle of the argument much in parallel to
the rational case.1 For example, the Nyquist plot of the (stable) loop transfer

1Though certain care should be taken in the case when Lr is not strictly proper,
see, e.g., [5].
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Fig. 4. Nichols charts of 0.4
s2+0.1s+1 e−sh

function 2
s+1 e−1.25s in Fig. 3(b) does encircle the critical point (−1, 0), so

that the corresponding closed-loop system is unstable.
Note that in the example above the delay has a destabilizing effect on

the closed-loop dynamics. It is readily seen that the closed-loop system is
stable for all delays smaller than some critical value, say hσ (which is slightly
smaller than 1.25 in the example), but unstable for all h ≥ hσ. Moreover, the
larger h is, the smaller the stability margins are. Although this situation is
encountered in many practical applications, it is not generic. In some systems
stability and instability regions may interlace each other as illustrated by the
following example.

Example 1. Consider the system in Fig. 2 with Lr(s) = 0.4
s2+0.1s+1 . The Nichols

charts of this loop for different delays (taken from the set {0, 1, 5, 11}) are
depicted in Fig. 4. It is readily seen that the closed-loop system is stable for
h = 0 and h = 5 (solid lines) yet unstable for h = 1 and h = 11 (dashed
lines). This behavior is a consequence of the fact that when the phase lag
in the first (the smallest) crossover frequency ωc1 exceeds −π, the phase lag
in the second (the largest) crossover frequency ωc2 is still smaller than −3π.
In other words, when h = 5, the angular distance ψh between two crossover
points is smaller than 2π, so that when the resonant peak is neatly placed in
between two critical points, the Nichols plot encircles neither of the critical
points.

Note that as the angular distance between two crossover points is a strictly
increasing affine function of h (ψh = ψ0 + (ωc2 − ωc1)h), there must exist a
delay, say ĥ, such that ψh ≥ 2π for all h ≥ ĥ. This implies that the interlacing
of “stabilizing” and “destabilizing” delays always ends at some finite h < ĥ
and above that value delays are always destabilizing.

Example 1 shows that delay may have a stabilizing effect on the closed-loop
dynamics. Some authors even suggest exploiting this property by artificially
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adding delay elements into controllers. We believe, however, that one should
be very careful with the use of this property. Most examples in which delay
can help in stabilizing closed-loop dynamics can also be easily stabilized us-
ing rational controllers. The latter are typically simpler, both conceptually
and from an implementation point of view. Moreover, the incorporation of
additional loop delays might lead to a deterioration in robustness properties.

2.2 Pole location

Adapting classical pole location methods to dead-time systems is considerably
more complicated than adapting the Nyquist arguments. The characteristic
polynomial (more precisely, quasi-polynomial) of the closed-loop system in
Fig. 2 has the form

χcl(s) = A(s) +B(s) e−sh, (1)

where the polynomials

A(s) = sn + an−1s
n−1 + · · ·+ a0 and B(s) = bms

m + bm−1s
m−1 + · · ·+ b0

are the denominator and numerator, respectively, of the loop transfer function
Lr(s) defined in §2.1. The characteristic quasi-polynomial (1) is not rational
and has an infinite number of roots for every h > 0. This fact renders the root
locus method useless.

In the stability analysis of (1) the following arguments can be used. The
key property of the quasi-polynomial (1) in the case of n ≥ m and |bn| < 1
(otherwise the system is unstable for all h > 0; see §4.1) is the continuity
of its roots as functions of positive h. This means that we can start from
the case of h = 0, where the stability of (1) can be analyzed using well-
understood classical methods, and then count the imaginary axis crossings of
the roots of (1) as h increases. The roots2 may cross the axis from left to right
(i.e., become unstable), from right to left (i.e., become stable), or just be a
point of tangency with the axis. The analysis of the stability of (1) by this
approach is simplified owing to the fact that neither the roots at which jω-axis
crossings take place (which are actually the crossover frequencies of Lr(jω))
nor the directions of the crossings depend on h. Moreover, the calculations of
the crossover frequencies and the crossing directions are based on polynomial
equations only.

Indeed, it is readily seen that whenever A(s) and B(s) do not have common
imaginary axis roots, χcl(jω) = 0 iff both

|A(jω)|2 − |B(jω)|2 = 0 (2a)

and
2Actually, a pair of roots at each crossing as roots cannot cross the imaginary

axis at the origin when h varies. This implies that if A(s)+B(s) has an odd number
of unstable roots (equivalently, A(0) + B(0) < 0), χcl(s) can be stable for no h.
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ωh = arg
(
−B(jω)
A(jω)

)
+ 2πk for some k ∈ Z+, (2b)

where, with no loss of generality, we assume that arg(·) ∈ [0, 2π). It is clear,
that for any non-zero real solution ωc of (2a) there always exists an h > 0
(actually, a family of delays of the form h0 + 2π

ωc
k) such that (2b) holds for

ω = ωc as well. Therefore, the crossover frequencies are actually all positive
real solutions3 of the polynomial equation (2a), which does not depend on h.
Furthermore, it turns out [6] that the direction in which the roots of (1) cross
the imaginary axis at s = jωc as h increases depends solely on the sign of the
polynomial

σ(ω) .=
d
dω

(
|A(jω)|2 − |B(jω)|2

)
(3)

at the crossover frequencies which, again, is independent of h. If σ(ωc) > 0,
a root crosses the axis from left to right (this situation is called a switch); if
σ(ωc) < 0, a root crosses from right to left (a reversal); and, if σ(ωc) = 0, there
may not be any jω-axis crossings (it depends on higher derivatives then).

To illustrate the application of the ideas outlined above to the stability
analysis of (1), we again consider the system in Example 1.

Example 2. The characteristic polynomial of the system in Example 1 is

χcl(s) = s2 + 0.1s+ 1 + 0.4 e−sh,

so that (2a) and (3) become ω4 − 2 · 0.995ω2 + 0.84 = 0 and σ(ω) = 4ω(ω2 −
0.995), respectively. Thus, there exist two crossover frequencies ωc1 = 0.78
and ωc2 = 1.176 which are a reversal and a switch, respectively (σ(0.78) < 0
and σ(1.176) > 0). Furthermore, it follows from (2b) that the delays at which
the switches and the reversals occur are

hswitch = 0.254 + 5.344 k and hreversal = 3.778 + 8.06 k,

respectively (for k = 0, 1, . . .). Thus, as all roots of χcl(s) for h = 0 are stable,
the system is stable for h ∈ [0, 0.254). At h = 0.254 the first switch occurs
and the system becomes unstable. Yet before the second switch takes place
at h = 5.598 (when another pair of poles migrates from left to right) we
have a reversal at h = 3.778, which means that the two poles, that became
unstable under the first switch, return to the left half-plane (LHP) again.
Therefore, the system is stable in h ∈ (3.778, 5.598) as well. This stability
interval, however, is the last one as the second reversal at h = 11.839 occurs
after two switches at h = 5.598 and h = 10.942, i.e., at the time of the second
reversal there are four poles in the right half-plane (RHP). Since the distance
between two subsequent switches is strictly smaller than the distance between
two subsequent reversals (generic in the case of second-order A(s) and B(s)),
more and more roots of (1) are accumulated in the RHP as h increases.

3If there are no positive real solutions of (2a), no poles migrate from left to right
or vice versa as h varies and the stability (or instability) of the roots of (1) is delay
independent.
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2.3 State space

If the state-space realization of the plant P is given by ẋ = Ax + Bu, then
the presence of an input delay brings it to the form

ẋ(t) = Ax(t) +Bu(t− h), (4)

where x ∈ Rn and u ∈ Rm. The important point here is that x in (4) is no
longer a state vector in the sense of Poincaré (history accumulator). That is,
a knowledge of x(t0) and the future inputs is not sufficient to calculate the
future evolution of x(t). The information above should be complemented by
the knowledge of the input u(t) over the “history window” [t0 − h, t0). For
this reason, the complete state vector of (4) at time t is (x(t), ŭt), where ŭt

denotes the finite window history of u: ŭt(τ) = u(t+ τ), τ ∈ [−h, 0].
Writing down the “true state equation” for the system in (4) requires the

introduction of some additional technicalities. Going along this line, however,
would digress from our main purpose. For that reason, we describe properties
of system (4) using analogies from systems operating in discrete time. These
systems are finite dimensional and somewhat more intuitive to deal with. On
the other hand, the underlying ideas in the discrete- and continuous-time cases
are very similar.

The difference equation of the discrete-time version of the plant, P (z)z−h,
is

x(t+ 1) = Ax(t) +Bu(t− h), h ∈ Z+. (5)

As in the continuous-time case, x(t) can no longer be regarded as its state
vector. It should be complemented by the finite history of u. Namely, the
history is now accumulated by the (n+ hm)-dimensional vector

x̂(t) .=
[
x′(t) u′(t− h) u′(t− h+ 1) . . . u′(t− 1)

]′
and the state-space equation of (5) becomes

x̂(t+ 1) =

⎡⎢⎢⎢⎢⎢⎣
A B 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
0 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦x̂(t) +

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
I

⎤⎥⎥⎥⎥⎥⎦u(t) (5aug)

which is also referred to as the augmented form.
The choice of the state vector and the form of the state equation in

(5aug) have far-reaching consequences on the analysis and design of time-
delay systems. For example, the notion of static state feedback should be
adopted to the changes. Indeed, for system (5) the control law u(t) = Fx(t)
is, strictly speaking, a static output feedback for the measurement output
y(t) =

[
I 0 . . . 0

]
x̂(t). The static state feedback in the time-delay case is the

control law of the form



www.manaraa.com

634 L. Mirkin and Z. J. Palmor

u(t) =
[
Fx Fu,1 . . . Fu,h

]
x̂(t) = Fx x(t) +

−1∑
i=−h

Fu,h+1+i u(t+ i),

which is actually a dynamic feedback in terms of the state vector x of the
delay-free plant P (z). The continuous-time counterpart of the control law
above is

u(t) = Fx x(t) +
∫ 0

−h

Fu(h+ τ)u(t+ τ)dτ (6)

for some m×n matrix Fx and an m×m valued function Fu(t) defined over the
interval [0, h]. The control law of the form (6) is infinite dimensional (though
implementable) and is called a distributed-delay control law due to the form
of the second term on its right-hand side. Some aspects of the choice of its
parameters Fx and Fu(t) will be discussed in §3.2.

Another example of how the definition of the state space for time-delay
systems affects the state-space analysis of the system in Fig. 2 is the Lyapunov
(second) method. The Lyapunov method is a powerful tool for the analysis
of control systems. The idea, roughly, is to construct a positive function in
the state vector (it can be interpreted as a potential function), the derivative
of which along the trajectory of the system should be negative to guarantee
stability. For example, for finite-dimensional linear time-invariant (LTI) sys-
tems a common choice of the Lyapunov function is the quadratic function
V (x) = x′Px for some P = P ′ > 0. In the dead-time case such a choice would
capture only a part of the state vector. In other words, the positivity require-
ment would be violated.4 In this circumstance, a natural choice is a quadratic
functional constructed on the infinite-dimensional state vector (x(t), ŭt), i.e.,

V (x) = x′Pxxx+ 2x′
∫ 0

−h

Pxu(τ)u(t+ τ)dτ

+
∫ 0

−h

∫ 0

−h

u′(t+ σ)Puu(τ, σ)u(t+ τ)dσdτ

subject to an appropriate constraint on the positivity of the functional. The
functional above is known as the Krasovskii functional. For more details see,
e.g., [2].

2.4 Rational approximations of delay systems

Many technical difficulties in dealing with time-delay systems in continuous
time originate from the infinite dimensionality of the delay element e−sh. Nat-
ural questions arising in this respect are whether and how a delay system can
be approximated by a finite-dimensional one to which standard analysis and

4The function x′Px can still be used under modifications of the conditions on
the negativeness of its derivative as, e.g., in the Razumikhin approach.
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design methods can be applied. Below we outline some ideas used to answer
these questions. For a more detailed and rigorous discussion and additional
references the reader is referred to the survey paper [7].

To start with, note that the rational approximation of the pure delay, e−sh,
is fairly hopeless. This follows from the fact that any rational transfer function
can have only a finite phase lag, whereas the phase lag of e−jωh approaches
infinity as ω increases. As the magnitude of the frequency response of the
delay element is unity at all frequencies, the arbitrarily large high-frequency
phase mismatch results in approximation errors of at least 100% at frequencies
where the phase error is (2k + 1)π for some natural k. Thus, the rational
approximation of the delay makes sense only when considered over a finite
bandwidth or, equivalently, when a transfer function of the form R(s) e−sh,
for some strictly proper R(s), is approximated. In the latter case rational
approximations do converge, even when they do not take into account the
properties of R(s).

Arguably, the approximation methods most widely used in practice are
based on the approximation of the delay element by the ratio

e−sh ≈ Qn(−s)
Qn(s)

, (7)

where Qn(s) is a stable polynomial of degree n. For example, Qn obtained via
the [n, n] Padé approximation5 of e−sh are given by

Qn(s) =
n∑

i=0

(
n

i

)
hi(2n− i)!

(2n)!
si =

n∑
i=0

hi(2n− i)!n!
(2n)!(n− i)! i! s

i.

The first two Padé approximations, for instance, are Q1(s) = 1 + sh
2 and

Q2(s) = 1 + sh
2 + s2h2

12 . Another possible choice of Qn is the truncated power
series of esh/2, i.e.,

Qn(s) =
n∑

i=0

hi

2ii!
si,

which is motivated by the equality e−sh = e−sh/2/esh/2. The polynomials
corresponding to the first two n are now Q1(s) = 1+ sh

2 and Q2(s) = 1+ sh
2 +

s2h2

8 (the latter is related to the Kautz approximation).
Approximations of the form (7) are better in the low-frequency range. A

common approach to simplify the approximation formulae is to exploit the
equality e−sh = (e−sh/m)m. The term e−sh/m can be approximated by a low-
order transfer function of the form (7), typically with n = 1 or n = 2, and
then higher-order approximations are obtained by the increase of m.

Potentially, better approximations may be produced when properties of
the “weighting” function R(s) are taken into account in the approximation of

5In this method the coefficients of Qn(s) are chosen so that the first n + 2
coefficients of the power series expansions of both sides of (7) are matched.
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Fig. 5. Dead-time compensator

R(s) e−sh. Examples of such an approach are the balanced truncation method
and the Hankel norm approximation, see [7]. Yet these methods are consid-
erably more complicated, both computationally and conceptually. For this
reason simpler approximation methods, like those described above, are used
in most cases.

3 Delay-oriented Design: Dead-Time Compensation

The design of finite-dimensional controllers for (infinite-dimensional) dead-
time systems is typically rather conservative. Most available approaches resort
to strictly sufficient conditions and result in rather conservative designs. At-
tractive alternatives in this respect are offered by controllers involving infinite-
dimensional dead-time compensators (DTCs). In this section we discuss two
(actually equivalent) DTC configurations: the Smith predictor (§3.1) and the
finite spectrum assignment (§3.2) control. We also address the DTC version
of the two-degree-of-freedom (2DOF) controller configuration (§3.3).

3.1 Smith predictor and its modifications

The classical example of a DTC is the Smith controller [8], which combines
clear design guidelines and relatively simple implementation, especially using
digital equipment. The block diagram of the Smith controller is depicted in
Fig. 5, where the controller C (light-gray box) consists of a primary controller
C̃ and an internal feedback of the form

Π(s) = P (s)− P (s)e−sh (8)

called the Smith predictor.
The rationale behind the introduction of the infinite-dimensional internal

feedback can be appreciated through the examination of the signal ỹ, which
is the input to the primary controller. It is readily seen that ỹ = r − Pd −
Pu, which means that the loop u � ỹ does not contain any delay (i.e., the
Smith predictor “compensates” the loop delay). Then, the closed-loop transfer
functions are simplified, for example:
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Tyr =
PC̃

1 + PC̃
e−sh and Tyd =

1 + PC̃(1− e−sh)
1 + PC̃

P. (9)

The delay is thus eliminated from the feedback loop in the sense that it no
longer appears in the denominator of the closed-loop transfer functions. The
immediate consequence of this fact is that the characteristic equation of the
closed-loop system is polynomial, which offers a clear advantage over the quasi-
polynomial (1). Thus, provided the plant P is stable, the closed-loop system
in Fig. 5 is stable iff C̃ stabilizes the delay-free plant P .

This enables one to end up with the following two-stage design procedure,
which constitutes the core of the dead-time compensation philosophy:

S1: the design of the primary controller C̃ is based on the delay-free plant
P (with additional constraints due to the delay);

S2: the resulting controller is implemented by adding the Smith predictor
as an internal feedback.

Thus, although the overall controller is infinite dimensional, the design proce-
dure is completely finite dimensional, so that well-understood control methods
can be used for the design of C̃. It is worth stressing that although C̃ in S1 is
designed for the delay-free system, it should not be designed “as if there were
no delays” at all [9]. Rather, the loop delay imposes implicit constraints on
the choice of C̃.

The idea of [8] had a large impact on both the theory and the practice
of the control of time-delay systems. Over the years, numerous studies of the
properties of the Smith controller and its modifications have been carried out,
both in academia and in industry; see the review paper [10] and the references
therein. When digital controllers began to appear in the marketplace in the
beginning of the 1980s, it became relatively easy to implement the predictor
block. As a result, many industrial controllers offer the Smith predictor as a
standard algorithm, like the proportional-integral-differential (PID).

A disadvantage of the Smith controller is that it can only be applied to
stable plants (as the closed-loop characteristic equation contains all poles of
P (s); see [10]). This problem, however, can be overcome by replacing the
Smith predictor block in Fig. 5 with

Π(s) = P̃ (s)− P (s)e−sh, (10)

where P̃ is any rational transfer function such that the resultingΠ has no RHP
poles. This Π is referred to as the modified (or generalized) Smith predictor .
It can be shown that in this case C stabilizes the system iff C̃ stabilizes P̃ ;
stage S1 above should then be replaced with

S1a: the primary controller C̃ is designed for the delay-free auxiliary plant P̃
(with additional constraints due to the delay)

rather than for P as in the original Smith controller case.
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When P is stable, P̃ can be any stable transfer function. Two particular
choices are P̃ = P (resulting in the Smith predictor) and P̃ = 0 (which results
in the internal model controller configuration [11]). For unstable P the choice
of P̃ is less evident, yet the required P̃ can always be found, as illustrated by
the following simple example.

Example 3. Let P = 1
s−a for some a ≥ 0. Then a possible choice is P̃ = e−ah

s−a .
To see this, note that the pole at s = a is actually canceled in Π(s) =
e−ah−e−sh

s−a by its zero at s = a (it is readily seen that Π(a) = he−ah). It
should be stressed that this pole-zero cancellation must be performed beforeΠ
is implemented. Otherwise, the uncanceled pole becomes an unstable hidden
mode in Π. To see this, assume that Π is implemented by the following
equation:

ẋ(t) = ax(t) + e−ahu(t)− u(t− h).

These dynamics are not internally stable because any error in the computation
of e−ahu(t) − u(t − h) will eventually lead to an unbounded x. On the other
hand, assuming zero initial conditions we can write

x(t) =
∫ t

0
ea(t−τ)e−ahu(τ)dτ −

∫ t

h

ea(t−τ)u(τ − h)dτ

=
∫ t

0
ea(t−h−τ)u(τ)dτ −

∫ t−h

0
ea(t−h−τ)u(τ)dτ

=
∫ t

t−h

ea(t−h−τ)u(τ)dτ =
∫ 0

−h

e−a(h+τ)u(t+ τ)dτ,

which is a representation of Π after the pole at s = a is canceled and it is
stable (it is a finite impulse response system).

In general, when the plant is given in terms of its state-space realization
P (s) = C(sI −A)−1B the following choice of P̃ is always admissible:

P̃ (s) = Ce−Ah(sI −A)−1B = C(sI −A)−1e−AhB (11)

as all poles of P (s) are canceled in Π. The corresponding Π should then be
implemented as follows:

x(t) = C

∫ t

t−h

eA(t−h−τ)Bu(τ)dτ = C

∫ 0

−h

e−A(h+τ)Bu(t+ τ)dτ

(see [12] for a discussion on the implementation of the system above and
further references).

It is worth emphasizing that stability of the closed-loop system is not the
only rationale in the choice of P̃ . The latter also affects properties of the re-
sulting control system as the internal feedback Π alters the primary controller
C̃. In other words, some properties of the primary controller (designed to work
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with P̃ ) might not be inherited by the overall controller C and the resulting
control loop. This situation is confusing, since a “good” design in the stage
S1a might mean nothing in terms of the original system.

The problem and possible remedies can be illustrated by the following
example. It is readily seen that the presence of an integrator in C̃ does not
necessarily imply that the resulting controller C includes an integral action.
Indeed, let C̃(s) = 1

s C̃0(s) for some C̃0 with a bounded static gain C̃0(0).
Then

C(0) = lim
s→0

C̃(s)
1 + C̃(s)Π(s)

= lim
s→0

C̃0(s)
s+ C̃0(s)Π(s)

=
1

Π(0)

(Π(0) is well defined becauseΠ is stable). Thus, the overall controller contains
an integral action (has a singularity at the origin) iff Π(0) = 0, i.e., Π(s) has a
zero at the origin.6 This condition can be easily incorporated into the choice
of P̃ by, i.e., adding to it an appropriate constant (which clearly does not
affect the stability of Π). For example, P̃ in (11) may be replaced by

P̃ (s) = Ce−Ah(sI −A)−1B − C
∫ h

0
e−AτdτB,

which guarantees that Π(0) = 0 (the resulting Π is sometimes referred to as
the Watanabe–Ito predictor).

The requirement Π(0) = 0 can be interpreted as the requirement to keep
the internal feedback in the controller small at s = 0 so that it does not alter
the primary controller. This may be naturally extended to the requirement
to keep |Π(jω)| small over a required frequency range, typically in the low-
frequency range up to the crossover frequency of the designed loop L̃ = P̃ C̃.
In other words, the rationale behind the choice of P̃ may be to seek a “good”
approximation of P e−sh in the required frequency range under a constraint on
the stability of the resultingΠ. Such an approach potentially has the following
two advantages. First, it makes properties of the resulting closed-loop system
closer to the properties of the finite-dimensional systems comprised from P̃
and C̃, for which the design in S1a is performed. For example, it can be shown
that S = (I−ΠC̃)S̃, where S̃ .= 1/(1+ L̃) and S .= 1/(1+L) are the designed
and actual sensitivity functions, respectively. Hence, the relative difference
between the designed and actual sensitivities, 1− S/S̃ = ΠC̃, is proportional
to Π. Second, when P̃ is close to P , design limitations imposed by the delay
(caused by the phase lag of e−sh) do show up in the design of the primary
controller. This may prevent an excessively aggressive design of the primary

6Although the internal feedback loop in the controller contains then an unstable
pole-zero cancellation (at s = 0), this cancellation does not give rise to any insta-
bility. Intuitively, this follows from the fact that, despite the cancellation, the pole
at the origin is not a hidden mode of C(s) from its input r − y to its output u. This
can be proved formally by introducing an additional (fictitious) input immediately
after Π and verifying stability of all resulting closed-loop systems.
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Fig. 6. Observer-predictor

controller (otherwise, one might be tempted to use C̃ which is too aggressive,
e.g., it has too high a bandwidth).

3.2 Finite spectrum assignment

Another infinite-dimensional yet implementable structure of DTC can be de-
duced from the “true” state feedback control law (6). It can be shown [13]
that for Fx = F eAh and Fu(t) = F eA(h−t)B, i.e., when the control law is

u(t) = F

(
eAhx(t) +

∫ 0

−h

e−AτBu(t+ τ)dτ
)
, (12)

the closed-loop system has only a finite number of finite poles, namely, those
satisfying the characteristic equation det(sI −A−BF ) = 0. The latter is ex-
actly the characteristic equation of the delay-free system under state feedback
control of the form u = Fx. Thus, the control law (12) transforms the pole
placement problem for a time-delay system to that of its delay-free counter-
part. Such control strategy is called the finite spectrum assignment .

The control law described above has an interesting interpretation. To see
this, note that (12) can be rewritten as u = Fxp, where

xp(t) = eAhx(t) +
∫ 0

−h

e−AτBu(t+ τ)dτ = eAhx(t) +
∫ t

t−h

eA(t−τ)Bu(τ)dτ

(13)
actually coincides with x(t + h) calculated according to (4). In other words,
xp is the h time units ahead prediction of x. This implies that the control
law (12) is a state predictor controller. The prediction here compensates, in
a sense, for the input delay, resulting in a “delay-free” system. The latter is
then controlled by a standard static state feedback.

The use of the predictor in (12) has some resemblance with the observer-
based control. In both cases the missing states are reconstructed (by either the
observer or the predictor) and then used by the controller as if they were the
true states. It is then not a surprise that state prediction and observation can
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be combined when the required state, x(t+ h), is both delayed and partially
unknown (i.e., only its part, Cx, is measured). The resulting scheme, known as
the observer-predictor , is depicted in Fig. 6. The observer-predictor consists of
the standard (Luenberger) observer of x(t) with a gain L, the predictor block
which contains a distributed-delay element Π generating the second term on
the right-hand side of (13), and the static state-feedback gain F . It can be
shown [14] that the resulting closed-loop system also has a finite number of
finite poles, namely those satisfying det(sI −A−BF ) det(sI −A−LC) = 0,
exactly as in the delay-free case.

Curiously, the observer-predictor and the modified Smith predictor con-
trollers were regarded as different configurations of DTC for almost two
decades. It turns out, however, that these schemes are equivalent modulo
a simple state transformation [15]. More precisely, the observer-predictor con-
troller is equivalent to the modified Smith predictor when P̃ is chosen as in
(11) and the primary controller C̃ is the standard observer-based feedback
law for this P̃ . The equivalence, however, is valid only under the ideal imple-
mentation of the distributed-delay block Π. When the latter is approximated,
the modified Smith predictor has some advantages over the observer-predictor
[12].

3.3 2DOF dead-time compensation

In many applications control objectives include both disturbance (load) at-
tenuation and reference (command or set-point) tracking. In cases where the
disturbance can be measured, the predictor in the DTC can be used effectively
to handle tracking and disturbance attenuation simultaneously, see [16]. In the
other circumstance, these objectives can be handled independently by the use
of two-degree-of-freedom (2DOF) controller configurations. The idea is to use
the feedback component of the controller to attenuate unmeasured distur-
bances and cope with modeling uncertainty and the feedforward part of the
controller (prefilter) to obtain the desired response to measured (command)
signals.

Below we show how this idea can be exploited in the case of dead-time
systems. To simplify the exposition and avoid the introduction of the coprime
factorization machinery, we consider only stable P (s) (the general case is
addressed in [17]). The 2DOF modified Smith predictor for such systems is
shown in Fig. 7, where C̃(s) is the (stabilizing) primary feedback controller
and K(s) is the prefilter. The central point here is that the primary controller
is split in two parts as

C̃ = (1 + P̃ C̃) C̃
1+P̃ C̃

and the feedforward component enters the loop in between these parts. From
a closed-loop performance point of view, this partition of C̃ does not change



www.manaraa.com

642 L. Mirkin and Z. J. Palmor

y r

d

u
e−sh

C
P 1 + P̃ C̃

C̃
1+P̃ C̃

K

Π

Fig. 7. 2DOF dead-time compensator

anything7 and C̃ can be designed exactly as in the 1DOF case (K obviously
does not affect the closed-loop properties). The way in which the feedforward
component enters the loop aims to decouple the feedforward properties from
the effect of C̃. It can be verified that the closed-loop transfer functions for
the system in Fig. 7 are

Tyr = PK e−sh and Tyd =
1 +ΠC̃

1 + P̃ C̃
P,

so that the effects of r and d are completely decoupled. In other words, C̃
and K can be designed independently. Moreover, it is worth stressing that Tyr

does not depend on the choice of the auxiliary plant P̃ .

4 Robustness with Respect to Delay
Uncertainty/Variation

In many situations, and particularly, in most networked control systems, the
loop delay is not a fixed known value but rather is uncertain and/or slowly
varying. If this is the case, one should be concerned not only with the stability
for a nominal value of h, but also with the sensitivity of the closed-loop stabil-
ity to changes in the delay. In this section we address some basic ideas of how
delay uncertainty can be handled. In particular, we discuss the notion of the
delay margin (§4.1) and some underlying ideas that can be used to simplify
the analysis of uncertain time delays (§4.2).

4.1 Delay margin (dead-time tolerance)

Although loop delays affect only the phase of the open-loop transfer function,
the phase margin µph might be a poor measure of the robustness against delay
variations. The reason is that the phase lag due to the delay depends on the
crossover frequency ωc at which µph is measured, whereas the phase margin

7Note that P̃ must be stable since otherwise Π = P̃ − P e−sh cannot be stable,
and 1

1+P̃ C̃
and C̃

1+P̃ C̃
must be stable because C̃ is stabilizing. These facts guarantee

that there are no unstable pole-zero cancellations between the two parts above.
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notion does not take the crossover frequency into account. For example, the
systems with L = 2/(10s + 1) and L = 2/(0.1s + 1) have identical phase
margins (their Nyquist plots coincide), yet the former is stable for all delays
up to 12.1, whereas the latter—only up to 0.121. This calls for the introduction
of a new stability margin, called the delay margin or dead-time tolerance. The
delay margin, µd, is defined as the smallest additional delay destabilizing the
system.

It is somehow conventional in the control literature to refer to the delay
margin as the following quantity:

µd =
µph

ωc
. (14)

Yet this is correct only when the system has just one crossover frequency
and the high-frequency gain is smaller than 1. When the latter condition is
not satisfied, e.g., for Lr(s) = 2s+1

s+2 , the delay margin is zero since any loop
delay destabilizes the system. Intuitively, this can be seen from the fact that
the Nyquist plot of non-strictly proper dead-time systems at high frequencies
encircles the origin an infinite number of times along a circle, the radius of
which is the loop high-frequency gain. When the latter is larger than one,
these encirclements include the critical point as well.

When there are several crossover frequencies, (14) also falls short of re-
flecting µd. To see this, consider the following loop transfer function:

Lr(s) =
6(s2 + 0.2s+ 0.01)

s(s+ 2)2
.

The Nyquist and Nichols plots of this system are presented in Fig. 8 by the
solid lines. This system has three crossover frequencies: ωc1 = 0.0154, ωc2 =
0.746, and ωc3 = 5.24. The phase margin here is measured at ωc1, so that
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the delay margin calculated according to (14) is µd >
π

2·0.0154 ≈ 102. Yet this
conclusion is erroneous. This is clearly seen in the frequency-response plots
of Lr(s)e−0.5s (dashed lines in Fig. 8). These curves do encircle the critical
point, i.e., the destabilizing delay is actually < 0.5 sec. The reason is that the
phase lag due to the delay at the largest crossover frequency, ωc3, is much
larger than that at ωc1. Hence, when the delay is increased Lr(jωc3) reaches
the critical point long before Lr(jωc1) does, even though the phase distance
from the critical point in the latter case is smaller.

Following these arguments, the correct formula for the µd should be

µd =

⎧⎨⎩min
i

µph,i

ωci
if limω→∞|Lr(jω)| < 1

0 otherwise,
(15)

where ωci are crossover frequencies and µph,i are the corresponding “phase
margins” (angular distances of Lr(jωci) to the critical point).

4.2 Unstructured uncertainty embedding

Although the delay margin notion does reflect the sensitivity of the closed-
loop system to delay uncertainty, it is not readily incorporated into analytic
design procedures. In this section we discuss a possible alternative, which can
be roughly classified as embedding delay uncertainty/variations into the finite-
dimensional robust stability formalism. The idea is to “cover” the (uncertain)
delay element by complex plant perturbations which, in turn, could be handled
using standard tools of robust control.

Consider the dead-time system in Fig. 2 and assume that the delay h =
h0 + δ, where h0 ≥ 0 is its “nominal value” and δ is an unknown constant
satisfying |δ| < δ̄ for some δ̄ ≤ h0. This system can always be presented in
the form depicted in Fig. 9 (as we only discuss the stability of the closed-loop
system here, we assume that all external signals are zero) with∆(s) = e−sδ−1.
Denote the system from η to ζ (the one in the gray box) by G, so that

G(s) =
P (s)C(s)e−sh0

1 + P (s)C(s)e−sh0
,

which is actually the transfer function from r to y for the system in Fig. 2
(complementary sensitivity function) with the nominal delay h = h0. Natu-
rally, we assume hereafter that G is stable. The closed-loop system can then
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be thought of as the feedback interconnection of two stable8 systems G and
∆, where the former is known whereas the latter is uncertain.

By the zero exclusion principle [2] the closed-loop system in Fig. 9 is stable
iff ∆(jω)G(jω) 
= 1 for all frequencies ω and all δ in the given region. The
application of this criterion to the stability analysis of this system is compli-
cated because ∆ is highly structured with quite a complicated dependence on
the uncertain parameter δ. Indeed, at each ω the only available information
about ∆(jω) is that it lies on the arc of a unit radius and a central angle
of 2ωδ̄ radians centered at −1. This is shown in Fig. 10(a) by the bold solid
curve (at ω = π/δ̄ this arc is closed up to become a shifted unit circle and
remains that circle for all larger frequencies). This information is not readily
suitable to be incorporated into analytical methods.

A possible way to circumvent this difficulty is to embed the family of sys-
tems e−sδ − 1, |δ| < δ̄, into a larger yet less structured and more manageable
family of systems. An example of such a larger family is the smallest disk cen-
tered at the origin that contains the arc above; see the gray disk in Fig. 10(a).
Denote the radius of this disk, which is a function of the frequency ω, by l(ω).
Elementary geometry yields that

l(ω) =

{
2 sin( δ̄

2 ω) if ω ≤ π/δ̄,
2 otherwise,

which is shown in Fig. 10(b) (solid line). As expected, the radius is small at
low frequencies and grows as ω increases. This reflects the fact that the loop
delay affects the closed-loop dynamics mostly at high frequencies. Thus, the
original problem reduces to the stability problem for all stable ∆(s) satisfying

8Strictly speaking, ∆ is not stable as it might include a preview term (negative
delay). Yet G includes the delay e−sh0 which can always be augmented to ∆ thus
making it stable. For that reason, we proceed assuming that ∆ is stable.
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|∆(jω)| < l(ω) (this set is called unstructured uncertainty). Clearly, the sta-
bility of the system with this set of ∆’s guarantees the stability of the original
system. The opposite, however, is not true: the original system might still be
stable even when the unstructured uncertainty destabilizes G. In other words,
the embedding procedure introduces conservatism. In return, solvability con-
ditions are considerably simplified: the system in Fig. 9 with unstructured
uncertainty is stable iff |G(jω)| < 1/l(jω) for all ω.

The latter is actually the condition on the weighted H∞ norm of G(s), so
that the standardH∞ machinery can be used to solve the robustness problem.
Let us just emphasize the following two aspects of the resulting problem.

• The direct solution of the associated H∞ problem is complicated due to
the fact that the weighting function l(ω) is irrational. Yet this difficulty
can be overcome by covering l(ω) by the frequency response gain |W (jω)|
of a rational transfer function W (s). Some possible choices of W (s) are

W1(s) = δ̄s and W2(s) =
3.465δ̄s
δ̄s+ 3.465

,

which are shown in Fig. 10(b) by dashed lines. This step might introduce
some additional conservatism. Yet this conservatism becomes negligible
as the order of the rational approximation increases. For example, the
magnitude plot of

W3(s) =
2δ̄s (s2 + 1.676ω0s+ ω2

0)
(δ̄s+ 2)(s2 + 1.370ω0s+ ω2

0)
, where ω0 = 2.363/δ̄,

practically coincides with that of l(ω). For a more detailed discussion see
[18].

• Another point that might give rise to some concerns is the infinite-dimen-
sionality of G(s) due to the presence of the delay. This might appear to
conflict with the goal to end up with a finite-dimensional problem and even
might suggest the choice h0 = 0 and the corresponding delay bound 0 ≤
δ ≤ 2δ̄ [18] that introduces extra conservatism. The infinite-dimensionality,
however, can easily be resolved by the use of the DTC controller. For
example, the standard Smith predictor brings G to the form of Tyr in
(9). The latter contains the delay element only in its numerator and this
delay does not affect |G(jω)|. Thus, the robust stability problem is reduced
to a purely finite-dimensional H∞ problem, the solution of which is well
understood. For more details see [15] and the references therein.

It is worth emphasizing that the conversion to the H∞ optimization problem
enables one not only to analyze the stability of the dead-time system for a
given controller but also to design C to, e.g., maximize the (upper bound on
the) delay margin.

Note also that the reasonings above can be extended to more complicated
situations. For example, the multiple delay case can be handled in the µ



www.manaraa.com

Control Issues in Systems with Loop Delays 647

framework by similar arguments [2,19]. Another example is the case of time-
varying delay; see [2, 20].
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1 Introduction

Control systems with networked communication, called networked control sys-
tems (NCSs), provide several advantages over point-to-point wired systems
such as improvement in reliability through reduced volume of wiring, sim-
pler systems integration, easier troubleshooting and maintenance, and the
possibility for distributed processing. There are two types of communication
networks. Data networks are characterized by large data packets, relatively
infrequent bursty transmission, and high data rates; they generally do not
have hard real-time constraints. Control networks, in contrast, must shuttle
countless small but frequent packets among a relatively large set of nodes to
meet the time-critical requirements. The key element that distinguishes con-
trol networks from data networks is the capability to support real-time or
time-critical applications [19].

The change of communication architecture from point-to-point to common-
bus, however, introduces different forms of time delay uncertainties between
sensors, actuators, and controllers. These time delays come from the time
sharing of the communication medium as well as the extra time required for
physical signal coding and communication processing. The characteristics of
time delays may be constant, bounded, or even random, depending on the
network protocols adopted and the chosen hardware. This type of time delay
could potentially degrade a system’s performance and possibly cause system
instability.

Thus, the disadvantages of an NCS include the limited bandwidth for com-
munication and the delays that occur when sending messages over a network.
In this chapter, we discuss the sources of delay in common communication
networks used for control systems, and show how they can be computed and
analyzed.

Several factors affect the availability and utilization of the network band-
width: the sampling rates at which the various devices send information over
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the network, the number of elements that require synchronous operation, the
method of synchronization between requesters and providers (such as polling),
the data or message size of the information, physical factors such as network
length, and the medium access control sublayer protocol that controls the
information transmission [7]. There are three main types of medium access
control used in control networks: random access with retransmission when
collisions occur (e.g., Ethernet and most wireless mechanisms), time-division
multiplexing (such as master-slave or token-passing), and random access with
prioritization for collision avoidance (e.g., Controller Area Network (CAN)).
Within each of these three categories, there are numerous network protocols
that have been defined and used. For each type of protocol, we study the
key parameters of the corresponding network when used in a control situ-
ation, including network utilization, magnitude of the expected time delay,
and characteristics of time delays. Simulation results are presented for several
different scenarios, and the advantages and disadvantages of each network
type are summarized. The focus is on one of the most common protocols in
each category; the analysis for other protocols in the same category can be
addressed in a similar fashion.

A survey of the types of control networks used in industry shows a wide
variety of networks in use; see Table 1. The networks are classified according
to type: random access (RA) with collision detection (CD) or collision avoid-
ance (CA), or time-division multiplexed (TDM) using token-passing (TP) or
master-slave (MS).

Table 1. Worldwide most popular fieldbuses [18]. Note that the totals are more
than 100% because many companies use more than one type of bus. Wireless was
not included in the original survey, but its usage is growing quickly.

Network Type Users Application domain
Ethernet RA/CD 50% Various
Profibus TDM/(TP and MS) 26% Process control
CAN-based RA/CA 25% Automotive, process
Modbus TDM/MS 22% Various
ControlNet TDM/TP 14% Plant bus
ASI TDM/MS 9% Building systems
Interbus-S TDM/MS 7% Manufacturing
Fieldbus Foundation TDM/TP 7% Chemical industry
Wireless (e.g., IEEE 802.11) RA/CA Unknown Various
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2 Control Network Basics

In this section, we discuss the medium access control (MAC) sublayer protocol
of three types of control networks. We focus our discussion on one of the
common networks of each type: Ethernet (including hub, switch, and wireless
varieties, which will be defined later), ControlNet (a token-passing network),
and DeviceNet (a CAN-based network).3 The MAC sublayer protocol, which
describes the protocol for obtaining access to the network, is responsible for
satisfying the time-critical/real-time response requirement over the network
and for the quality and reliability of the communication between network
nodes [8]. Our discussion and comparison thus focus on the MAC sublayer
protocols.

For control network operation, the message connection type must be spec-
ified. Practically, there are three types of message connections: strobe, poll,
and change of state (COS)/cyclic. In a strobe connection, the master device
broadcasts a strobed message to a group of devices and these devices respond
with their current condition. In this case, all devices are considered to sam-
ple new information at the same time. In a poll connection, the master sends
individual messages to the polled devices and requests update information
from them. Devices only respond with new signals after they have received a
poll message. COS/cyclic devices send out messages either when their status
is changed (COS) or periodically (cyclic). Although the COS/cyclic connec-
tion seems most appropriate from a traditional control systems point of view,
strobe and poll are commonly used in industrial control networks [4].

2.1 Ethernet networks (CSMA)

Ethernet generally uses the carrier sense multiple access (CSMA) with CD
or CA mechanisms for resolving contention on the communication medium.
There are three common flavors of Ethernet: (1) hub-based Ethernet, which
is common in office environments and is the most widely implemented form
of Ethernet, (2) switched Ethernet, which is more common in manufacturing
and control environments, and (3) wireless Ethernet.

Hub-based Ethernet (CSMA/CD)

Hub-based Ethernet uses hub(s) to interconnect the devices on a network.
When a packet comes into one hub interface, the hub simply broadcasts the
packet to all other hub interfaces. Hence, all of the devices on the same network

3Note that Ethernet is not a complete protocol solution but only a MAC sub-
layer definition, whereas ControlNet and DeviceNet are complete protocol solutions.
Following popular usage, we use the term “Ethernet” to refer to Ethernet-based
complete network solutions. These include industrial Ethernet solutions such as
Modbus/TCP, PROFINET, and EtherNet/IP.
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receive the same packet simultaneously, and message collisions are possible.
Collisions are dealt with utilizing the CSMA/CD protocol as specified in the
IEEE 802.3 network standard [1, 2, 21].

This protocol operates as follows: when a node wants to transmit, it lis-
tens to the network. If the network is busy, the node waits until the network is
idle; otherwise it transmits immediately. If two or more nodes listen to the idle
network and decide to transmit simultaneously, the messages of these trans-
mitting nodes collide and the messages are corrupted. While transmitting, a
node must also listen to detect a message collision. On detecting a collision
between two or more messages, a transmitting node stops transmitting and
waits a random length of time to retry its transmission. This random time
is determined by the standard binary exponential backoff (BEB) algorithm:
the retransmission time is randomly chosen between 0 and (2i− 1) slot times,
where i denotes the ith collision event detected by the node and one slot time
is the minimum time needed for a round-trip transmission. However, after
10 collisions have been reached, the interval is fixed at a maximum of 1023
slots. After 16 collisions, the node stops attempting to transmit and reports
failure back to the node microprocessor. Further recovery may be attempted
in higher layers [21].

Preamble
Start of 
Delimiter

Destination
Address

Source
Address

Data
Length Data Pad Checksum

Bytes 7 1 6 6 2 0-1500 0-46 4

Overhead = 22 Bytes OH = 4 Bytes46-1500 Bytes

Fig. 1. Ethernet (CSMA/CD) frame format

The Ethernet frame format is shown in Fig. 1 [21]. The total overhead is
26 (=22+4) bytes. The data packet frame size is between 46 and 1500 bytes.
There is a nonzero minimum data size requirement because the standard states
that valid frames must be at least 64 bytes long, from destination address to
checksum (72 bytes including preamble and start of delimiter). If the data
portion of a frame is less than 46 bytes, the pad field is used to fill out
the frame to the minimum size. There are two reasons for this minimum size
limitation. First, it makes it easier to distinguish valid frames from “garbage.”
When a transceiver detects a collision, it truncates the current frame, which
means that stray bits and pieces of frames frequently appear on the cable.
Second, it prevents a node from completing the transmission of a short frame
before the first bit has reached the far end of the cable, where it may collide
with another frame. For a 10-Mbps Ethernet with a maximum length of 2500
m and four repeaters, the minimum allowed frame time or slot time is 51.2
µs, which is the time required to transmit 64 bytes at 10 Mbps [21].
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Advantages: Because of low medium access overhead, Ethernet uses a simple
algorithm for operation of the network and has almost no delay at low network
loads [24]. No communication bandwidth is used to gain access to the network
compared with the token bus or token ring protocol. Ethernet used as a control
network commonly uses the 10 Mbps standard (e.g., Modbus/TCP); high-
speed (100 Mbps or even 1 Gbps) Ethernet is mainly used in data networks
[21].
Disadvantages: Ethernet is a nondeterministic protocol and does not sup-
port any message prioritization. At high network loads, message collisions
are a major problem because they greatly affect data throughput and time
delays may become unbounded [24]. The Ethernet capture effect existing in
the standard BEB algorithm, in which a node transmits packets exclusively
for a prolonged time despite other nodes waiting for medium access, causes
unfairness and substantial performance degradation [20]. Based on the BEB
algorithm, a message may be discarded after a series of collisions; therefore,
end-to-end communication is not guaranteed. Because of the required mini-
mum valid frame size, Ethernet uses a large message size to transmit a small
amount of data.

Several solutions have been proposed for using this form of Ethernet in con-
trol applications. For example, every message could be time-stamped before it
is sent. This requires clock synchronization, however, which is not easy to ac-
complish, especially with a network of this type [6]. Various schemes based on
deterministic retransmission delays for the collided packets of a CSMA/CD
protocol result in an upper-bounded delay for all the transmitted packets.
However, this is achieved at the expense of inferior performance to CSMA/CD
at low to moderate channel utilization in terms of delay throughput [8]. Other
solutions also try to prioritize CSMA/CD (e.g., LonWorks) to improve the re-
sponse time of critical packets [14]. To a large extent these solutions have been
rendered moot with the proliferation of switched Ethernet as described below.
On the other hand, many of the same issues reappear with the migration to
wireless Ethernet for control.

Switched Ethernet (CSMA/CA)

Switched Ethernet utilizes switches to subdivide the network architecture,
thereby avoiding collisions, increasing network efficiency, and improving deter-
minism. It is widely used in manufacturing applications. The main difference
between switch-based and hub-based Ethernet networks is the intelligence of
forwarding packets. Hubs simply pass on incoming traffic from any port to all
other ports, whereas switches learn the topology of the network and forward
packets to the destination port only. In a star-like network layout, every node
is connected with a single cable to the switch. Thus, collisions can no longer
occur on any network cable.

Switches employ the cut-through or store-and-forward technique to for-
ward packets from one port to another, using per-port buffers for packets
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waiting to be sent on that port. Switches with cut-through first read the
MAC address and then forward the packet to the destination port accord-
ing to the MAC address of the destination and the forwarding table on the
switch. On the other hand, switches with store-and-forward examine the com-
plete packet first. Using the cyclic redundancy check (CRC) code, the switch
will first verify that the frame has been correctly transmitted before forward-
ing the packet to the destination port. If there is an error, the frame will be
discarded. Store-and-forward switches are slower, but will not forward any
corrupted packets.

Although there are no message collisions on the networks, congestion may
occur inside the switch when one port suddenly receives a large number of
packets from the other ports. Three main queuing principles are implemented
inside the switch in this case. They are first-in-first-out (FIFO) queue, pri-
ority queue, and per-flow queue. The FIFO queue is a traditional method
that is fair and simple. However, if the network traffic is heavy, the quality of
service cannot be guaranteed. In the priority queueing scheme, the network
manager reads some of the data frames to distinguish which queues will be
more important. Hence, the packets can be classified into different levels of
queues. Queues with high priority will be processed first followed by queues
with low priority until the buffer is empty. With the per-flow queueing oper-
ation, queues are assigned different levels of priority (or weights). All queues
are then processed one by one according to priority; thus, the queues with
higher priority will generally have higher performance and could potentially
block queues with lower priority.

Examples of timing analysis and performance evaluation of switched Eth-
ernet can be found in [9, 23].

Wireless Ethernet (CSMA/CA)

Wireless Ethernet, based on the IEEE 802.11 standard, can replace wired
Ethernet in a transparent way since it implements the two lowest layers of
the International Standards Organization (ISO)/Open Systems Interconnec-
tion (OSI) model. Besides the physical layer, the biggest difference between
802.11 and 802.3 is in the medium access control. Unlike wired Ethernet nodes,
wireless stations cannot “hear” a collision. A collision avoidance mechanism
is used but cannot entirely prevent collisions. Thus, after a packet has been
successfully received by its destination node, the receiver sends a short ac-
knowledgment packet (ACK) back to the original sender. If the sender does
not receive an ACK packet, it assumes that the transmission was unsuccessful
and retransmits.

The collision avoidance mechanism in 802.11 works as follows. If a network
node wants to send while the network is busy, it sets its backoff counter to a
randomly chosen value. Once the network is idle, the node waits first for an
interframe space and then for this backoff time before attempting to send. If
another node accesses the network during that time, it must wait again for
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another idle interval. In this way, the node with the lowest backoff time sends
first. Certain messages (e.g., ACK) may start transmitting after a shorter
interframe space, thus they have a higher priority. Collisions may still occur
because of the random nature of the backoff time; it is possible for two nodes
to have the same backoff time.

Several refinements to the protocol also exist. Nodes may reserve the net-
work either by sending a request to send (RTS) message or by breaking a
large message into many smaller messages (fragmentation); each successive
message can be sent after the smallest interframe time. If there is a single
master node on the network, the master can poll all the nodes and effectively
create a TDM contention-free network.

2.2 TDM networks

Time-division multiplexing can be accomplished in one of two ways. In a
master-slave network, a single master polls multiple slaves. Slaves can only
send data over the network when requested by the master. In this way, there
are no collisions, since the data transmissions are carefully scheduled by the
master. In a token-passing network, there are multiple masters, or peers. The
token bus protocol (e.g., IEEE 802.4) allows a linear, multidrop, tree-shaped,
or segmented topology [24]. The node that currently has the token is allowed
to send data. When it is finished sending data, or the maximum token holding
time has expired, it “passes” the token to the next logical node on the network.
If a node has no message to send, it just passes the token to the successor node.
The physical location of the successor is not important because the token is
sent to the logical neighbor. Collision of data frames does not occur, as only
one node can transmit at a time. Most token-passing protocols guarantee a
maximum time between network accesses for each node, and most also have
provisions to regenerate the token if the token holder stops transmitting and
does not pass the token to its successor. In many cases, nodes can also be
added dynamically to the bus and can request to be dropped from the logical
ring.

ASI, Bitbus, and Interbus-S are typical examples of master-slave networks,
while Profibus and ControlNet are typical examples of token-passing networks.
Each peer node in a Profibus network can also behave like a master and
communicate with a set of slave nodes during the time it holds the token.
These are deterministic networks because the maximum waiting time before
sending a message frame can be characterized by the token rotation time.
The nodes in the token bus network are arranged logically into a ring, and, in
the case of ControlNet, each node knows the address of its predecessor and its
successor. During operation of the network, the node with the token transmits
data frames until either it runs out of data frames to transmit or the time it
has held the token reaches the limit. The node then regenerates the token and
transmits it to its logical successor on the network.
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ControlNet

Preamble
Start of 
Delimiter

Source
MAC ID LPackets CRC

End
Delimiter

Bytes 2 1 1 0-510 2 1

Overhead = 4 Bytes OH = 3 Bytes

LPacket LPacket LPacket........

Size Control DataTag

1Byte 1 2 or More 0-506

Fig. 2. The message frame of ControlNet (token bus)

The ControlNet protocol is used here as a case study of the operation of
a typical token-passing network. The message frame format of ControlNet is
shown in Fig. 2 [3]. The total overhead is 7 bytes, including preamble, start
delimiter, source MAC ID, CRC, and end delimiter. The data packet frame,
also called the link packet (Lpacket) frame, may include several Lpackets that
contain size, control, tag, and data fields with total frame size between 0 and
510 bytes. The individual destination address is specified within the tag field.
The size field specifies the number of byte pairs (from 3 to 255) contained in
an individual Lpacket, including the size, control, tag, and link data fields.

The ControlNet protocol adopts an implicit token-passing mechanism and
assigns a unique MAC ID (from 1 to 99) to each node. As in general token-
passing buses, the node with the token can send data; however, there is no
real token passing around the network. Instead, each node monitors the source
MAC ID of each message frame received. At the end of a message frame, each
node sets an “implicit token register” to the received source MAC ID + 1. If
the implicit token register is equal to the node’s own MAC ID, that node may
now transmit messages. All nodes have the same value in their implicit token
registers, preventing collisions on the medium. If a node has no data to send,
it just sends a message with an empty Lpacket field, called a null frame.

The length of a cycle, called the network update time (NUT) in ControlNet
or the token rotation time (TRT) in general, is divided into three major parts:
scheduled, unscheduled, and guardband, as shown in Fig. 3. During the sched-
uled part of an NUT, each node can transmit time-critical/scheduled data by
obtaining the implicit token from 0 to S. During the unscheduled part of an
NUT, nodes 0 to U share the opportunity to transmit non-time-critical data
in a round-robin fashion until the allocated unscheduled duration is expired.
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When the guardband time is reached, all nodes stop transmitting, and only
the node with the lowest MAC ID, called the “moderator,” can transmit a
maintenance message, called the “moderator frame,” which accomplishes the
synchronization of all timers inside each node and the publishing of critical
link parameters such as NUT, node time, S, U , etc. If the moderator frame is
not heard for two consecutive NUTs, the node with the lowest MAC ID will
begin transmitting the moderator frame in the guardband of the third NUT.
Moreover, if a moderator node notices that another node has a lower MAC
ID than its own, it immediately cancels its moderator role.
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Network Update Time (NUT)
Scheduled Unscheduled Guardband

Time

Fig. 3. Medium access during scheduled, unscheduled, and guardband time

Advantages: The token bus protocol is a deterministic protocol that pro-
vides excellent throughput and efficiency at high network loads [8,24]. During
network operation, the token bus can dynamically add nodes to or remove
nodes from the network. This contrasts with the token ring case, where the
nodes physically form a ring and cannot be added or removed dynamically
[24]. Scheduled and unscheduled segments in each NUT cycle make Control-
Net suitable for both time-critical and non-time-critical messages.
Disadvantages: Although the token bus protocol is efficient and determinis-
tic at high network loads, at low channel traffic its performance cannot match
that of contention protocols. In general, when there are many nodes in one
logical ring, a large percentage of the network time is used in passing the
token between nodes when data traffic is light [8].
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3 CAN-Based Networks: DeviceNet

CAN is a serial communication protocol developed mainly for applications in
the automotive industry but also capable of offering good performance in other
time-critical industrial applications. The CAN protocol is optimized for short
messages and uses a CSMA/arbitration on message priority (AMP) medium
access method. Thus, the protocol is message oriented, and each message
has a specific priority that is used to arbitrate access to the bus in case of
simultaneous transmission. The bit stream of a transmission is synchronized
on the start bit, and the arbitration is performed on the following message
identifier, in which a logic zero is dominant over a logic one. A node that
wants to transmit a message waits until the bus is free and then starts to
send the identifier of its message bit by bit. Conflicts for access to the bus
are solved during transmission by an arbitration process at the bit level of
the arbitration field, which is the initial part of each frame. Hence, if two
devices want to send messages at the same time, they first continue to send
the message frames and then listen to the network. If one of them receives a
bit different from the one it sends out, it loses the right to continue to send its
message, and the other wins the arbitration. With this method, an ongoing
transmission is never corrupted.

In a CAN-based network, data are transmitted and received using message
frames that carry data from a transmitting node to one or more receiving
nodes. Transmitted data do not necessarily contain addresses of either the
source or the destination of the message. Instead, each message is labeled
by an identifier that is unique throughout the network. All other nodes on
the network receive the message and accept or reject it, depending on the
configuration of mask filters for the identifier. This mode of operation is known
as multicast.

DeviceNet is an example of a technology based on the CAN specification
that has received considerable acceptance in device-level manufacturing ap-
plications. The DeviceNet specification is based on the standard CAN (11-bit
identifier only)4 with an additional application and physical layer specification
[4, 17].

The frame format of DeviceNet is shown in Fig. 4 [4]. The total overhead
is 47 bits, which includes start of frame (SOF), arbitration (11-bit identifier),
control, CRC, acknowledgment (ACK), end of frame (EOF), and intermission
(INT) fields. The size of a data field is between 0 and 8 bytes. The DeviceNet
protocol uses the arbitration field to provide source and destination addressing
as well as message prioritization.
Advantages: CAN is a deterministic protocol optimized for short messages.
The message priority is specified in the arbitration field. Higher priority mes-
sages always gain access to the medium during arbitration. Therefore, the
transmission delay for higher priority messages can be guaranteed.

4The CAN protocol supports two message frame formats: standard CAN (version
2.0A, 11-bit identifier) and extended CAN (version 2.0B, 29-bit identifier).
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SOF

11-Bit Identifier

RTR

r1 r0 DLC Data (0-8 Bytes) 15 Bits

Delimiter Delimiter

Slot

Bus Idle Arbitration Field Control Data Field CRC Field ACK

Message Frame

EOF Int Bus Idle

Fig. 4. The message frame format of DeviceNet (standard CAN format)

Disadvantages: The major disadvantage of CAN compared with the other
networks is the slow data rate (maximum of 500 Kbps). Thus, the through-
put is limited compared with other control networks. The bit synchronization
requirement of the CAN protocol also limits the maximum length of a De-
viceNet network. CAN is also not suitable for transmission of messages of
large data sizes, although it does support fragmentation of data that is more
than 8 bytes.

4 Timing Components

The important time delays that should be considered in an NCS analysis
are the sensor-to-controller and controller-to-actuator end-to-end delays. In
an NCS, message transmission delay can be broken into two parts: device
delay and network delay. The device delay includes the time delays at the
source and destination nodes. The time delay at the source node includes the
preprocessing time, Tpre, and the waiting time, Twait. The time delay at the
destination node is only the postprocessing time, Tpost. The network time
delay includes the total transmission time of a message and the propagation
delay of the network. The total time delay can be expressed by the following
equation:

Tdelay = Tpre + Twait + Ttx + Tpost. (1)

The key components of each time delay are shown in Fig. 5 and will be dis-
cussed in the following subsections.

4.1 Pre- and postprocessing times at source and destination nodes

The preprocessing time at the source node is the time needed to acquire
data from the external environment and encode it into the appropriate net-
work data format. There may be one processor performing both functions, or
multiple processors; we define the total elapsed time required as the pre- or
postprocessing time. This time depends on the device software and hardware
characteristics. In many cases, it may be assumed that the preprocessing time
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Application Layer
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Tpre

Twait
Tpost

Ttx
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Fig. 5. A timing diagram showing time spent sending a message from a source node
to a destination node

is constant or negligible. However, this assumption is not true in general; in
fact, there may be noticeable differences in processing time characteristics
between similar devices, and these delays may be significant.

The postprocessing time at the destination node is the time taken to de-
code the network data into the physical data format and output it to the
external environment.

4.2 Experimental investigation of pre- and postprocessing times

In practical applications, it is very difficult to identify each individual timing
component discussed above. Instead, by monitoring the time-stamped traf-
fic of the request-response messaging on a DeviceNet network, we can show
the characteristics of processing times, i.e., the sum of the preprocessing and
postprocessing times of one device.

In the experimental setup, there is only one master and one slave connected
to the network and the master continuously polls this slave. Referring to
Fig. 5, let Node A be the master and Node B be the slave. Here, there is no
other network traffic other than the request-response messages between the
master and slave, i.e., Twait = 0, and the request-response frequency is set low
enough that no messages are queued up at the sender buffer. By monitoring
the message traffic on the network medium and time-stamping each message,
we can further calculate the processing time of each request-response, i.e.,
Tpost + Tpre, after subtracting the transmission time.

Fig. 6 shows the histogram of 400 samples of four typical DeviceNet de-
vice processing times [11]. The devices are standard I/O types, such as those
used for limit switches. The (right) solid and (left) dashed lines are the maxi-
mum and minimum values of the processing times, respectively. The histogram
plots indicate the nondeterministic processing times of different network de-
vices and their variance. Devices 1 and 3 have a similar functionality of discrete
inputs/outputs, but different numbers of input/output modules. Device 3 pro-
vides several augmentable modules and hence has more processing units and
a higher computation load. Device 1, on the other hand, has only one unit.
Device 2 has a fairly consistent processing time, i.e., a low variance. Note that
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the smallest time that can be recorded is 1 µs. The uniform distribution of
processing time at Device 4 is due to the fact that it has an internal sampling
time which is mismatched with the request frequency. Hence, the processing
time recorded here is the sum of the actual processing time and the waiting
time inside the device. Device 4 also provides more complex functionality and
has a longer processing time than the others.
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Fig. 6. Processing time histogram of four typical DeviceNet devices

A key point that can be taken from the data presented in Fig. 6 is that the
device processing time can be substantial in the overall calculation of Tdelay.
In fact, this delay often dominates over network delays. Thus, in designing
NCSs, device delay and delay variability should be considered as important
factors when choosing components.

4.3 Transmission time on network channel

The transmission time is the most deterministic parameter in a network sys-
tem because it only depends on the data rate, the message size, and the
distance between two nodes. The formula for transmission time can be de-
scribed as follows. Ttx = Tframe + Tprop. Tframe is the time required to send
the packet across the network, and Tprop is the propagation time between any
two devices. Since the typical transmission speed in a communication medium
is 2 × 108 m/s, the propagation time Tprop is negligible on a small scale. In
the worst case, the propagation delays from one end to the other of the net-
work cable for these three control networks are Tprop = 25.6 µs for Ethernet
(2500 m), Tprop = 10 µs for ControlNet (1000 m), and Tprop = 1 µs for De-
viceNet (100 m). The length in parentheses represents the typical maximum
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cable length used. The propagation delay is not easily characterized because
the distance between the source and destination nodes is not constant among
different transmissions. For comparison, we will assume that the propagation
times of these three network types are the same, say, Tprop = 1 µs (100 m).
Note that Tprop in DeviceNet is generally less than one bit time because De-
viceNet is a bit-synchronized network. Hence, the maximum cable length is
used to guarantee the bit synchronization among nodes.

The frame time, Tframe, depends on the size of the data, the overhead,
any padding, and the bit time. Let Ndata be the size of the data in terms of
bytes, Novhd be the number of bytes used as overhead, Npad be the number
of bytes used to pad the remaining part of the frame to meet the minimum
frame size requirement, and Nstuff be the number of bytes used in a stuffing
mechanism (on some protocols). The frame time can then be expressed by the
following equation:

Tframe = [Ndata +Novhd +Npad +Nstuff ]× 8× Tbit. (2)

The values Ndata, Novhd, Npad, and Nstuff
5 can be explicitly described for the

Ethernet, ControlNet, and DeviceNet protocols, see [10].

4.4 Waiting time at source nodes

A message may spend time waiting in the queue at the sender’s buffer and
could be blocked from transmitting by other messages on the network. De-
pending on the amount of data the source node must send and the traffic on
the network, the waiting time may be significant. The main factors affect-
ing waiting time are network protocol, message connection type, and network
traffic load. For example, consider the strobe message connection in Fig. 7. If
Slave 1 is sending a message, the other 8 devices must wait until the network
medium is free. In a CAN-based DeviceNet network, it can be expected that
Slave 9 will encounter the most waiting time because it has a lower priority
on this priority-based network. However, in any network, there will be a non-
trivial waiting time after a strobe, depending on the number of devices that
will respond to the strobe.

The blocking time, which is the time a message must wait once a node is
ready to send it, depends on the network protocol and is a major factor in the
determinism and performance of a control network. It includes waiting time
while other nodes are sending messages and the time needed to resend the
message if a collision occurs.

5The bit-stuffing mechanism in DeviceNet is as follows: if more than 5 bits in
a row are ‘1’, then a ‘0’ is added and vice versa. Ethernet and ControlNet use
Manchester biphase encoding, and, therefore, do not require bit stuffing.
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Fig. 7. Waiting time diagram

Ethernet blocking time

We first consider the blocking time for Ethernet, which includes time taken by
collisions with other messages and the subsequent time waiting to be retrans-
mitted. The BEB algorithm described in Section 2.1 indicates a probabilistic
waiting time. An exact analysis of expected blocking time delay for Ether-
net is very difficult [10]. At a high level, the expected blocking time can be
described by the following equation:

E{Tblock} =
16∑

k=1

E{Tk}+ Tresid, (3)

where Tresid denotes the residual time until the network is idle, and E{Tk}
is the expected time of the kth collision. E{Tk} depends on the number of
backlogged and unbacklogged nodes as well as the message arrival rate at each
node. For the 16th collision, the node discards this message and reports an
error message to the higher level processing units [21]. It can be seen that
Tblock is not deterministic and may be unbounded due to the discarding of
messages.

ControlNet blocking time

In ControlNet, if a node wants to send a message, it must wait to receive the
token from the logically previous node. Therefore, the blocking time, Tblock,
can be expressed by the transmission times and token rotation times of pre-
vious nodes. The general formula for Tblock can be described by the following
equation:

Tblock = Tresid +
∑

j∈Nnoqueue

T
(j)
token +

∑
j∈Nqueue

min(T (j,nj)
tx , Tnode)+Tguard, (4)

where Tresid is the residual time needed by the current node to finish trans-
mitting, Nnoqueue and Nqueue denote the sets of nodes with messages and
without messages in the queues, respectively, and Tguard is the time spent
on the guardband period, as defined earlier. For example, if node 10 is wait-
ing for the token, node 4 is holding the token and sending messages, and
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nodes 6, 7, and 8 have messages in their queues, then Nnoqueue = {5, 9} and
Nqueue = {4, 6, 7, 8}. Let nj denote the number of messages queued in the
jth node and let Tnode be the maximum possible time (i.e., token holding
time) assigned to each node to fully utilize the network channel. For example,
in ControlNet Tnode = 827.2 µs, which is a function of the maximum data
size, overhead frame size, and other network parameters. Ttoken is the token
passing time, which depends on the time needed to transmit a token and the
propagation time from node i − 1 to node i. ControlNet uses an implicit to-
ken, and Ttoken is simply the sum of Tframe with zero data size and Tprop. If
a new message is queued for sending at a node while that node is holding the
token, then Tblock = T

(j,nj)
tx , where j is the node number. In the worst case,

if there are N master nodes on the bus and each one has multiple messages
to send, which means that each node uses the maximum token holding time,
then Tblock =

∑
i∈Nnode\{j} min(T (i,ni)

tx , Tnode), where the min function is used
because, even if it has more messages to send, a node cannot hold the token
longer than Tnode (i.e., T (j,nj)

tx ≤ Tnode). ControlNet is a deterministic network
because the maximum time delay is bounded and can be characterized by (4).
If the periods of each node and message are known, we can explicitly describe
the sets Nnoqueue and Nqueue and nj . Hence, Tblock in (4) can be determined
explicitly.

DeviceNet blocking time

The blocking time, Tblock, in DeviceNet can be described by the following
equation [22]:

T
(k)
block = Tresid +

∑
∀j∈Nhp

�T
(k−1)
block + Tbit

T
(j)
peri

� T (j)
tx , (5)

where k is the iteration index of obtaining steady-state Tblock, Tresid is the
residual time needed by the current node to finish transmitting, Nhp is the
set of nodes with higher priority than the waiting node, T (j)

peri is the period
of the jth node, and �x� denotes the smallest integer number that is greater
than or equal to x. The summation denotes the time needed to send all the
higher priority messages. While a low priority node is waiting for the channel
to become available, it is possible for other high priority nodes to be queued,
in which case the low priority node loses the arbitration again. This situation
accumulates the total blocking time. The worst-case Tresid under a low traffic
load is

Tresid = max
∀j∈Nnode

T
(j)
tx , (6)

where Nnode is the set of nodes on the network. However, because of the
priority-arbitration mechanism, low priority message transmission may not
be deterministic or bounded under high loading.
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Fig. 8 shows experimental data of the waiting time of nine identical devices
on a DeviceNet network. These devices have a very low variance of processing
time. We collected 200 pairs of messages (request and response). Each sym-
bol denotes the mean, and the distance between the upper and lower bars
equals two standard deviations. If these bars are over the limit (maximum
or minimum), then the value of the limit is used instead. It can be seen in
Fig. 8 that the average waiting time is proportional to the node number (i.e.,
priority). Also, the first few devices have a larger variance than the others,
because the variance of processing time occasionally allows a lower priority
device to access the idle network before a higher priority one.
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Fig. 8. Nine identical devices with strobed message connection

5 Network Comparisons

In this section, comparisons are drawn between the three types of control net-
works using the three networks that have been discussed in detail: Ethernet,
ControlNet (token bus), and DeviceNet (CAN). The parameters for these net-
works are shown in Table 2. After summarizing the theoretical and simulation
results for these three networks, we show some experimental results for time
delays and throughput in wireless Ethernet.

5.1 Data transmission

One method for comparing control networks is by the time taken to transmit
data and the efficiency of the data transmission.

As shown in Fig. 9(a), the transmission time for DeviceNet is longer than
the others because of the lower data rate (500 Kbps). Ethernet requires less
transmission time on larger data sizes (>20 bytes) compared with the others.
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Table 2. Typical system parameters of control networks

Ethernet ControlNet DeviceNet

Data ratea (Mbps) 10 5 0.5

Bit time (µs) 0.1 0.2 2

Max. length (m) 2500 1000 100

Max. data size (byte) 1500 504 8

Min. message size (byte)b 72c 7 47/8d

Max. number of nodes >1000 99 64

Typical Tx speed (m/s) coaxial cable: 2 × 108

a: typical data rate; b: zero data size;
c: including the preamble and start of delimiter fields;
d: DeviceNet overhead is 47 bits.

Although ControlNet uses less time to transmit the same amount of data, it
needs some time (NUT) to gain access to the network.

The data coding efficiency (see Fig. 9(b)) is defined by the ratio of the data
size and the message size (i.e., the total number of bytes used to transmit the
data). For small data sizes, DeviceNet is the best among these three types
and Ethernet is the worst (due to its large minimum message size). For large
data sizes, ControlNet and Ethernet are better than DeviceNet (DeviceNet
is only 58% efficient due to its small maximum message size, but ControlNet
and Ethernet are near 98% efficient). For control systems, the data size is
generally small. Therefore, the above analysis suggests that DeviceNet may
be preferable in spite of the slow data rate. Before making that decision,
however, the average and total time delay and the throughput of the network
must be investigated.

5.2 Case study of 10-node NCS

In this section, we use a case study of an NCS to compare the three different
control networks. The system has 10 nodes, each with 8 bytes of data to send
every period. MATLAB6 is used to simulate the MAC sublayer protocols of
the three control networks. Network parameters such as the number of nodes,
the message periods, and message sizes can be specified in the simulation
model. In our study, these network parameters are constant. The simulation
program records the time delay history of each message and calculates network
performance statistics such as the average time delay seen by messages on the
network, the efficiency and utilization of the network, and the number of
messages that remain unsent at the end of the simulation run.

6MATLAB is a technical computing software developed by The MathWorks, Inc.
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Fig. 9. A comparison of transmission time and data coding efficiency versus the
data size for three control networks

Based on the three different types of message connections (poll, strobe,
and cyclic), we consider the following three releasing policies. The first policy,
which we call the “zero releasing policy,” assumes that every node tries to
send its first message at t = 0 and sends a new message every period. This
type of situation occurs when a system powers up and there has been no
prescheduling of messages or when there is a strobe request from the master.
The second policy, the “random releasing policy,” assumes a random start
time for each node; each node still sends a new message every period. The
possible situation for this releasing policy is the cyclic messaging, where no
preschedule is done. In the third policy, called “scheduled releasing policy,”
the start-sending time is scheduled to occur (to the extent possible) when the
network is available to the node; this occurs in a polled connection or with a
well-scheduled cyclic policy.

In addition to varying the release policy, we can also change the period of
each node to demonstrate the effect of traffic load on the network. For each
releasing policy and period, we simulate the system and calculate the average
time delays of these 10 nodes. We then compare the simulation results to the
analytic results described in Section 4. For ControlNet and DeviceNet, the
maximum time delay can be explicitly determined. For Ethernet, the expected
value of the time delay can be computed using the BEB algorithm once the
releasing policy is known.

The simulation results for a message period of 5000 µs are summarized in
Fig. 10. The zero releasing policy has the longest average delay in every net-
work because all nodes experience contention when trying to send messages.
Although the Ethernet data rate is much faster than that of DeviceNet, the
delays due to collisions and the large required message size combine to in-
crease the average time delay for Ethernet in this case. For a typical random
releasing policy, average time delays are reduced because not all nodes try to
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Fig. 10. Message time delay associated with three releasing policies (10-node case).
The estimated mean, maximum, and minimum values are computed from the net-
work analysis for the zero and scheduled releasing policies.

send messages (or experience network contention) at the same time, although
some contention still exists. The scheduled releasing policy makes the best use
of each individual network; the time delay of this releasing policy is only the
transmission time.

In Ethernet, shown in Fig. 10(a), the zero and random releasing policies
demonstrate its nondeterministic time delay, even though the traffic load is
not saturated. Fig. 10(b) shows that the message time delay of ControlNet is
bounded for all releasing policies; we can estimate the lower and upper bounds
based on the formulae derived in Section 4. Due to the asynchronicity between
the message period and the token rotation period, these time delays exhibit a
linear trend with respect to the message number. The simulation results for
DeviceNet, shown in Fig. 10(c), demonstrate that every node in DeviceNet has
a constant time delay which depends only on the node number. The estimated
mean time delay (1091 µs) for Ethernet in Fig. 10(a) is computed for the case
of the zero releasing policy from (3), and the variance is taken as twice the
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standard deviation. The maximum and minimum time delays for ControlNet
and DeviceNet are computed from (4) and (5).

5.3 Wireless Ethernet throughput and delays

In addition to time delays, the difference between the theoretical data rate
and the practical throughput of a control network should be considered. For
example, raw data rates for 802.11 wireless networks range from 11 to 54
Mbits/sec. The actual throughput of the network, however, is lower due to
both the overhead associated with the interframe spaces, ACK, and other
protocol support transmissions, and to the actual implementation of the net-
work adapter. Although 802.11a and 802.11g have the same raw data rate,
the throughput is lower for 802.11g because its backwards compatibility with
802.11b requires that the interframe spaces be as long as they would be on the
802.11b network. Computed and measured throughputs are shown in Table 3
[5]. The experiments were conducted by continually sending more traffic on
the network until a further setpoint increase in traffic resulted in no additional
throughput.

Table 3. Maximum throughputs for different 802.11 wireless Ethernet networks.
All data rates and throughputs are in Mbit/sec.

Network type 802.11a 802.11g 802.11b
Nominal data rate 54 54 11
Theoretical throughput 26.46 17.28 6.49
Measured throughput 23.2 13.6 3.6

Experiments conducted to measure the time delays on wireless networks
are summarized in Table 4 and Fig. 11 [5]. Data packets were sent from the
client to the server and back again, with varying amounts of cross-traffic on
the network. The send and receive times on both machines were time-stamped.
The packet left the client at time ta and arrived at the server at time tb; then
left the server at time tc and arrived at the client at time td. The sum of the
pre- and postprocessing times and the transmission time on the network for
both messages can be computed as (assuming that the two nodes are identical)

2 ∗ Tdelay = 2 ∗ (Tpre + Twait + Ttx + Tpost)
= td − ta − (tc − tb).

Note that this measurement does not require that the clocks on the client and
server be synchronized. Since the delays at the two nodes can be different,
it is this sum of the two delays that is plotted in Fig. 11 and tabulated in
Table 4.
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Two different types of data packets were considered: User Datagram Pro-
tocol (UDP), and object linking and embedding (OLE) for Process Control
(OPC). UDP is a commonly used connectionless protocol that runs on top
of Ethernet, often utilized for broadcasting. UDP packets carry only a data
load of 50 bytes. OPC is an application-to-application communication pro-
tocol primarily utilized in manufacturing to communicate data values. OPC
requires extra overhead to support this application layer; consequently, the
OPC packets carry the maximum packet load of 512 data bytes. For compari-
son purposes, the frame times (including the overheads) are computed for the
different packets.

Table 4. Computed frame times and experimentally measured delays on wireless
networks; all times in ms.

Network type 802.11a 802.11g 802.11b
Frame time (UDP), computed 0.011 0.011 0.055
Median delay (UDP), measured 0.346 0.452 1.733
Frame time (OPC), computed 0.080 0.080 0.391
Median delay (OPC), measured 2.335 2.425 3.692

6 Conclusions and Future Work

The features of three candidate control networks — Ethernet (CSMA/CD),
ControlNet (Token Bus), and DeviceNet (CAN) — were discussed in detail.
With respect to Ethernet, which is becoming more and more prevalent in
control network applications, we described and contrasted the three main
implementation types: hub-based, switched, and wireless. For all protocols
we first described the MAC mechanisms, which are responsible for satisfying
both the time-critical/real-time response requirement over the network and
the quality and reliability of communication between devices on the network.
We then focused on exploring timing parameters related to end-to-end de-
livery of information over the networks. These timing parameters, which will
ultimately influence control applications, are affected by the network data
rate, the periods of messages, the data or message size of the information,
and the communication protocol. For each protocol, we studied the key per-
formance parameters of the corresponding network when used in a control
situation, including the magnitude and characteristics of the expected and
measured time delays. Simulation results were presented for several different
scenarios. The timing analyses and comparisons of message time delay given
in this chapter should be useful for designers of NCSs. For example, the ba-
sic differentiation of the network approaches will help the designer to match
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Fig. 11. Distributions of packet delays for different values of cross-traffic throughput
on a 802.11a network

basic requirement rankings against network approaches. Also, analyses such
as device delay experiments reveal to the designer the importance of device
delay and device delay variability in NCS design.

Control systems typically send small amounts of data periodically, but
require guaranteed transmission and bounded time delay for the messages.
The suitability of network protocols for use in control systems is greatly in-
fluenced by these two criteria. Although Ethernet (including hub-based and
wireless) has seen widespread use in many data transmission applications
and can support high data rates up to 1 Gbps, it may not be suitable as
the communication medium for some control systems when compared with
deterministic network systems. However, because of its high data rate, Eth-
ernet can be used for aperiodic/non-time-critical and large data size commu-
nication, such as communication between workstations or machine cells. For
machine-level communication with controllers, sensors, and actuators, deter-
ministic networks are generally more suitable for meeting the characteristics
and requirements of control systems. For control systems with short and/or
prioritized messages, CAN-based protocols such as DeviceNet demonstrate
better performance. The scheduled and unscheduled messaging capabilities in
ControlNet make it suitable for time-critical and non-time-critical messages.
ControlNet is also suitable for large data size message transmission.
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Future NCS research efforts are expected to focus on controller design for
NCSs, which can differ significantly from the design of traditional central-
ized control systems. For example, controller design optimized to the delay
expected in an NCS is explored in [12], and balancing quality of service and
quality of performance (QoP) in control networks can be effected using tech-
niques such as deadbanding [15].

Another body of future NCS research will focus on the utilization of Eth-
ernet for control [16], with a special emphasis on wireless Ethernet. While
wireless Ethernet is beginning to proliferate in manufacturing diagnostics, its
acceptance as an NCS enabler has been very slow to occur due to issues of
reliability, performance, and security [13]. However, the enormous flexibility,
cost savings, and reliability benefits that could potentially be achieved with
wireless systems will continue to drive wireless NCS research, with a focus not
only on control system design, but also on higher performing, more reliable,
and more secure networks for control. Its is easily conceivable that, within 10
years, wireless will be the preferred medium for NCSs.
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more detail in [10] and [11]. The authors would like to thank Alexander Duschau-
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1 Introduction

This chapter is concerned with the general topic of control systems in which
feedback information is transmitted over wireless communication channels as
well as with some specific problems, challenges, and opportunities associated
with implementing feedback control using Bluetooth and other current wire-
less networking technologies.

Networked control systems in which sensors, actuators, and other sys-
tem components are interconnected using advanced wireless communications
technologies (IEEE 802.11, IEEE 802.15.4, Bluetooth, etc.) present a num-
ber of unique advantages (e.g., the elimination of wiring, the possibility of
self-organization of networks of heterogeneous devices, and the possibility of
operation while all of the components are in motion relative to one another) as
well as special challenges (rapid and unpredictable changes in communication
channels, possible network congestion, packet loss, limited battery capacity,
etc.). This chapter discusses the design and operation of networks of controlled
devices using various networking technologies. While each of the approaches
has its own advantages, our main focus will be on Bluetooth because of the
support it provides for interoperability of heterogeneous devices. The pri-
mary focus of our discussion will be on the effectiveness of wireless networks
in providing communications services in applications with hard real-time con-
straints. We have in mind systems which will fail to operate properly—perhaps

∗This work was supported by ODDR&E MURI01 Program Grant Number
DAAD19-01-1-0465 to Boston University and the Center for Networked Commu-
nicating Control Systems and by the National Science Foundation ITR Program
Grant Number DMI-0330171.
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in a catastrophic way—if data rates in network communications channels fall
below certain critical thresholds. The issues raised by constraints on network
data rates are illustrated by experiments performed with an inverted pendu-
lum where the feedback loop is closed over a Bluetooth radio link.

To place the discussion of control using Bluetooth in context, we briefly
describe a number of other wireless networks. Each of the technologies listed
in Table 1 has its own advocates and target applications. Among a num-
ber of current efforts to design and deploy networks of very low-power sen-
sor nodes, several groups have independently developed network protocols for
mesh topologies. In mesh-connected networks, each node is typically connected
to more than two other nodes, and the protocols typically involve ad hoc rout-
ing and multihop message delivery. Such networks tend to be fault-tolerant
and support rapid message rerouting so that the network is relatively robust
with respect to component failures. Also, these networks are, in principle,
completely scalable.

Mesh-connected wireless networks typically configure themselves by hav-
ing nodes establish links to other nodes based on measured signal power
levels. If the devices in the network are mobile, the signal power between
nodes will vary as the relative node positions change, and the connection
pattern (Fig. 1) will need to be updated accordingly. The overhead of con-
tinually reconfiguring the network has limited the use of mesh connection
protocols for mobile ad hoc networks. Nevertheless, there is fairly widespread
interest in networks whose stationary nodes have a mesh connection topol-
ogy while the mobile nodes selectively connect to fixed nodes based on cri-
teria such as signal strength, measured distance, etc. For a list of compa-
nies among which several are developing mesh-connected sensor networks, see
http://www.bu.edu/systems/consortium/participants.html.

Many of the developers of low-power RF networking technologies have
decided to adopt the IEEE 802.15.4 standard, and a number of companies
have formed a consortium called the ZigBee Alliance to promote wirelessly
networked monitoring and control products based on the IEEE 802.15.4 stan-
dard.3 Released in 2003, this standard provides the basis for networking de-
vices which communicate at low data-rates using extremely low power. Details
may be found at http://www.ieee802.org/15/pub/TG4.html.

BluetoothTM is a wireless networking technology that was introduced by
a consortium of companies made up of Intel, Nokia, Ericsson, Toshiba, and
IBM. Founded in the Spring of 1999, the consortium conceived of Bluetooth
technology to provide wireless communication among any group of spatially
proximate Bluetooth-enabled devices. While portable digital phones and com-
puters were early candidate applications, Bluetooth was designed to be an
open-source technology, so that, in principle, it could be tailored to support
interoperability of a wide variety of devices. Of course, to ensure such in-

3The principal (promoter) companies in the ZigBee Alliance are Ember,
Freescale, Honeywell, Invensys, Mitsubishi, Motorola, Philips, and Samsung.
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Star
Mesh

Cluster-tree
Scatternet

Fig. 1. Various types of network topologies. The shading key is dark = mas-
ter/coordinator/router node, light = slave, full function node, and textured = slave,
reduced function node. Notice that the scatternet (Bluetooth) topology is comprised
of three separate piconets. Each piconet is organized around a separate master node,
and the node shaded light inside dark in the right-hand piconet serves as the mas-
ter in the right-hand piconet and a slave in the top piconet. Bluetooth standards
prohibit nodes from being masters in more than one piconet.

teroperability, developers have been required to respect a fairly strict set of
communication protocols. (See Sections 4 and 5.)

Referring to Table 1, the technical specifications of Bluetooth are com-
parable in many respects to other current wireless technologies. Bluetooth
networks are formed whenever two or more devices are within range of one
another. The devices will configure themselves into small networks called pi-
conets, in which one device will always become a piconet master, with other
devices operating as slaves. To explain the roles of slaves and masters, it is
helpful to recall that Bluetooth communication is in the unregulated ISM band
(∼2.4GHz)4 in which a standard transmission technique is spread-spectrum
frequency hopping. It is the master’s role to organize the frequency hopping

4The initials ISM stand for Industrial, Scientific, and Medical. The ISM bands
are defined by the ITU-T in S5.138 and S5.150 of the Radio Regulations established
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among all the nodes in the piconet. When the Bluetooth devices first commu-
nicate with one another and negotiate a piconet configuration, the device that
is designated as master communicates its clock reading and device address to
the remaining devices (which are all designated as slaves). This address is used
to calculate the frequency hopping sequence of each of the slaves. Based on
its local clock readings (relative to the master clock), each slave determines
a sequence of frequencies on which to transmit or receive data in each clock
interval.

Bluetooth specifications dictate that all piconets must have eight or fewer
members (including the master node), and that in each piconet the master
node will be unique. Piconets can have more than eight devices if the excess
devices are attached in “parked” mode. If more than eight devices are operat-
ing, they may configure themselves into several piconets, and as indicated in
Fig. 1, may integrate themselves into what is called a scatternet. Note that
no device may be a master of more than one piconet, but there are two ways
in which a device may be a member of more than one piconet. Specifically,
any slave node in a piconet may simultaneously function as either a master or
slave in another piconet. In cases of dual membership, the device must switch
between two frequency hopping sequences. Because the piconets in a scatter-
net are not well synchronized, scatternets do not use Bluetooth bandwidth
very efficiently. More research is needed to understand the real-time control
of devices where feedback links are established over scatternets. Another po-
tential problem with large-scale interconnected control system networks using
Bluetooth is that competition for use of the 2.4GHz frequency band may re-
sult in a large number of lost packets. While this may be acceptable in an
averaged sense, there can be periods of heavy congestion which render the
quality of feedback control questionable. The reader is referred to [5] for a
more detailed discussion of minimum-average and minimum-peak data rates
in feedback control. For more detail on Bluetooth networking, the reader is re-
ferred to [2]. Fig. 2 shows examples of various packaging and types of interface
hardware for Bluetooth transceivers.

1.1 Bluetooth as a networking technology for devices with hard
real-time constraints

As indicated in Table 1, Bluetooth communications are subject to data rate
limitations. Nevertheless, as described below, the achievable data rates can be

by the International Telecommunication Union. By international agreement, com-
munications in the three frequencies of the ISM band: 860MHz/900MHz (33.3cm
wavelength), 2.4GHz (12.2cm wavelength), and 5.8GHz (5.2cm wavelength) do not
require a license anywhere in the world. Note that the 5.8GHz band is occasion-
ally referred to as the UNII (Unlicensed National Information Infrastructure) band.
There are other unregulated radio bands, but they are not of interest in discussing
wireless Ethernet and Bluetooth.
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Fig. 2. Bluetooth radio transceivers can be connected to other devices in a variety
of ways—including the PCMCIA card, nine-pin serial connector, and USB plug for
the devices displayed in this photo.

high enough for some fairly demanding real-time applications. In the applica-
tion described in Sections 4 and 5, Bluetooth radios were linked with a plant
microprocessor and a controller so that both the forward and feedback links
in the control loop made use of the wireless channel. As will be discussed in
Section 5, the system was carefully engineered so that the Bluetooth packets
made optimal use of the available channel capacity.

The emphasis Bluetooth technology places on interoperability of hetero-
geneous devices makes it attractive for integrating components in an ad hoc
control network (ACN) provided that repeated network reconfiguration is not
required. (See remarks below in Section 2.3 regarding issues with real-time
reconfiguration of Bluetooth networks.) Given current levels of interest in
protocols like the emerging IEEE 1451.2 standard for connecting transducers
to network-capable applications processors (NCAPs), it should be possible
in the near future to implement ACNs without any detailed knowledge of
the underlying networking technologies. The use of such low-level connec-
tion standards will empower a future generation of “internetworked” devices
which can be integrated into fairly complex systems without the user needing
to specify any details regarding the way in which communications are han-
dled. Such future device networks will involve families of smart transducer
interface modules (STIMs) which will automatically configure themselves by
first advertising their services and capabilities (sensing, actuation, computa-
tion, etc.) and then negotiating their role in the network in terms of required
bandwidth, physical variables needing calibration, device-specific parameter
units (temperature, pressure, etc.) and so forth. (See [4] for more information
on Bluetooth-enabled STIMs.)

In principle, scatternet topologies of Bluetooth-enabled STIMs are com-
pletely scalable, but because there is no coordination of frequency hopping
between component piconets in a scatternet, interference leading to packet
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losses can be expected to occur as the numbers of networked devices increases
within any given local area.

2 Control using IEEE 802.11

Research in the field of networked control systems has largely been focused
on dedicated networks such as the Controller Area Network (CAN) bus and
Token Bus. Data networks such as Ethernet (IEEE 802.3) have also been
studied for distributed control over networks. In this section we describe the
IEEE 802.11 standard, a.k.a wireless Ethernet, and the issues that arise when
using it for soft real-time or supervisory control.

2.1 The IEEE 802.11 standard

802.11 is a part of the IEEE 802 family, which is a series of specifications for
local and metropolitan area networks (LAN/MAN). The relationship between
the IEEE 802.11 standard and other members of the family along with its
place in the ISO Open Systems Interconnect (OSI) model is shown in Fig. 3.
IEEE 802 specifications are focused on the two lowest layers of the OSI model

802 802.1 802.2 Logical Link Control (LLC)

O
ve

rv
ie

w
&

A
rc

hi
te

ct
ur

e

M
an

ag
em

en
t

802.3 802.5

802.11g802.3 802.5

802.11

802.11a 802.11b

MAC

DSSS/OFDM
PHY

MAC MAC

HR/DSSS
PHY

OFDM
PHY

PHYPHY
Physical
Layer

Data Link
Layer

MAC
sublayer

LLC
sublayer

Fig. 3. The IEEE 802 family and its relation to the OSI model

because they incorporate both physical and data link components. The media
access control (MAC) sublayer of the data link layer specifies a set of rules
to determine how to access the medium and send data, but the details of the
transmission and reception are left to the physical layer (PHY).

Individual specifications in the 802 series are identified by a second num-
ber. For example, 802.3 is the specification for a carrier sense multiple access
network with collision detection (CSMA/CD) which is often called Ethernet.
802.2 specifies a common link layer (which is a part of the data link sub-
layer in the OSI model), the logical link control (LLC), which can be used by
any lower-layer LAN technology. Management features for 802 networks are
specified in 802.1.



www.manaraa.com

684 A. Suri, J. Baillieul, and D.V. Raghunathan

802.11 is just another link layer that uses the 802.2/LLC encapsulation.
The base 802.11 specification includes the 802.11 MAC and the two physical
layers: a frequency hopping spread-spectrum (FHSS) physical layer and a
direct-sequence spread-spectrum (DSSS) link layer. Later revisions to 802.11
added additional physical layers. 802.11b specifies a high-rate direct-sequence
spread-spectrum (HR/DSSS). 802.11a describes a physical layer based on or-
thogonal frequency division multiplexing (OFDM) and 802.11g (which was
ratified in June 2003) uses both HR/DSSS and OFDM for transmission.
802.11a operates in the 5GHz band at raw speeds of 54Mbits/s. 802.11b and
802.11g both operate in the 2.4GHz ISM band at speeds up to 11Mbits/s
and 54 Mbits/s, respectively, and 802.11g is fully backward compatible with
802.11b.

The basic building block of an 802.11 network is the basic service set
(BSS), which is simply a group of stations that communicate with each other.
Communications take place within what is called the basic service area. When
a station is in the basic service area, it can communicate with the other
members of the BSS. A BSS is identified using a sequence of alphanumeric
characters called the basic service set identifier (BSSID). All the stations in
a given BSS have the same BSSID. BSSs come in two flavors, both of which
are discussed below and shown in Fig. 4.

(a) (b)

Fig. 4. (a) Independent BSS (ad hoc mode) and (b) Infrastructure BSS

Independent networks

Independent networks constitute an independent BSS (IBSS). Stations in an
IBSS communicate directly with each other and thus must be within direct
communication range. The smallest possible 802.11 network is an IBSS with



www.manaraa.com

Feedback over Wireless Ethernet and Bluetooth 685

two stations. Typically, IBSSs are composed of a small number of stations set
up for a specific purpose and for a short period of time. Due to their short
durations, small size, and focused purpose, IBSSs are sometimes referred to
as ad hoc BSSs or ad hoc networks, and consequently the stations are said to
be operating in an ad hoc mode.

Infrastructure networks

Infrastructure networks are distinguished by the use of an access point. Access
points are used for all communications in infrastructure networks, including
communication between adjacent stations within direct communicating dis-
tance. Hence, any communication in the infrastructure mode requires at least
two hops; one from the transmitting station to the access point and the other
from the access point to the receiving station. The major advantage of infras-
tructure mode is that all stations are required to be within range of the access
point and not necessarily within direct communication range of each other.

2.2 Supervisory control over IEEE 802.11b networks

As mentioned above, IEEE 802.11b supports both ad hoc (peer-to-peer) and
infrastructure wireless networks. Communications over these networks can be
performed via either of the two protocols supported by the TCP/IP suite:
transmission control protocol (TCP) or user datagram protocol (UDP). TCP
is a connection-based protocol that guarantees data delivery, whereas UDP
is a connectionless protocol where there are no guarantees of data delivery.
In TCP, a mutually acknowledged connection between the sender and the
receiver is established during handshaking, which is done before data trans-
mission. The sender retransmits the data unless it receives an acknowledgment
from the receiver verifying successful data delivery. UDP, however, has no pro-
visions for retransmission; if data is not delivered, retransmissions have to be
done at a higher layer. The combination of low overhead and discarding data
rather than retransmitting it allows more frequent communication of small
data packets, making UDP a preferred choice for real-time network-mediated
control. For supervisory control, on the other hand, the data packets are gen-
erally larger and infrequent; hence, TCP is often a better choice.

2.3 An experimental testbed for supervisory control

The testbed for supervisory control of mobile robot formations in the Intel-
ligent Mechatronics Laboratory at Boston University consists of five mobile
robots equipped with on-board computers and a suite of imaging and prox-
imity sensing equipment. Each is also equipped with IEEE 802.11b PCMCIA
cards and with an HP iPAQ h5550 Pocket PC with embedded IEEE 802.11b
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and Bluetooth connected through an RS232 port. Another HP iPAQ h5550
Pocket PC with 802.11b and Bluetooth which served as the user interface
was referred to as the supervisory control commander. (See Fig. 5.) Formation
control algorithms were implemented on the on-board computer of the robots
for maintaining controlled geometric formations of the robots. The supervi-
sory control commander was used by the human operator to send formation
reconfiguration commands to the corresponding Pocket PCs on the robots
which in turn sent the command to the formation controller (running on the
on-board computer) over a serial port. In different experiments, the user- and
robot-Pocket PCs communicated with each other over either IEEE 802.11b or
Bluetooth. Both the ad hoc and infrastructure modes of 802.11b were used.

Fig. 5. Formation controller interface. A number of user interface screens like the
one shown here have been created. The boxes labeled C1 through C5 allow the user
to specify which robot (s)he wishes to communicate with.

Each control packet consisted of 1 byte of supervisory control data and
34 bytes of overhead. The system was soft real-time—meaning that formation
reconfiguration had to be achieved within only an approximate time of each
motion command being issued. Because of the limited processing power of
Pocket PCs, the overhead of retransmission at the application layer was much
larger. Hence, TCP was preferred over UDP. Since Pocket PCs do not support
the full features of the Windows sockets API, multithreading was required to
send and receive data at the same time. Because the raw data speeds of IEEE
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802.11b were much higher than the computation speeds of the Pocket PCs,
most of the overhead was in data processing rather than in data transmission.

The Serial Port Profile of Bluetooth was used to communicate between
the Pocket PCs over Bluetooth. There were several connectivity issues with
Bluetooth. For example, if the Bluetooth devices went out of range, the de-
vices had to be reset, and a new connection had to be established. On the
other hand, 802.11b, in both infrastructure and ad hoc mode, was able to
re-establish connection once in range. The round-trip delay for the same pay-
load was also significantly higher for Bluetooth connections. However, it is
important to note that the authors were using the Serial Port Profile of the
Bluetooth application stack which is shipped with the HP iPAQs for Blue-
tooth links, whereas TCP connections were created for 802.11b connections.
Hence, the authors had explicit control over packets in 802.11b connections.
Bluetooth devices, however, had a larger range compared to 802.11b in the ad
hoc mode. The 802.11b range in infrastructure mode easily superseded both
Bluetooth and 802.11b ad hoc mode. Refer to Ploplys et al. [6] for signal-
to-noise ratio (SNR) and data rate as a function of separation for 802.11b
nodes.

As mentioned earlier, it is fairly straightforward to operate at the L2CAP
or HCI layer of the Bluetooth protocol stack. Hence, the overhead of Bluetooth
packets is generally small. On the other hand, it is extremely difficult to
operate at a layer lower than TCP/IP in the OSI stack; hence, the overhead is
fairly large for each packet. This is a significant advantage that Bluetooth has
over 802.11b. 802.11b, in its ad hoc mode, requires that each node maintain a
connection with every other node in the network. From our experiments, we
found that this leads to a very unstable network once the number of nodes
exceeds five. The Bluetooth protocol (which creates ad hoc networks) solves
this problem by having a master in the piconet, and only the master is required
to maintain connection with every node in the network.

The testbed also supported the teleoperation of mobile robots. In the tele-
operation mode, the interfacing Pocket PC was removed from each robot,
and the user Pocket PC communicated directly with the robot’s on-board
computer. Fig. 6 shows the teleoperation commander called iPAQDriver. The
robot sent real-time image (Fig. 6(a)) and laser (Fig. 6(b)) data to the iPAQ-
Driver. The user was able to send motion commands to both the robot and
the camera head explicitly. A total of 57,600 bytes of payload data was trans-
mitted over the network. The data was subdivided into packets of 1000 bytes
payload so as not to exceed the fragmentation limit of 1500 bytes. Hence, 58
packets were sent for each data sample. For further details see [9].

The fragmentation limit is one of the configuration parameters of 802.11b
networks. These networks have the ability to fragment packets to limit their
length. When there is no interference on the network, fragmenting lowers the
network throughput, because of the increased overhead of packet headers.
However, in the presence of interference, fragmentation can actually increase
the throughput. By decreasing the length of each packet, the probability of
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(a) (b)

Fig. 6. (a) Video feedback and (b) laser range finder feedback for iPAQDriver

interference during an 802.11b packet transfer is reduced, and there is a trade-
off between the lower packet error rate that can be achieved with shorter
packets and the increased overhead of more headers on the network. Finding
the optimal fragmentation setting to maximize the network throughput on a
wireless network is an active area of research. (See, e.g., [7],[10].)

Ye et al. [11] proposed a modified IEEE 802.11b protocol called “prioritized
CSMA/CA” for real-time control over 802.11b. Their network carried both
real-time traffic and standard multimedia traffic. Ploplys et al. [6], on the other
hand, used a standard dedicated 802.11b network for closed-loop control over
wireless networks. In that work, the authors characterized the SNR of the
nodes and hence the data rates of the network when the plant and controller
separation varied. They also extended their controller to a multiple controller-
plant system.

3 Controlling a Hard Real-Time System over
Information Channels with Uncertainties

Consider a plant-controller system stabilized by closed-loop control over a
communication channel. For our analysis, we shall view this as being com-
prised of two components. The first is the plant-controller system, which we
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assume can be stabilized satisfactorily when the information channel is per-
fect. By “perfect” we mean that there is instant and reliable information
transfer between the plant and the controller. The other component is the
information channel or data network used to communicate information be-
tween the plant and controller. Our goal is to model and stabilize the overall
system under uncertainties in the information channel. From the controller’s
perspective, the data network represents an uncertainty in the plant-controller
system; from the perspective of the data network, the plant-controller system
represents a load, or service requestor. We can examine both a controller-
centric approach and a network-centric approach to this system, and these
two perspectives form the core of our investigation. Next we report the re-
sults of laboratory experiments with a specific hard real-time system in which
feedback was transmitted over network data channels.

3.1 The pendulum-cart system

The stabilization (in the inverted position) of a pendulum hinged on a cart
through a force acting on the cart is a classical example of a feedback sta-
bilization problem. Fig. 7 shows the setup of the system that was used to
conduct our experiments. The system consists of a cart that moves on rails

x1
F

x3

Fig. 7. The pendulum-on-a-cart system

and a pendulum hinged to the center of the cart. The cart is moved via a mo-
tor attached to one end of the rail. An optical encoder placed coaxially with
the motor is used to determine the position of the cart on the rails. Another
optical encoder placed coaxially with the axis of rotation of the pendulum de-
termines the angle between the pendulum and the vertical. The position and
velocity of the cart together with the angular position and velocity of the pen-
dulum are sufficient to describe the dynamics of this system. The equations
of motion are
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dx1
dt = x2

dx2
dt = 2mLx2

4 sin x3+4(F−cx2)−3mg sin x3 cos x3

(4M+m)+3m sin2 x3

dx3
dt = x4

dx2
dt = 6(M+m)g sin x3−3mLx2

4 cos x3 sin x3−6 cos x3(F−cx2)
(4M+m)+3m sin2 x3

,

(1)

where the force F is viewed as a control input, and the other parameters are
give in Table 2. (See [3].)

Table 2. Parameters for the pendulum-cart system

Parameter Symbol Value
Mass of pendulum m 0.23 kg
Mass of cart M 2.4 kg
Length of pendulum L 0.36 m
Gravity g 9.81 m/s
Dissipation c 0.05 Ns/m

We chose to design a linear feedback regulator for quadratic optimal cost
(LQR) for this plant, and towards that end, the equations (1) were linearized
about the unstable pendulum equilibrium, (x1, x2, x3, x4) = (0, 0, 0, 0).

In order to effect the control, sensor information (from the optical en-
coders) was sent to the controller (a computer connected to the system) via
a data channel. The controller computed the corresponding actuator input in
order to stabilize the system and sent this information to the actuator via
the same data channel. When this data channel is simply a dedicated ISA
bus connected directly to the computer, there is very little delay for this in-
formation propagation and the overall effect on the stability of the system is
minimal, if any. Indeed, with the control programs running under a real-time
kernel (RTK), the pendulum-cart system can be sampled at frequencies up
to 1000Hz. As described in the pendulum-cart system documentation, control
programs can be developed and run using a custom controller development
facility developed as a custom control DLL (dynamic linked library) written
in C/C++. There are two features that must be taken into account in the
development of the custom controller DLL

1. A sampling time T must be prescribed, and the custom controller needs
to complete its execution in less than the period T , as it is called every T
time units.

2. Sampling less frequently than 25Hz (40 ms inter-sample time) destabilizes
the system from the inverted equilibrium position.

This setup served as the reference for all of our experiments.
If we replace the ISA bus with another information channel, say a LAN

or a wireless medium (Bluetooth in our case), the control system dynamics
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become more complex. The LAN is a shared channel, and so there is no ded-
icated resource to guarantee that control actions are completed within the
minimum allotted sampling time T . The wireless medium, on the other hand,
has limitations in terms of interference and data rates. These uncertainties
bring dynamics into the system not seen when we have a dedicated bus ser-
vicing our network. In this case, it is important to capture the dynamics
introduced by the data network.

3.2 Modeling and observing the data network

There are several ways in which one can characterize a data network and
information channels depending on the application at hand. One can, for
instance, use the signal-to-noise ratio (SNR) to capture the strength of a
signal. In the context of real-time systems, the most important characteristic is
the timely delivery of information and a deterministic bound on the maximum
possible delay. The delay, bandwidth (data rate supported on the network),
and the jitter (variability) in the delay are three properties that can be used
to characterize the data network. The delay and communication bandwidth
are related as shown in (2). The jitter can be characterized by, for example,
the standard deviation in the delay values.

Total delay = Propagation delay + Transmission delay

Propagation delay = distance
speed of propagation in the medium

Transmission delay = packet size
bandwidth .

(2)

For communication links with high bandwidth and small packets, the link
latency is the essential component of the delay. (Recall that latency is the
time required to encode, transmit, and process a message containing routing
and other network-specific administrative data, but no message content. It is
thus the time required to transmit a packet containing only the “overhead
bits” depicted in Fig. 10.)

As far as the controller-plant system is concerned, the network may be
modeled as a delay element with the length of the delay being variable. It
now becomes important to be able to design and observe the delay over the
network. We can affect the delay by structuring the transmitted data so as to
minimize packet fragmentation. Then the delay can be measured in terms of
the round-trip time (RTT)—the time it takes for a message traveling between
nodes in the network to be delivered and for an acknowledgment or response
to that message to come back to the sender. Notice that there are several po-
tential sources of delay while one attempts to measure the RTT. The major
component in our case came from the (network-induced) transmission delay,
and hence delays like scheduling delays at the receiving end can be ignored.
The RTT can be taken to represent the state of the network. The deviation in
the RTT (measured, for example, by the standard deviation of the RTT ob-
served over time) can be taken as a measure of the jitter. These two quantities
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(the running average and deviation of the RTT) are adequate to represent the
state of the network from the point of view of the control system.

Fig. 8 illustrates the importance of RTT in characterizing performance lim-
its in networked control systems. In both cases depicted here, transmission de-
lays dominate in determining bandwidth. Fig. 8(a) depicts a high-bandwidth
link. The RTT is small, and in this case one can have a sampling period as
long as 40ms. In Fig. 8(b), however, the largest tolerable sampling interval is
around 25ms. Channel capacity limits the possible performance of the control
system. For the high-bandwidth channel (Fig. 8(a)), the control system needs
to reserve the channel for only 3 ms every 40 ms (the sampling period). In
the case of Fig. 8(b), however, the control system keeps the communications
channel in nearly constant use.

Plant Controller Plant Controller
Controller-plant
transmission delay (1ms)

Plant-controller
transmission delay (1ms)

Computation delay (1ms)

t = 0 ms 

t = 3 ms

t = 40 ms 

t = 43 ms 

Sampling period
= 40 ms.  Net
transmission delay
= 3 ms.

Net
trasnsmission
delay

t = 0 ms 

t = 23 ms 

t = 25 ms 

Controller-plant
transmission delay (11 ms)

Computation delay (1ms)

Plant-controller
transmission delay (11 ms)

Sampling period = 25 ms
Net transmission delay
= 23 ms

(a) (b)

Fig. 8. (a) Timing diagram for a high-bandwidth data link between the plant and
controller. (b) Timing diagram for a low-bandwidth data link between the plant
and controller. In this case the transmission delay is almost equal to the sampling
period.

4 Feedback over Bluetooth Wireless Data Channels

The layers comprising the Bluetooth stack are depicted in Fig. 9. From a
high-level view, there are three main layers: the application protocols, the
middleware protocols, and the transport protocols. The application layer of
the stack is primarily comprised of higher-level protocols that are for the most
part abstracted out from the actual physical medium being used to commu-
nicate information. These include protocols like the File Transfer Protocol
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(FTP). There is a rich list of applications defined by the profiles in Bluetooth,
especially in the context of ad hoc networking.

vCard/vCal WAE

AT -Commands

TCS BIN SDP

Audio

Host Controller Interface

OBEX WAP

UDP TCP

IP

PPP

RFCOMM

L2CAP

LMP

Baseband

Bluetooth Radio

Fig. 9. The Bluetooth stack with protocols that appear in each of the main layers
as described in the text

The middleware layer of the stack implements several of the Internet pro-
tocols (such as TCP, IP, PPP, IrDA), as well as a serial port emulator protocol
RFCOMM to interface with the Bluetooth transport protocols. In the same
layer, there is also a service discovery protocol (SDP) that lets devices query
each other for the services that are available as well as the method of access
of the service from each device.

The transport protocols allow Bluetooth devices to actually locate each
other and to create physical and logical links to sustain the connections. The
transport layer contains much of the novel potential that Bluetooth offers.
There are two protocols that have been established for this layer: the Link
Layer Channel Access Protocol (L2CAP) and the Host Controller Interface
(HCI). The L2CAP supports asynchronous connections, in which the guaran-
tee is on the packet delivery but not the time it takes for the delivery. The
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HCI is required when a Bluetooth module is designed as an external device
that is plugged into, say, a laptop or PDA (such as the Pocket PC described in
Section 2.3). This interface exports the functionality of the Bluetooth module
to the external device, which can, through the HCI, request services from the
Bluetooth module.

From the perspective of the HCI layer, there are two possible kinds of
links—the asynchronous connectionless link (ACL) and the synchronous con-
nection oriented (SCO) link. The ACL guarantees data delivery across the
network without guarantees on the time, while the SCO link works to time
deadlines for data delivery. SCO links will drop packets if necessary in order
to maintain the flow of data packets. This is a required feature for voice, for
example, where it is better to lose a few packets on the way, as the alternative
would mean delay, which can be perceived by the ear. It is on this layer that
we have focused much of our investigation. The point of view here is that this
channel may be used for hard real-time control, with the use of techniques
like redundancy to provide robustness of the network to packet drops.

5 Packet Structures for Real-Time Control Using
Bluetooth

The pendulum-cart experimental control system with Bluetooth feedback
channels is depicted in Fig. 10. Before describing the joint operation of the
various channels shown, it is useful to give a general overview of the pendulum-
cart system operation when Bluetooth communication is used to carry state
and actuation data between the controller and plant respectively. The control
computer in the upper left of Fig. 10 (also referred to as the host controller)
communicates with the Bluetooth EBSK module (Ericsson Bluetooth Starter
Kit) via command packets, event packets, and data packets. Two types of
packets can be sent from the host to the host controller (Bluetooth module):
command packets and data packets, and two types of packets (event packets
and data packets) are returned from the host controller to the host. The first
byte (not shown in the figure) is used to indicate (to the Bluetooth firmware)
which type of packet is being sent (command, event, or data packet). A com-
mand packet is not passed over the wireless interface; it is internal and affects
only the host controller and link settings. The host controller, in turn, sends
an event packet back to the host to indicate the status of the command and
the possible changes made in the configuration due to the command. An HCI
data packet, however, is read, and its data payload is repackaged into a 366-bit
DM1 air packet, which is sent over the wireless medium. Note that as depicted
in Fig. 10 the data packet has a theoretical payload size limit of 65,535 bytes.
However, the size of the payload in the HCI data packet cannot exceed 17
bytes, if one is to avoid fragmentation in the air packets which are passed
over the wireless channel. Such fragmentation would require two or more air
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packets to be sent over the wireless link. The resulting fragmentation over-
head can seriously increase the transmission delay in our real-time control
application.

G(s)

HCI Command Packet

Air Packets:  ²  366 bits total

Air Packets:  17 bytes payload

8 bits 8 bits 0-255 bits 
Parameter total Event Parameter 1 É.  

Event Packet format

Host Controller Interface Command packet format

16 bits 8 bits 0-255 bits 
Opcode field 

length
Parameter 1 É.  Parameter N 

12 bits 4 bits 16 bits 16 bits 16 bits 0-65535 bytes (theoretic) 
Connection
handle 

Flag Payload 

Overhead = 8 bytes Data = 0-65535 bytes 

Host Controller Interface Data packet format

Bluetooth Module
Bluetooth Module

Event Packet

HCI Data Packet

Fig. 10. Bluetooth packet structures. The top of the figure is a cartoon description
of the pendulum-cart experimental setup. It shows the connection of the control
computer (left) with the Bluetooth EBSK module, which has established a wireless
link to a second EBSK module, which is in turn connected to our plant—the actual
pendulum-cart apparatus.

HCI packets are passed to the EBSK firmware on the wireless module.
If the packet type indicates a command packet, the firmware executes the
command and returns an event packet. If the packet type indicates a data
packet, the firmware parcels the data into a number of DM1 air packets which
are transmitted over the wireless medium. The maximum size of the payload
in a DM1 packet is 17 bytes. Each DM1 packet represents 355 bits transmitted
over the wireless link, indicating an overhead of 366 − 136 = 230 bits (28.75
bytes).

It has turned out in our application that, of the 17 bytes generated in the
HCI layer, only 9 bytes are data which are useful to the application (state-
information regarding the pendulum-cart system). At this rate, one sees that
9 bytes (72 bits) are carried in packets of 366 bits, meaning that 72/366 =
19.6% of the DM1 data packet is useful to the application. If one were to send
a payload of, say, 10 bytes of data useful to the application, the HCI layer
would require a payload size of 18 bytes. This would cause fragmentation of
the DM1 packets, requiring one with 17 bytes of payload and one with 1 byte of
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payload. These packets would have sizes 366 and 186 bits, respectively. In this
case, only 80/(366 + 186) = 14.4% of the DM1 air packet carries information
useful to the application. With the data being sent as two packets, there is
an increase in the packets being dropped and thus being retransmitted. It
also increases the total data transmitted and the consequent latency over the
link as seen by the application. It is thus desirable to avoid fragmentation in
the creation of DM1 packets, although, depending on the amount of real-time
data that is essential to the application, it is not always possible to do so.

6 Experiments with a Real-Time Testbed

Recall that there is a relationship between a control system’s sample rate and
the transmission delay. For the pendulum-cart system, sampling intervals as
large as 40ms (25Hz) can be tolerated. However, the transmission delay cannot
be larger than 22ms, in which case sampling needs to be performed at intervals
no longer than≈ 22ms. When the transmission delays are significantly smaller,
the sampling interval can be larger.

Timing diagrams similar to Fig. 8 apply to our experiment. The state of
the plant is sent over the wireless link to the controller. The four states (five,
when the RTT value is included) are each encoded by 16-bit unsigned short
integers. Thus, a total of 8 or 10 bytes are sent across the wireless link. The
previous section discussed the data budgets in each packet. Using this packet
audit, it is possible to understand the data rates achievable over our Bluetooth
link. First, an HCI packet is created in the control computer and transmitted
down to the EBSK Bluetooth module using an RS232 cable. The RS232 data
rate is 57.6kbps. Assuming a 17-byte HCI data packet (which maps to 18
bytes for an RS232 HCI packet due to the 1 byte packet type field), one gets a
one-way transmission delay of 144/57.6 = 2.5 ms between the computer and
the Bluetooth module. Next these 17 bytes are parceled into a DM1 packet
of size 366 bits. The air packet transmission delay, based on the data rate of
108kbps is 366/108 = 3.39 ms. The RTT is computed based on four transfers
of data over serial links and two transfers over the air (DM1 packets). This
totals 4×2.5 + 2×3.39 = 16.78 ms. The actual observed RTT is of the order of
20ms, with a standard deviation of 2 ms. Among the reasons for the difference
in the predicted and actual values are the scheduling of data exchanges with
the serial buffer by the operating system and the overhead due to processing
the data at both ends of the system.

It is clear that under ideal operating conditions, stable operation of the
inverted pendulum apparatus is possible. When there are dropped packets,
however, the system may lose stability, and our observation in the lab was that
the experiment could only be run for about a minute before the pendulum
would fall. Many additional experiments using adaptive control techniques
and model predictive control were carried out. Reports of these approaches are
beyond the scope of this chapter. For more information about such approaches,
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the reader is referred to [8]. For further reading on Bluetooth and 802.11
standards, see

http://www.bluetooth.org
http://grouper.ieee.org/groups/802/11/index.html
http://www.ieee802.org.

For additional details regarding supervisory control of multiagent systems
connected through wireless networks, we refer to [9]. For general information
regarding Bluetooth networks, the reader should see [2], and for a broad and
detailed view of current research on networked control systems, the reader is
referred to [1].
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1 Introduction

Bluetooth is a short range radio technology, initially designed in 1994 at Er-
icsson Mobile Communications as a cable replacer for mobile devices. It was
typically to be used for connecting mobile phones with PCs to synchronize and
exchange data, or with accessories, such as a wireless hands-free device. Blue-
tooth was designed with a strong focus on low power and low cost. Ericsson
together with Nokia, IBM, Intel, and Toshiba, formed a special interest group
in 1998 to further develop and standardize the technology. In 1999 the open
Bluetooth specification, version 1.0 was released. The name Bluetooth is from
the Danish Viking king Harald Bl̊atand (Harald Bluetooth) who is famous for
uniting Norway and Denmark and had a tooth that was discolored.

During 2003, there were approximately 69 million Bluetooth units shipped
—a doubling of the corresponding number from 2002. Today, these chipsets
are mostly deployed in cell phones, and the penetration of Bluetooth within
mobile terminals (both for communication and for computing) is expected to
grow significantly in the coming years. It can be expected that the technology
will also become available in many other consumer products as the prices will
continue to drop during the next couple of years.

While Bluetooth was designed for the office and consumer product mar-
kets, it has proven useful outside the initial target application area as well.
Bluetooth has many qualities that are valuable in industrial automation ap-
plications: It is low power, it is tolerant against noisy environments, it has
built in security, it has low latencies, etc.

Going wireless has some obvious advantages; without cables we have much
greater freedom to physically distribute the nodes. It is possible to place ac-
tuators and sensors without worrying about the location of the control node.
For example, we can place the sensor and actuator on a mobile object and
still run the controller from a stand-still platform. However, going wireless will
also result in less dependable systems. The likelihood of a wireless link con-
taining bit errors is several orders of magnitude larger than for a wired link.
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This means that the possibility of a message being corrupted and delayed due
to retransmissions is much larger. The problem of unreliable links and time
delays must be explicitly addressed in any wireless control application.

In a distributed control system the sensors, the actuators and the controller
are physically displaced and communicate over a network. The main advantage
of this setup is flexibility. It allows us to use the same control computer for
several control loops and it relieves us from the potential problem of placing
the controller close to the controlled process. However, a downside of using a
distributed approach is that delays will be introduced in the control loops due
to latencies in the network communication. The delays will lead to decreased
phase margins in the control loops and potentially unstable systems.

This chapter discusses how Bluetooth may be used in automation and
control applications. We will start by giving an overview of Bluetooth as such
from an automation point of view, i.e., what kind of performance in terms
of sampling rates, latency, etc., can one expect from an automation system
utilizing Bluetooth? We will then use this knowledge and design some example
wireless control systems.

2 Bluetooth

The Bluetooth wireless technology is specified in [3] and a good introduction
is found in [8]. Its architecture follows a layered approach where each layer
at one end talks to the corresponding layer at the other end. The principle
is illustrated in Fig. 1. At the bottom is the physical layer, which defines
the characteristics of the radio transmitter and receiver. On top of this, the
baseband layer defines how packets are formed and controls the timing of the
communication channel. Above the baseband layer we have the link manager
(LM), which sets up links, negotiates features, and administers the running
connections. This task is handled using the LM Protocol (LMP). Before data
can be sent over the wireless link, large chunks of user data must be reformat-
ted into packets suitable for handling at the baseband layer. At the receiving
end, the reverse procedure is applied—small chunks of data are reassembled
and released to higher layers in the correct order. This task is handled by the
Logical Link Control and Adaptation Protocol (L2CAP).

It is natural to build the functionality defined by the layers described
above into a module and incorporate this module into some gadget—a host
device. Such modules are referred to as Bluetooth controllers. To facilitate
communication between higher layer protocols running on the host and the
lower layer protocols handled by the Bluetooth controller, a Host Controller
Interface (HCI) has been defined. This interface describes how to access the
functionality of the lower layer protocols executed by the Bluetooth controller.

Above the L2CAP, several higher layer protocols have been defined, for in-
stance, the Service Discovery Protocol (SDP) and a serial connection protocol



www.manaraa.com

Bluetooth in Control 701

denoted by RFCOMM. Furthermore, there exist several profiles that consti-
tute “vertical slices” through the protocol stack. The profiles define what
functionality is needed in order to perform a certain task. Examples of such
profiles are the Advanced Audio Distribution Profile (A2DP) and the Dial Up
Networking (DUN) profile .

Bluetooth host
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manager

Channel
manager

L2CAPL2CAP
layer

HCI

RF

Link controller

Baseband resource manager

Device
managerUpper

baseband
layer
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baseband

layer

Physical
layer

Asynchronous
isochronous
framed traffic

Asynchronous
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framed traffic

data control data control

RFCOMM DUN
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Link
controller

Radio

Link
manager

Bluetooth controller

Fig. 1. A schematic view of the Bluetooth protocol stack

Bluetooth devices connect in a star topology (see Fig. 2) where the cen-
tral node is denoted as master and the other nodes are denoted as slaves. All
traffics flows between the master and the slaves (both directions are possi-
ble, of course)—traffic between slaves is not possible. The medium access is
controlled by the master, who actively has to poll a slave before this slave
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can send any data. Flexible timesharing is possible in the forward and reverse
directions in order to accommodate asymmetric traffic flow between master
and slave.

2.1 Physical layer

The radio works in the globally available 2.4 GHz industrial, scientific, and
medical (ISM) band. The maximum output power depends on the power class
of the device. Class 3 is restricted to 1 mW, class 2 is restricted to 2.5 mW,
and class 1 is restricted to 100 mW. Using the nominal numbers on receiver
sensitivity given in the Bluetooth specification, this will allow units in line of
sight to communicate within a distance of at least 10 m when operating in
class 3, and 100 m when operating in class 1.

In order to decrease susceptibility to interference, Bluetooth deploys fre-
quency hopping (FH) spread spectrum technology. There are 79 channels used,
each with a bandwidth of 1 MHz. During communication, the system makes
1600 hops per second evenly spread over these channels according to a pseudo-
random pattern. The particular sequence of frequencies used is referred to as
a physical channel. The idea is that if one transmits on a bad channel, the
next hop, which occurs only 625 µs later, will hopefully be on a channel that
is not interfered by any other radio source. In general, faster hopping between
frequencies gives more spreading, which improves protection from other in-
terferers. However, the improved performance comes at the cost of increased
complexity. The hopping rate chosen for Bluetooth is considered to be a good
trade-off between performance and complexity.

The signal is transmitted using binaryGaussian frequency shift keying. The
raw bit rate is 1 Mb/s, but due to various kinds of protocol overhead, the user
data rate cannot exceed 723 kb/s. Future versions of the Bluetooth specifica-
tion are likely to increase the maximum achievable data rate by changing the
modulation format and, possibly, also by increasing the symbol rate.

2.2 Baseband layer

This layer handles functionality related to link control, such as assembling
packets into the format that is sent over the air, handling the Automatic
Repeat reQuest (ARQ) protocol, performing channel encoding and decoding
and encryption and decryption, and generating the FH sequence.

Connection setup

One of the greatest features of Bluetooth is the simplicity by which ad hoc net-
working works. This is the notion of a networking mode that does not require
any particular infrastructure in the sense of base stations or access points
being in place before communication can start. Instead, Bluetooth allows for



www.manaraa.com

Bluetooth in Control 703

dynamic forming of networks on demand; any unit is capable of setting up
(and tearing down) a local network when it is desirable. There is no need
for certain a priori constellations among the Bluetooth devices, nor is there
any difference between the possible networking roles the different units are
capable of handling.

A unique 48 bit address is associated with each Bluetooth device. This
address, denoted by BD ADDR, is factory preset and cannot be changed by
the user. It is used for identification purposes when connections are estab-
lished. To address a particular device—also known as paging a device—the
BD ADDR of the addressee must be known to the caller. An inquiry procedure
is defined that allows a Bluetooth device to find out the BD ADDR of nearby
units. This is accomplished by broadcasting a specific inquiry message and
collecting device addresses from units that respond to this inquiry message.
Clearly, the inquiry procedure is only needed for first-time connections as the
inquirer can store the BD ADDR of a responding device of interest for later
use.

The inquiry message is repeatedly transmitted following a well-defined,
rather short hop sequence of length 32. Any device that wants to be visible
to others (also known as being discoverable) frequently scans the inquiry hop
sequence for inquiry messages. This procedure is referred to as an inquiry
scan. A scanning device will respond to inquiries with its BD ADDR and the
current value of its native clock. The inquiry message is anonymous and there
is no acknowledgment to the response, so the scanning device has no idea who
made the inquiry, or if the inquirer received the response correctly.

To reach a particular device, a page message is sent. This message is sent
on another length 32 hop sequence determined from the 24 least significant
bits of the BD ADDR (which are denoted the lower address part (LAP))
of the target device. A device listens for page messages when it is in page
scan state. The phase (i.e., the particular position) of the FH sequence is
determined from the device’s native clock. The paging device has knowledge
of this from the inquiry response, thus it is possible for the paging device to
hit the correct frequency of the paged device fairly quickly. As already stated,
the inquiry part can be bypassed when two units have previously set up a
connection and want to connect again. If a long time has passed since the
previous connection, the clocks of the devices may have drifted, causing the
estimate of the other unit’s native clock to be inaccurate. The only effect of
this is that the connection setup time may increase because of the resulting
misalignment of their respective phase in the page hop sequence.

When a page response is received, a rough FH synchronization has been
established between the pager and the paged device. By definition, the pager
is the master and the paged device is the slave. Before the channel can be set
up, some more information must be exchanged between the devices. The FH
sequence, the timing, and the channel access code (CAC) are all derived from
the master device. In order to fine-tune the FH synchronization, the slave
needs the BD ADDR and the native clock of the master. This information
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is conveyed in a special packet sent from the master to the slave. With all
information at hand at the slave side, the master and slave can switch from
the page hopping sequence (defined by the slave) to the basic channel hopping
sequence determined by the master’s parameters.

Topology and the physical channel

Bluetooth supports a point-to-point connection or a point-to-multipoint con-
nection. The former implies that the physical channel is shared among two
devices, while the latter implies sharing the physical channel among more than
two Bluetooth devices. The devices sharing one physical channel are forming
a piconet. A piconet has exactly one master and at least one, but no more
than seven slaves. Within a piconet, each slave will be given a three bit ad-
dress denoted by LT ADDR. The LT ADDR is unique within the piconet and
it is used by the master for addressing slaves rather than the much longer
BD ADDR.

Data can only be sent between the master and the slaves; there is no
option for slave-to-slave traffic. Should such a traffic flow be desirable, either
the master must actively relay it between the slaves (requiring support from
some higher layer protocol), or, preferably, the slaves set up a piconet of their
own. When multiple piconets cover the same area, it is possible for a device
to participate in more than one of these simultaneously using timesharing. A
device may act as slave in several piconets, but it is only possible to be master
in a single piconet. A group of piconets where there exist common nodes in
the networks is called a scatternet. A few examples of piconet constellations
are depicted in Fig. 2.

Fig. 2. Some examples of different piconet constellations: (a) point-to-point, (b)
master relaying versus separate piconets, and (c) timesharing to achieve a scatternet
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On the physical channel, a time division duplex (TDD) scheme is used
to share the medium. The time line is divided into slots of 625 µs duration.
Master-to-slave traffic can only start at even slot numbers, while slave-to-
master traffic can only start at odd slot numbers. As the packets that are
transmitted are allowed to occupy one, three, or five slots, and the number
of used slots need not be the same in both directions, one can easily accom-
modate asymmetric traffic streams. It is perfectly fine to use “empty” slots
(NULL packets) if no user data is available. The NULL packets do carry some
information related to the ARQ protocol, thus they need to be transmitted
even though actual user data is missing. In Fig. 3, the principle of the TDD
scheme is illustrated.
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625 µs

Fig. 3. The TDD scheme used in Bluetooth

The master grants channel access to individual slaves by addressing them.
A slave is not allowed to transmit unless it is explicitly polled by the master.
By polling unequally among the slaves, the total capacity of the piconet can
be distributed quite freely among the links that share it. It should be noted
that one major idea behind Bluetooth is that the overall throughput within a
small area is higher when there are several small piconets operating in parallel,
rather than a few large ones. Even though the number of collisions increases
with more piconets, the aggregated throughput supersedes that which can be
reached when many units share a collision-free common channel.

Each unit has a 28 bit native clock running at 3200 Hz. The FH sequence
used is different for each piconet and it is derived from the master’s BD ADDR
and its native clock. The slots are numbered according to the 27 most signifi-
cant bits of the master clock. For each new slot, a new frequency is calculated.
However, for multi-slot packets the frequency stays constant during the entire
transmission. The FH sequence for each piconet is cyclic with a period time
of approximately 23 hours.

Packet formats

A Bluetooth packet consists of an access code, a header, and a payload. The
72 bit access code is uniquely derived from the master’s BD ADDR. As this
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implies different access codes for every piconet, it provides a method for slaves
to filter out packets that do not belong to their piconet. The header consists
of 18 bits of information (with an R = 1/3 repetition code applied to increase
robustness, thus 54 bits are transmitted) used for administrative purposes
such as addressing within the piconet, ARQ protocol parameters, flow control,
etc. Finally, the payload may carry 0–2744 bits of user data. A 16 bit cyclic
redundancy check (CRC) is used for error detection on the payload for some
packet types. It is also possible to apply one of two different error correcting
codes to this part—either the R = 1/3 repetition code used for the header or
an R = 2/3 shortened Hamming code. Fig. 4 illustrates the packet format.

Fig. 4. A baseband packet

As clock drift between different units is inevitable, each slave must track
and keep an updated offset of its own clock to the master’s clock. This off-
set is calculated based on the arrival time of packets sent from the master.
In practice, the receiver computes the offset by looking at where the peak
correlation occurs between the received (most likely noisy) access code and a
sliding window of the well-defined access code of the piconet.

Bluetooth can support a mixture of traffic types on the same piconet, and
even on the same link. Best effort traffic has no requirement on latency or de-
lay, but high demands on correctness of delivered data. This is often referred
to as asynchronous traffic. In Bluetooth, this traffic is handled using asyn-
chronous connection-oriented link (ACL1) for which ARQ is mandated and
error correcting coding is optional. The ACLs are denoted by DH1, DH3, and
DH5 for 1, 3, and 5 slot packets, respectively. If the optional error correction
code is used (indicated by changing the letter H of the type name to an M),
the amount of user data decreases, which is manifested as a decreasing data
rate. Table 1 summarizes what data rates can be accomplished for different
ACL packets.

1This acronym used to be interpreted as asynchronous connectionless, but in ver-
sion 1.2 of the Bluetooth specification this has been changed, as an ACL link really is
a connection-oriented logical transport. To be consistent with older documentation,
the acronym itself is unchanged.
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Type Payload FEC CRC Symmetric Asymmetric
(informa- max. rate max. rate (kb/s)
tion bytes) (kb/s) Forward Reverse

DM1 0–17 2/3 Yes 108.8 108.8 108.8
DH1 0–27 No Yes 172.8 172.8 172.8
DM3 0–121 2/3 Yes 258.1 387.2 54.4
DH3 0–183 No Yes 390.4 585.6 86.4
DM5 0–224 2/3 Yes 286.7 477.8 36.3
DH5 0–339 No Yes 433.9 723.2 57.6
AUX1 0–29 No No 185.6 185.6 185.6

Table 1. Summary of ACL packets and their achievable data rates

For real-time, two-way communication, the round-trip delay must be min-
imized and variations in the interarrival time of data samples should also be
kept small. This is referred to as synchronous traffic. Synchronous traffic can
be handled using the synchronous connection-oriented (SCO) link, for which
slots are reserved on a regular basis. The SCO link is run without ARQ, but
error correcting codes can be applied.

In the version 1.2 release of the Bluetooth specification, one more syn-
chronous link has been defined—the eSCO link. As is the case for SCO links,
the eSCO link provides constant rate data services by carrying fixed-sized
packets on reserved slots over the physical channel. The difference lies in the
flexibility provided by eSCO: data rates can be chosen more freely, and it is
more reliable as a limited number of retransmissions can take place in be-
tween the reserved slots. The payload length is set during LMP eSCO setup
and remains fixed until the link is removed or re-negotiated. The retransmis-
sion window immediately follows the reserved slots. The principle of single-slot
eSCO packets is depicted in Fig. 5.

M
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eSCO
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eSCO
instant

eSCO window eSCO window

Retransmission
 window

Retransmission
 window

Fig. 5. Details for single-slot eSCO windows

Table 2 lists the available data rates for synchronous packets. As indicated
there, the synchronous HV1, HV2, and HV3 packets are fixed sized without
ARQ, while the eSCO links (EV3, EV4, and EV5) are flexible in size as well as
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in utilizing retransmission. It can be noted that eSCO traffic uses a secondary
LT ADDR, which allows mixing of ACL and eSCO traffic to the same unit
with independent ARQ handling for both traffic streams.

Type Payload FEC CRC Symmetric
(informa- max. rate
tion bytes) (kb/s)

HV1 10 1/3 No 64
HV2 20 2/3 No 64
HV3 30 No No 64
DV 10 + (0–9)∗ 2/3∗ Yes∗ 64 + 57.6∗

EV3 1–30 No Yes 96
EV4 1–120 2/3 Yes 192
EV5 1–180 No Yes 288

Table 2. Summary of synchronous packets and their achievable data rates. The
*-marked items of the DV packet are only relevant to the data part of the payload.

2.3 The LMP

It is the LM that is responsible for the control of the Bluetooth link. That
includes all tasks related to the setup, detach, or configuration of a link. The
LM is also responsible for exchanging security-related messages. The LMs in
different units exchange control messages using the LMP. A large set of control
messages or LMP protocol data units (PDUs) have been defined. Many of
these are security related and some PDUs are used to carry the information
needed at pairing, authentication, and for enabling of encryption. LMP PDUs
are always carried in the payload of one of two different types of single-slot
packets. In order to distinguish LMP packets from conventional packets, a
special type of code is used in the packet header of all LMP messages.

2.4 The L2CAP

The L2CAP takes care of datagram segmentation and re-assembly, multiplex-
ing of service streams, and quality of service issues. The L2CAP constitutes
a filter between the Bluetooth independent higher layers running on the host
and the lower layers belonging to the Bluetooth module. For instance, TCP/IP
traffic packets are too large to fit within a baseband packet. Therefore, such
packets will be cut into smaller chunks of data before they are sent to the
baseband for further processing. On the receiving side, the process is reversed;
baseband packets are re-assembled into larger entities before they are released
to higher layers.
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2.5 The HCI

The HCI defines how to communicate between the upper layers and lower
layers in the Bluetooth communication stack. The HCI command packets can
be divided into six different subgroups:

• link control commands
• link policy commands
• host controller and baseband commands
• read information commands
• read status commands
• test commands

The link control commands are used to control the link layer connections to
other Bluetooth devices. Control of authentication and encryption as well as
keys and pass-key commands belong to this subgroup. The policy commands
are used to control how the link manager manages the piconet. The host
controller and baseband commands are used to read and write into several
different host controller registers. This includes reading and writing keys and
pass-keys to/from the host controller as well as reading and writing the general
link manager authentication and encryption policy.

By defining an HCI, it is possible to logically separate the radio and base-
band related functions from higher layer protocols. This is beneficial since the
latter can be run on a host processor separated from the radio hardware. The
radio can then be implemented as a separate module accessible through a
well-defined interface. For instance, a laptop may implement higher protocol
layers in software and incorporate the Bluetooth radio module, either directly
on the motherboard, or as a dongle connected to one of the standard inter-
faces such as the universal serial bus (USB) or the PC card bus. However,
not all Bluetooth implementations run the lower and higher layer processing
on different processors. Integrated implementations are also possible. Conse-
quently, the HCI is an optional feature, and only products that benefit from
the separation use it.

2.6 Security

Unlike many other wireless communication systems, Bluetooth has been de-
signed with security in mind. Consequently, the specification has incorporated
means for security right from the beginning. The intention is to provide what
commonly is called link level security. The user should not feel that privacy
is more of a concern with the Bluetooth link than with a wired connection.
This is accomplished by providing authentication and encryption. Authenti-
cation is the process of verifying the existence of a shared secret denoted by
the link key in two devices, whereas encryption is the process of hiding the
information that is exchanged for all but the holders of the encryption key.
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The latter usually implies two devices (master and slave), but there is an op-
tion for broadcast encryption that allows for up to seven slaves listening to
one master broadcasting encrypted messages.

The security provided by the Bluetooth core is built upon the use of
symmetric-key cryptographic mechanisms for authentication, link encryption,
and key generation. A number of different key types are used in connection
with these mechanisms. Link keys are primarily used for authentication, but
they are also used to derive the encryption key that controls the encryption
of the data sent via a link. The size of all keys is limited to at most 128 bits
due to export regulations. The link key is created during the pairing of two
devices, and its existence is required before any security functionality can be
applied. Usually the pairing procedure will involve some manual user interac-
tion in order to enter a pass-key that is used in the process of generating the
link key. Each device must keep records of the link keys and their associated
BD ADDR that were involved in the respective pairing. Preferably this list is
stored in non-volatile memory. Then, the manual interaction is only necessary
for first-time connections as the stored link key will be used for subsequent
connections. A thorough description of Bluetooth security can be found in [7].

3 Distributed Control Systems

Control systems that use imperfect or shared resources such as CPU, memory,
or a communication network are often hard to analyze and must be designed
with care. One should be aware of how to recognize problems that are due to
communication errors and time delays introduced by the data scheduling. For-
tunately, there are special design methods that can take the communication
network behavior into account and thus minimize performance degradation
due to communication errors and delays. Fig. 6 shows a distributed control
system.

An air interface such as Bluetooth introduces both random transmission
errors and delays. For slow, non-time-critical processes, this problem can be
neglected. If there is time for many retransmissions the error rate can be made
sufficiently low. For faster processes, the communication network can degrade
performance. By choosing the control algorithm, scheduling mechanism, and
retransmission scheme one can limit the performance degradation.

If the delay variations can be measured, there are control algorithms that
compensate for the delay and minimize the performance degradation. For a
Bluetooth control system where the controller node is chosen as master, all
time delays can be known for the controller when acknowledge mode trans-
mission is used. In other cases, time-stamps can be attached to the signalled
information to make delay estimation possible; however, this requires synchro-
nized clocks in the nodes.

The standard rule of thumb for choice of sampling rate [2], ωh = 0.2 −
0.6 where ω is the cross-over frequency of the closed loop system, gives an
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Fig. 6. Distributed control system with three delays: sensor-to-controller delay τsc,
control computation delay τ c, and control-to-actuator delay τ ca

indication of when time delay variations can be neglected in the design process.
For example, a constant delay of one sample decreases the phase margin of
the system by 11 to 34 degrees, if the sampling interval has been chosen
according to the rule of thumb above. Assuming that we can neglect time
delay variations when they are smaller than 10–20 percent of the sampling
time, we get the condition fτ < 0.01 (where f is the cross-over frequency in
hertz) for when we most likely can neglect the time delay variations.

3.1 Choice of control algorithm

Depending on which control algorithm is used, different patches for communi-
cation errors and delays can be applied. In this section we will briefly address
these issues for both PID controllers and state feedback controllers. A stan-
dard proportional-integral-derivative (PID) controller is given as

u(t) = Ke(t) +
K

Ti

∫
e(s)ds+KTD

de(t)
dt

,

where K, Ti, and TD are parameters and e(t) is the control error. A good
discussion on the implementation of the PID controller is found in [1]. A
common discrete time form of the PID is

u(k) := P (k) + I(k) +D(k)
P (k) := K(r(k)− y(k))

I(k + 1) := I(k) + (Kh/Ti)e(k)

D(k) :=
TD

TD +Nh
D(tk−1)−

KTDN

TD +Nh
(y(tk)− y(tk−1)),

where h is the sampling interval. For delay variations in the measurements for
the PID controller, a straightforward strategy is to replace the sample interval
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with h = tk+1−tk, where tk is the time when measurement k was taken, and to
change the implementation of integral and derivative part accordingly. Delay
variations from the controller to the actuator are harder to compensate for.
One possibility is to put some intelligence in the controller node, as described
in Section 3.1.

A simple patch for lost sensor samples is to use the D-part to extrapolate
the error, i.e., ep(k + 1) := e(k) + hė(k). The control signal then becomes
u(k) = P (k) + I(k) +D(k), where

P (k + 1) := Kep(k + 1)
I(k + 1) := I(k) + (Kh/Ti)ep(k + 1)
D(k + 1) := D(k).

For lost actuator samples the actuator can apply the control signal from the
previous sample. More elaborate schemes are also possible, but they require
more intelligence in the actuator node.

We will now take a look at state feedback control. Let the system to be
controlled be given in the following discrete form:

x(k + 1) = Φx(k) + Γu(k)
y(k) = Cx(k) +Du(k).

For state feedback control, the case of constant delay is easy to cope with in the
design. The sampled-data description of the plant including the control delay
will simply be of higher order, and the design can be made using standard
techniques. The control law has, for time delays smaller than one sample
period, the form

u(k) = −L
[

x(k)
u(k − 1)

]
,

where L is a constant feedback gain vector, x(k) is the state vector, and
u(k − 1) is the old control signal.

The case of randomly varying delays is more difficult. A simple but non-
optimal solution is to perform static delay compensation for the mean delay.

The optimal LQ-controller for random sensor-to-controller and controller-
to-actuator delays was derived in [9]. The controller performs dynamic delay
compensation by adjusting the feedback gain according to the actual delays.
The optimal control law has the form

u(k) = −L(τ sc
k )

[
x(k)

u(k − 1)

]
, (1)

where the feedback gain vector L is now a function of the sensor-to-controller
delay τ sc

k in the current sample.
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Fig. 7. Values of the cost function J for a pendulum controller under three different
schemes. In this plot, the control delay is uniformly distributed on [0, αh].

Fig. 7 shows the cost J2 as a function of the amount of stochastic delay
for three different control schemes. When the delay becomes very long, the
dynamically compensating controller is still stable (J < ∞), while the other
control schemes become unstable.

Controllers designed via state feedback with state estimation from a
Kalman filter are also easily patched for sensor communication errors. The
Kalman filter can be run in open loop using the model of the process. For
optimal linear quadratic Gaussian (LQG) design, the time-varying Kalman
filter gains can be calculated using the standard equations, setting C(t) = 0
in the equations whenever the sensor measurement is unavailable.

Optimal compensation of actuator communication failures is harder, since
setting B(t) = 0 in the state feedback equations requires these failures to be
known in advance. If the actuator node applies a known control signal when-
ever communication is lost, a patch is to update the Kalman filter accordingly
and use an adjusted feedback matrix L. The optimal feedback matrix for the
control system where the zero control signal is applied for lost samples is

L = (Q22 +BTSB)−1(BTSA+Q12),

where the matrix S is given as the positive solution (if it exists) of the following
non-standard Riccati equation:

S = Q11 +ATSA− (1− p) · (ATSB +Q12)(Q22 +BTSB)−1(ATSB +Q12),

where p denotes the communication error rate (the Q-matrices define the loss
function, as in [2]). For low error rates the standard Riccati equation can be
used with only small error degradation.

2The cost function J is given as: J = limT→∞ 1
T

e
{∫ T

0

(
xT Q1x + uT Q2u

)
dt

}
,

for some Q1 and Q2.
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A common alternative implementation is that the actuator node applies
the previous control signal whenever samples are lost. This case can however
be transformed to the previous case by rewriting the controller/system inter-
face in incremental form, i.e., as uk = uk−1 + vk, where vk is treated as the
new control signal.

Example 1: Choosing a transmission scheme

To illustrate that choice of retransmission scheme can influence control per-
formance we will analyze a simple system that captures the main features.

Let us assume that the sensor node sends measurements over an error-
prone communication network to a controller node. The controller node is
assumed to be co-located with the actuator node, i.e., we assume that no
transmission between controller node and actuator node is necessary. We also
assume that the CPU time to compute the control signal is available. At time
k the sensor node samples the signal y(k) and transmits it over the commu-
nication network in acknowledged mode. If the transmission is successful, the
signal y(k) is available for the controller node when control signal u(k + 1) is
calculated. If the transmission fails, the sensor node tries to retransmit. We
assume there is time for one retransmission before time k + 1.

Assume that the open loop system is given by

x(k + 1) = ax(k) + u(k) + d(k)
y(k) = x(k),

where d(k) is a white noise signal with unit variance. The loss function that
describes control performance is chosen as J = E(x2) where E denotes mean
value. This linear quadratic control problem has as a solution the optimal
control signal (deadbeat control)

u(k) = −ax̂,

where x̂ denotes the best estimate of the state x(k) given the information
available by the controller node at time k.

We will compare two retransmission schemes.

1. eSCO with one retransmission: If transmission and retransmission both
fail, then no more retransmissions will be tried. Instead the sensor will be
resampled at time k + 1 and the sensor node will start transmission of
y(k + 1).

2. Infinite number of retransmissions allowed: each message is retransmitted
until transmission succeeds.

The optimal state estimate can be calculated using standard techniques
for both scheme 1 and scheme 2.
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Scheme 1: This is a standard time-varying LQG problem. The optimal
control signal is given by u(n) = −ax̂, where x̂ denotes the optimal state
estimate with the information available at time n, given recursively by

x̂(n) = ay(n− 1) + u(n− 1), if y(n− 1) is available at time n
x̂(n) = ax̂(n− 1) + u(n− 1) = 0, if y(n− 1) is not available.

It turns out that it is impossible to stabilize the system if |a|q > 1, where
q is the probability that a transmission is erroneous. This gives a bound of
the quality needed of the communication system. If |a|q < 1 then the optimal
controller achieves the control performance J = 1 + a2P where P := E(x −
x̂)2 = 1/(1− (aq)2).

Scheme 2: The optimal state estimate is slightly more difficult to cal-
culate. If y(n − m) is the latest measurement available at time n the state
estimate x̂(n) is given recursively by

x̂(n) = ax̂(n− 1) + u(n− 1)
x̂(n− 1) = ax̂(n− 2) + u(n− 2)

...
x̂(n−m+ 1) = ay(n−m) + u(n−m).

It can be shown that with this retransmission scheme the system can be
stabilized only when |a|q/(1− q) < 1. The control performance is then given
by J = 1 + a2P where P = 1/(1 − (aq/(1 − q))2). It can be concluded that
retransmission scheme 1 is preferable, since it allows larger error rates and
gives better control performance. The two loss functions are compared for the
case a = 1.5 in Fig. 8.

Example 2: The Furuta pendulum demonstrator

Dynamic delay compensation works better the shorter the controller-to-
actuator delay is compared to the sensor-to-controller delay. If the controller
is located at the actuator, the delay in the current sample can be known ex-
actly and the correct gain can be applied. Modifying the setup is of course
not a real solution, but using an I/O with only very limited computational
power, this ideal behavior can be emulated closely. The idea is illustrated on
the pendulum controller. This example is taken from [6], which gives a more
in-depth presentation of the experiment.

The distributed control configuration is shown in Fig. 6. The feedback
loop consists of three parts: the sensor, the controller, and the actuator. The
sensor node is time-driven (with the frequency f = 1/h) while the controller
and actuator nodes are event-driven. The sensor samples the process period-
ically and sends the measurement values to the controller. Upon receipt, the
controller calculates a new control signal and sends it to the actuator node
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Fig. 8. Values of the cost function J for deadbeat control of an unstable system
under different retransmission schemes

which outputs the value. In our setup, the sensor node and the actuator node
are located in the same hardware unit, called the remote I/O, connected to a
single Bluetooth unit.

In this experimental setup, the controller node is the Bluetooth master and
the remote I/O is a slave. It is implemented with two PCs running Linux and
the Harald Java Bluetooth stack. The theoretical minimum round-trip delay in
Bluetooth is 2 ·625 µs. However, the length of the data packets, the Bluetooth
protocol stack, and the communication between the Bluetooth hardware and
the computer hardware bring the minimum round-trip delay up to 17 ms in
our implementation. Still, this is fast enough to control the inverted pendulum,
which is a process with fast and unstable dynamics. All messages are time-
stamped, allowing for straightforward calculation of transmission delays in
the receiver node.

The Furuta pendulum used is shown in Fig. 9. For a description of the
Furuta pendulum see [10]. The objective is to control the pendulum angle θ
and the arm angle φ to zero by applying the torque u to the rotating arm.

The full state vector is directly measurable on the process. The sampling
interval for digital control was chosen as h = 60 ms. Discrete state-feedback
controllers were designed based on a linear-quadratic (LQ) formulation where
the control should minimize the cost function J .

The optimal feedback gain depends on the distribution of the round-trip
delay and is computed using the formulas in [9]. The resulting control param-
eters are shown in Fig. 10. From the figure it is clear that the optimal gain
can be closely approximated by a linear function of the delay τ . Hence, (1)
may be approximated as
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θ
φ

Fig. 9. The rotating inverted pendulum used in the experiments. The objective is
to stabilize the pendulum in the upright position θ = 0
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Fig. 10. Optimal gain vector (full lines) and linear approximation (dashed lines)

u(k) ≈ −L0

[
x(k)

u(k − 1)

]
− dL

dτ

[
x(k)

u(k − 1)

]
τ.

In the controller node, x(k) and u(k − 1) are known, but τ is still unknown.
However, the controller can precompute

û(k) = −L0

[
x(k)

u(k − 1)

]
and λ(k) = −dL

dτ

[
x(k)

u(k − 1)

]
.

These two scalars are then sent to the remote I/O. If the I/O keeps track of
the round-trip delay τ , it can perform the simple adjustment

u(k) = û(k) + λ(k)τ



www.manaraa.com

718 B. Bernhardsson, J. Eker, and J. Persson

Fig. 11. Experiment on the Bluetooth-pendulum setup with random communication
delays. At time 244, the dynamic delay compensation is turned off, and the pendulum
starts to oscillate. A large part of the increase in the cost is due to unmodeled friction

before applying the control signal to the process.
The suggested delay compensation scheme was simulated against the non-

linear pendulum model. The pendulum was disturbed by white process noise
and the round-trip delay in the control loop varied between 20 and 55 ms
according to a given distribution. This was compared to a controller which
was designed for a constant delay of 20 ms (the nominal round-trip delay).
For this particular control problem, the dynamic delay compensation scheme
was able to reduce the cost J by about 30 %.

The dynamic delay compensation was also tried on the distributed Blue-
tooth pendulum demonstrator. The random delays were not only due to actual
disturbances, but were also injected in the control loop on purpose. The re-
sult of an experiment is shown in Fig. 11. Due to unmodeled friction, the
pendulum easily started to oscillate when the delay compensation was turned
off.

3.2 Tools and methods

Exact stability analysis of a system with time delay is well known if the
delay ∆ is constant or varying according to a known pattern. Here the delay
∆ includes the sensor delay, sensor-to-controller transmission time, control
computation delay, controller-to-actuator transmission delay, actuator delay,
and the delay inside the physical system that is controlled.

The phase margin φm indicates how much constant time delay ∆ can be
added in the loop before the closed loop system becomes unstable; according
to the Nyquist theorem it is given by ∆max < φm/ωc, where ωc is the cut-off
frequency where |CP | = 1. The analysis of unknown, time-varying delay is
significantly more difficult. If the time delay is known to belong to the interval
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ZOH ShK(z)

P(s)

∆

Fig. 12. A computer controlled system with continuous-time plant P (s), periodic
sampler Sh, discrete-time controller K(z), zero-order hold sampling circuit, and a
time varying delay ∆

[∆min, ∆max], a standard technique is to let a certain delay ∆1 be included in
the model of the system, and to design the system with this delay taken into
account. Here typical choices are ∆1 = ∆min, ∆max, or ∆avg (the average
time delay). None of these choices can be guaranteed to optimize performance;
cases can be found where the closed loop system is stable for both the minimal
and maximal time delay but becomes unstable when the delay is varying.

The jitter margin was introduced in [5] to describe how much time-varying
delay can be tolerated before the control loop can become unstable. It is only
a sufficient criterion, but gives a guarantee that the system is stable for any
time delay variation in the given interval, including random delays.

Theorem 1. (Jitter Margin) The closed loop system in Fig. 12 is stable for
any time-varying delays ∆ ∈ [0, Nh], where N is a real number, if∣∣∣∣ Palias(ω)C(eiω)

1 + PZOH(eiω)C(eiω)

∣∣∣∣ < 1
Ñ |eiω − 1|

, ∀ω ∈ [0, π],

where Ñ = (-N.2 + 2-N.g + g)1/2, and g = N − -N.; PZOH(z) is the zero-
order hold discretization of P (s), and

Palias(ω) =

( ∞∑
k=−∞

|P (i(ω + 2πk)/h)|2
)1/2

.

Good control design is greatly simplified by a set of proper tools. The
two MATLAB-based tools TrueTime and JitterBug are presented in [4].
JitterBug allows analytic computation of quadratic performance criteria for
linear control systems under various timing conditions. The tool can also com-
pute the spectral density of the signals in the system. Using the toolbox, one
can easily and quickly assert how sensitive a control system is to delay, jitter,
lost samples, etc., without resorting to simulations. TrueTime is a simulation
tool built on top of MATLAB, which facilitates simulation of the temporal
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behavior of networked, multi-tasking control systems. It supports simulation
of different communication networks and protocols, and their influence on the
performance of networked control loops.

4 Summary

The application of wireless technology, such as Bluetooth, in the world of
automation introduces a new level of freedom, but also a new set of problems.
It is clear that wireless is much less reliable than wired communication. Both
the variations in latency and the probability of losing an occasional sample
are much greater. Therefore, special care must be taken to design control
systems that are robust towards timing variations and also support graceful
degradation in situations when connections are lost.

In this chapter on Bluetooth in control we have given an overview of the
Bluetooth technology and an introduction to wireless control. A number of
methods and tools have been briefly discussed.
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1 Introduction

An embedded sensor network is a network of embedded computers placed
in the physical world that interacts with the environment. These embedded
computers, or sensor nodes, are often physically small, relatively inexpensive
computers, each with some set of sensors or actuators. These sensor nodes
are deployed in situ, physically placed in the environment near the objects
they are sensing. Sensor nodes are networked, allowing them to communicate
and cooperate with each other to monitor the environment and (possibly)
effect changes to it. Current sensor networks are usually stationary, although
sensors may be attached to moving objects or may even be capable of indepen-
dent movement. These characteristics: being embedded, and being capable of
sensing, actuation, and the ability to communicate, define the field of sensor
networking and differentiate it from remote sensing, mobile computing with
laptop computers, and traditional centralized sensing systems.

Although research in sensor networks dates back to the 1990s or earlier, the
field exploded around the year 2000 with the availability of relatively inexpen-
sive (sub-$1000) nodes, sensors, and radios. As of 2004, sensor networking is
a very active research area with well-established hardware platforms, a grow-
ing body of software, and increasing commercial interest. Sensor networks
are seeing broader research and commercial deployments in military, scien-
tific, and commercial applications including monitoring of biological habitats,
agriculture, and industrial processes.

Sensor networks present challenges in three key areas. First, energy con-
sumption is a common problem in sensor network design. Sensors are often
battery operated and placed in remote locations, so any activity drains the
sensor battery, bringing the node closer to death.1 Second, how sensors sense
and interact with the physical world is of great interest. Sensor networks

1Greg Pottie, personal communication.
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focus on collaborative signal processing algorithms to exploit multiple, physi-
cally separate views on the environment. Finally, with tens, hundreds, or even
thousands of sensor nodes, the network and applications as a whole must be
self-configuring.

This chapter reviews each of these areas of sensor network design, begin-
ning with common hardware platforms, then considering networking software
and applications.

2 Hardware Platforms and Sensors

The wide availability of common hardware platforms, radios, and sensors has
been an enabler for sensor networking in both the research and commercial
communities.

Node hardware

A typical sensor node contains a general-purpose CPU and working mem-
ory, some kind of long-term stable storage such as flash memory or disk, and
I/O capabilities to support sensors. Sensor nodes have evolved into two broad
categories: small devices with 8-bit microcontrollers as CPUs, 10–100KB of
working memory, and 100–1000KB of flash secondary storage; and larger de-
vices with 32-bit CPUs and megabytes each of working memory and secondary
storage.

Motes are representative of the smaller class of devices [22]. The cur-
rent generation of Mica-2 motes uses an Atmega128 embedded processor run-
ning at about 4 MHz, providing 128KB flash memory for program code, 4KB
working RAM, 8 channels of analog-to-digital converts, 48 digital I/O lines, a
universal asynchronous receiver/transmitter (UART) and a serial peripheral
interface (SPI). Motes have evolved significantly over the last several years;
originally designed at Berkeley, they are now commercially available from sev-
eral companies including Crossbow, Dust Networks, and Telos. Similar classes
of embedded-controller-based devices are available from other academic and
commercial institutions, with examples including the Nymph from the Uni-
versity of Colorado [1], and BTnodes from ETH Zurich [35].

The larger class of devices is exemplified by products such as the Stargate
(designed by Intel, available from Crossbow Technologies) or the Cerfcube
(from Intrinsyc). These devices are used in a variety of embedded applica-
tions. In the sensor network context, they are typically used as gateways to
a collection of motes, or for applications that require heavier-duty signal pro-
cessing. Each such device employs an X-Scale or ARM-based processor, has
upwards of 64MB working memory, and 1GB of flash-based secondary storage.
They support many connectivity options including USB and 802.11 wireless,
and a 51-pin mote connector allowing use of a mote and its radio.

Power management is a concern in both classes of devices. Individual con-
trol of hardware components (CPU, storage, radio, sensors) is necessary for
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power management. Many systems are battery powered. Energy harvesting is
of growing importance, often via solar cells or vibration harvesting.

Sensors

Sensing technology has also kept pace with miniaturization of radios and
processors, especially with the proliferation of microelectromechanical system
(MEMS) sensors. Many such sensors have been incorporated into existing
sensor node platforms.

Despite their diversity, the principle of operation behind most of these
MEMS sensors is the same. They all rely on environmental factors inducing
changes in the electrical properties of appropriately chosen materials. The
sensors incorporate sensitive circuitry to detect changes in these electrical
properties, and are calibrated to correctly measure the corresponding envi-
ronmental phenomenon. For example, a temperature sensor relies on changes
in the resistivity of certain materials with temperature. The choice of material
ranges from metals to semiconductors and is dictated by the required sensing
range and sensitivity. Similarly, a light sensor uses photoconductive materials
whose electrical characteristics vary with the amount of light falling on them.
Finally, accelerometers measure the voltage induced by structural deforma-
tions of piezo-electric materials; these deformations are caused by vibrations
or by acceleration.

There is a very large industry devoted to manufacturing small MEMS
sensors. This industry is segmented by application (e.g., companies such as
Delphi cater to automotive manufacturers) and by sensor type (e.g., Silicon
Designs focuses entirely on vibration sensors). However, only a handful of
companies (examples include Ember and Millenial Net) focus on applications
of wireless networked sensing.

3 Software and Protocols

Sensor networking has seen an enormous amount of research activity in the
last five years, making it difficult to do justice to this large body of literature.
Our exposition takes a systems approach, describing the components of an
emerging general-purpose sensor networking infrastructure.

3.1 Networking

As the name implies, networking is a central component of sensor networks.
Networking is important because it provides the glue that allows individual
nodes to collaborate. In addition, the radio is a major consumer of energy in
small sensor nodes, often 20–40% of the power draw when all components are
on. Thus optimizing networking protocols can greatly extend the lifetime of
the sensor network as a whole.
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This section considers networking in sensor nets at the link layer, with
media-access control (MAC) protocols, and at the network layer, with routing
protocols. We also consider topology control, a service that can be part of either
layer, or could be considered in between these two layers.

MAC protocols

Energy conservation is a key concern at the MAC protocols, and so before
reviewing protocols we briefly describe MAC-related sources of energy con-
sumption [50]. Packet collisions waste energy by forcing packets to be retrans-
mitted, idle listening is the cost of actively listening for potential packets,
overhearing is the cost of receiving packets intended for other destinations,
and control traffic represents MAC-level maintenance overhead. Since many
sensor networks are quiescent between sensor readings, idle listening can easily
become the largest energy cost in a sensor net.

The IEEE 802.11 protocol (popularly known as “wi-fi”) is contention-based
MAC (carrier-sense, multiple-access or CSMA) now seeing wide commercial
deployment. Intended for laptop computers, it provides good high-speed com-
munication (up to 54Mb/s in some versions) for larger sensor network nodes.
Unfortunately, the ad hoc mode of 802.11 that is required for peer-to-peer
communications in a sensor network has very little support for energy conser-
vation, and many sensor networks require bit rates less than 100kb/s, so the
protocol is unsuitable for smaller and more power-constrained nodes.

Time-division multiple-access (TDMA) protocols were used in early sensor
networks [43]. By scheduling media access they can largely avoid collisions,
idle listening, and overhearing, thus greatly reducing energy consumption.
Their disadvantage is that they often assume clustering, taxing the cluster
head and making mobile operation more difficult.

Small sensor networks generally require relatively low-speed (20–40kb/s),
simple protocols, precluding high-speed 802.11 and more complex TDMA pro-
tocols. Recent research has proposed 802.11-like MAC protocols designed to
conserve energy by avoiding overhearing (PAMAS [42]) and idle listening (S-
MAC [50,51]). As an example protocol, S-MAC synchronizes most nodes into
a sleep-schedule. Nodes regularly wake up, contend for the media if they have
data to send, then either transmit data or go to sleep. By adjusting the sleep
duration, duty cycles of 1–50% are possible to reduce the cost of idle listen-
ing. Adaptive listen [51] and future-Request-to-Send of T-MAC [46] extended
these ideas to provide better throughput when there are multiple packets to
send or when data travels over multiple hops.

IEEE 802.15.4 (also known as “ZigBee”) is a recently standardized proto-
col targeted at sensor network and home automation applications. It includes
an optional fixed duty cycle to avoid idle listening similar to research proto-
cols such as we described previously. Although it is still too early to see how
this protocol compares to current research, a standard protocol in this domain
should spur commercial developments.
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Network layer

As with MAC protocols, overhead is an important concern for sensor network
routing protocols. Here the major source of overhead is control traffic: the
number of routing update- or request-messages that are required. We next
review routing protocols, both Internet protocol (IP)-based ad hoc networking
and non-IP-based schemes.

The Internet Engineering Task Force (IETF) is standardizing ad hoc rout-
ing protocols for wireless, IP-based networks. Ad hoc routing protocols are
usually grouped into pro-active protocols (for example, DSDV), which pre-
compute routes to some or all destinations, and reactive protocols (for exam-
ple, AODV and DSR), which compute routes to specific destinations only
when prompted by traffic. The control traffic overhead of these protocols is
proportional to the rate at which links change and, for reactive protocols, the
rate traffic is sent to new destinations. Reactive protocols are a good match
for very dynamic networks, such as those with many mobile nodes, since they
only maintain routes to active destinations. Many sensor networks today have
only stationary nodes. In these cases, pro-active protocols may be preferred
because links change relatively infrequently, and such protocols are simpler
and have no delay searching for a route when traffic is sent to a new destina-
tion.

In addition to IP-based routing protocols, geographic routing and directed
diffusion are protocols more specific to sensor networks. Although originally
proposed for wired networks, geographic routing protocols such as GPSR and
similar protocols [3, 26] exploit the spatial nature of sensor networks and the
spatial-dominated nature of radio propagation.

Directed diffusion combines a distance-vector-like, reactive routing pro-
tocol with an attribute-based routing scheme and an emphasis on process-
ing data in the network [24]. Variants of directed diffusion provide several
different routing mechanisms under the same interface [18]. Diffusion uses
attribute-based routing instead of address-based or geographic routing. Diffu-
sion combines attribute-based resource discovery with routing, and it allows
applications to focus on the desired data rather than specific sensors. Diffu-
sion suggests that processing data in the network is important for efficiency.
Examples of in-network processing are duplicate suppression, data aggrega-
tion, and statistical filtering. When data is generated from multiple sensors,
in-network processing can merge this data near those sites rather than sending
all data out, thus greatly reducing energy consumption. (This approach has
been adopted by several non-diffusion systems as well, for example, TinyDB,
described below.)

3.2 Systems services

Beyond the lower-level networking primitives, a usable sensor networking sys-
tem must provide several additional services. Many of these services, such
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as operating systems, security, time synchronization, and resource discovery,
are also found in traditional wired and wireless networks. However, some ser-
vices, such as localization, are unique to sensor networks. In this subsection,
we briefly discuss some of the services that sensor networks will implement,
and describe challenges in the design of these services.

Operating systems and code development tools

The sensor networking community typically uses embedded (and, possibly,
real-time) versions of existing operating systems such as Linux for the larger
devices discussed above. These embedded versions provide largely the same
programming support as their regular counterparts, but with additional
device-level support for embedded controllers, flash memory, and other periph-
erals specific to these devices. As such, not much research has been required
on new operating systems support for these larger devices.

By contrast, the smaller devices (such as the motes) have required novel
directions in operating system design. One such direction has been the devel-
opment of a POSIX-compliant multi-threaded OS for these small devices [1].
TinyOS [21], an operating system for the motes and widely used by many
research groups as well as in some segments of industry, departs signifi-
cantly from the traditional multi-threaded model of modern operating sys-
tems. Rather, TinyOS relies on the observation that most sensor networking
applications will be event-driven: i.e., that applications will react to external
sensed events. It is structured such that components (software modules that
provide a distinct abstraction, either of a hardware device or of some software
functionality such as a send-receive networking interface) can invoke events in
other components. Typically, in response to a sensed event or some hardware
interrupt, a chain of such component invocations can be used to process the
event. In addition, TinyOS also provides two other abstractions: a task, which
enables components to effectively use the idle processor for computations, and
a command, which is invoked in order to get a component to perform an action
(such as sending a network message or setting some device parameters).

Taken together, these abstractions allow a programmer to write an appli-
cation as a component graph: nodes in this graph are components, and links
signify event and command invocations from components or their associated
tasks. In addition, the emphasis on event-driven programming rather than
multi-threading avoids the memory cost of run-time stacks for each thread.
This powerful functionality promotes code reuse, improves modularity (easy
reuse of components), and minimizes object code size for memory-constrained
devices.

Associated with TinyOS is a programming language called nesC, which
contains language-level constructs for TinyOS’s abstractions: components,
tasks, events, and commands. This approach promotes compile-time program
checking, as well as automated construction and management of the compo-
nent graph. In addition, it provides support for parameterized, compile-time
memory allocation to avoid the memory costs of dynamic memory allocation.
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Finally, the community uses several simulation and emulation tools that
enable code development, debugging, and system evaluation. One is ns-2, a
general-purpose networking simulator, together with its wireless extensions.
Ns-2 was widely used to develop and evaluate sensor networking routing pro-
tocols. More recently, sensor network specific simulators have seen increased
use. Among these, TOSSIM [29] enables developers to simulate a network of
motes and run actual application and protocol code on this network. Em-
star [13] is a flexible programming environment for larger sensor nodes. As a
simulation environment, it includes support for simulation of hybrid networks
of large and small devices and several radio propagation and sensor models.

Node localization

Localization is the functionality by which nodes autonomously determine their
position in two or three dimensions. This is a crucial service for sensor net-
works since location provides invaluable context in interpreting sensed data.
In recent years, there has been significant work in localization for sensor net-
works and networks of embedded devices.

An important focus of the localization literature has been robust tech-
niques for estimating distances between nodes (ranging). The networking
community has focused on two classes of ranging techniques: radio frequency
(RF)-based ranging and acoustic ranging. RF-based ranging, as exemplified
by the SpotON [20] and Calamari [47] systems, is based on the premise that
by measuring received signal strength a receiver can determine its distance to
a transmitter. This presumes that RF propagation in an environment can be
accurately characterized by a simple path loss model with known parameters.
Using this technique, nodes can estimate distances to all neighbors within
radio range. Range errors upwards of 10% of the nominal radio range have
been reported in the literature [47], usually after a fairly involved calibra-
tion step that estimates the path loss parameters and adjusts for variations
in transceiver characteristics. As an alternative to modeling radio propaga-
tion, the RADAR system has proposed building a database of receive signal
strength as a function of location [2]. This approach requires surveying the en-
vironment to pre-compute the database and assumes propagation is relatively
time invariant. A second class of ranging schemes is based on measuring the
time-of-flight of an acoustic or ultrasound signal [14,39]. More precisely, these
techniques measure the difference in arrival times of simultaneously transmit-
ted radio and ultrasound signals, then estimate distances knowing the speed of
sound. Some approaches in acoustic ranging use spread spectrum approaches
for resilience to multipath effects, and employ techniques to correct for la-
tencies induced by other system components [14]. Such techniques provide an
order of magnitude better accuracy (1–2% error) than simple time-of-flight
over distances of 3–6 meters.

Ranging is a component of a localization system of which there are, broadly
speaking, two kinds: infrastructure-based and ad hoc. Systems in the former
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class fix node positions by assuming the existence of some external infras-
tructure (typically beacons with known positions and with known or prede-
termined deployments). In this class, there has been extensive work on dis-
tributed position inference using specialized beacons [5], in-building localiza-
tion systems that enable position for context-aware applications ([17], among
others), and systems for estimating orientation of handheld devices [34].

Similarly, a large body of work has examined algorithms for ad hoc lo-
calization schemes. Perhaps the earliest pieces of work in the area of sensor
network localization can be attributed to Bulusu et al. [5], Niculescu and
Nath [32] and Savvides et al. [38,39]. Niculescu and Nath propose that nodes
first estimate their distances to anchors using one of several techniques (DV-
hop, DV-distance, and a Euclidean scheme), then fix their own position using
these distances. Savvides et al. propose an N -hop multilateration scheme.
That work also discusses a Kalman filtering-based position refinement phase
to improve position estimates. In later work, they discuss the error char-
acteristics and the dependence on network size and anchor density of their
schemes [37]. Finally, Langendoen and Reijers [27] discuss a fairly detailed
comparison of the above schemes in the face of ranging errors, different node
densities, and anchor fractions.

Time synchronization

Sensor networks are predicated on the ability of sensor nodes to collaboratively
detect events. Time synchronization is often a crucial requirement for collab-
orative detection—collaborating nodes may need to temporally correlate their
sensor readings. The problem of node time synchronization has received ex-
tensive attention in the sensor networks literature. Much of this literature
borrows heavily from early work on Internet time synchronization (NTP).

Networked time synchronization relies on time stamping a message at both
the sender and receiver, and reconciling their clocks based on one or more
such message exchanges. Between sending a message and receiving it there
are several kinds of delays introduced: sender-side processing delay, message
propagation delay, message transmission delay, and receiver-side processing
delays. Techniques for time synchronization differ in how they estimate or
eliminate various sources of delay.

For example, the simplest approach time stamps messages close to the
radio hardware (thereby eliminating processing delays). Thus, a single mes-
sage is sufficient to reconcile clocks if it is assumed that propagation delay
is negligible. Two messages are sufficient to account for propagation delay as
well [11]. Reference Broadcast Synchronization (RBS) avoids error introduced
by variance in sender-side timing by comparing the same broadcast message
received at the two receivers, and estimating receiver processing by averaging
over several received packets [10]. As an aside, many of these techniques can
be used to synchronize nodes after the occurrence of an event, an approach
called post-facto synchronization [9].
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Thus far, we have discussed how two nodes synchronize their clocks with
each other. Some research has looked at synchronizing clocks network-wide to
a reference [10, 11]. Most of these techniques rely on using one of the above
methods to synchronize all the clocks to a reference clock hop by hop. Using
such techniques, clock synchronization error increases linearly with network
diameter. The existence of techniques that have better error characteristics
is known theoretically, but no practical implementations of such techniques
exist.

Resource discovery

Resource discovery is a problem growing out of the field of ubiquitous comput-
ing: When a device enters an area, how can it identify relevant local resources?
In ubiquitous computing, relevant resources are network services such as print-
ers and mail servers, to be used by people. Sun Microsystems’ Jini includes
resource discovery services for a local network, while web search engines such
as Google can be thought of as Internet-wide resource discovery services.

Sensor networks today are typically more application specific and homo-
geneous, and so today there is little need to locate shared services. In many
sensor networks today the only service not present at all nodes is a wide-area
network connection; discovery of an Internet connection is easily integrated
with routing. As sensor networks become more complex, we expect that indi-
vidual nodes will become more heterogeneous. As cameras, additional storage,
and other services are deployed, service discovery will become more important.
In sensor networks today, directed diffusion combines resource discovery with
routing [18]. Other protocols, such as ReOrg, support service heterogeneity
(in its case, wall-powered nodes) integrated with the topology configuration
protocol [8].

Databases and storage services

Individual sensor nodes in a sensor network produce many sensor readings.
Nodes may also collaboratively detect events by exchanging these readings.
We will collectively refer to readings and events as sensor data. An impor-
tant systems challenge for sensor networking is the design of mechanisms for
retrieving sensor data.

Protocols such as directed diffusion suggest data-centric communication
as an architectural principle that governs the design of low-level mechanisms
for accessing sensor data. At a higher level, a natural paradigm for accessing
sensor data is to treat the sensor network as a distributed relational database.
The Cougar [49] and TinyDB [31] systems allow users to specify sensor data
of interest in a declarative fashion, using an SQL query of the form
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SELECT AVG(temp)
FROM sensors
WHERE loc in (35,40,100,120) and light > 1525 lux
SAMPLE PERIOD 35 seconds

Such a query allows the user to obtain the average temperature seen at all
nodes observing a sufficiently high light intensity which are located within
a specified region. These systems can be seen as providing a powerful, yet
widely used, programming paradigm for sensor networks.

Both systems are implemented using data-centric communication primi-
tives. For example, in TinyDB a query is flooded throughout the network, and
nodes whose sensor data match the query respond. In principle, this is similar
to interests and data messages in directed diffusion. Indeed, TinyDB can be
implemented using directed diffusion.

While TinyDB and Cougar work well for continuous queries (those for
which responses stream back continuously), the high overhead of flooding
makes it unsuitable for one-shot queries. Researchers have focused on a class
of systems that more efficiently support one-shot queries. These systems are
built on an efficient rendezvous mechanism called data-centric storage [40].
In data-centric storage, a hash function is used to map a key associated with
a data item to a geographic location. A geographic routing protocol called
GPSR [26] is used to store the item at that location. A node wishing to retrieve
items matching that key would use the same hash function and route a query
to that node. Such a mechanism avoids flooding the query throughout the
network. Depending on how the hash function is constructed, this mechanism
can be used to construct a variety of storage structures that support sophis-
ticated queries. These storage structures include distributed hash tables [36],
distributed multi-dimensional indices [30], and storage hierarchies [12].

Remote programming

Reprogrammability is a key characteristic of software systems. While simple
sensor networks may be configured “in the factory” and then discarded, sen-
sors deployed for longer periods of time in remote locations motivate in situ
reprogrammability to meet changing application requirements or just to fix
bugs. Several flavors of reprogramming have been reconsidered by the commu-
nity. Retasking usually refers to reconfiguring an application’s parameters to
match some pre-anticipated needs. Scripting and virtual machines represent
the ability to reconfigure a sensor network at a high level, often by recom-
bining pre-deployed lower-level components. Finally, true reprogramming is
reserved for replacing the complete operating image of the sensor node.

Retasking has been explored in several environments. One example of re-
tasking is directed diffusion [24] and filters [19], where application-specific
attributes can be used to tune a fielded application. Another widely used ex-
ample is TinyDB [31], where new queries are downloaded into the network. In
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both of these cases, run-time information is distributed through the network
to reconfigure pre-deployed filters or database operators.

A more generic facility is possible with scripting or virtual machines.
In SensorWare [4], pre-configured components are reconfigured on-the-fly by
commands distributed over the network. Scripting is distinguished from re-
tasking because the configuration information is provided by a script in a
high-level language (Tcl, in the case of SensorWare), allowing more sophisti-
cated reconfiguration than is possible with the static data structures of simple
retasking. Virtual machines were popularized with Java; Maté is an example
of virtual machines applied to sensor networks [28]. While traditional virtual
machines provide a primitive, low-level instruction set, Maté emphasizes very
high-level, application-specific instructions to maximize code density.

Reprogramming the complete sensor node is a delicate process in which
a software image is transferred over one or more hops, verified, and then the
sensor node is carefully rebooted to run the new code. Two recent systems
have described mote-level reprogrammability: Hui and Culler’s system [23]
and MOAP [44]. Both carefully segment and transfer a relatively large (multi-
kilobyte) software image; Hui’s system emphasizes rapidly propagating the
image throughout the entire network with pipelining, while MOAP strives to
transfer a complete image to nearby neighbors before forwarding data further.

Many of the above approaches assume the entire sensor network is to be
reprogrammed. Since messages in diffusion are addressed to nodes identified by
particular attributes it is easy to retask part of a sensor network. SensorWare
has also used scripts to reprogram parts of a network. In principle, similar
techniques could be applied to the other approaches.

Security

Security issues have not received as much attention as some of the other
research areas in sensor networks. This is understandable, since often inter-
esting security research is spurred by vulnerabilities learned from large-scale
deployments, of which there are relatively few. There is, of course, a gen-
eral acceptance that security is of paramount importance in sensor networks.
They are vulnerable to a wide variety of denial of service attacks at all levels,
ranging from the physical to the application layer [48].

Existing sensor network security research has mostly focused on adapt-
ing security mechanisms to the computational and messaging constraints im-
posed by tiny sensor devices [25, 33]. This line of research attempts to im-
plement encryption and message authentication mechanisms by relying on
shared symmetric or group keys augmented with message counters. Some of
these mechanisms have been implemented on the motes in order to provide
secure communication at the link layer.
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3.3 Application primitives

Sensor networks will, in general, be used to sense phenomena of different kinds.
Broadly speaking, phenomena may be of two kinds: diffuse phenomena like
fires, clouds, contaminants, etc., and point phenomena like animals, tanks, and
other targets. Generic techniques for sensing these kinds of phenomena might
form useful application-level primitives which ease the task of developing new
applications. Some sensor networks research has focused on primitives for
these two kinds of phenomena.

Diffuse phenomena are distinguished by their spatial extent, which is gen-
erally larger than the average inter-sensor spacing. Thus, an important prim-
itive for such phenomena is one that detects and tracks the boundary of the
phenomenon. Not much research attention has been bestowed on this class of
problems, aside from isolated pieces of work that have discussed a technique
to compute the approximate boundary of a phenomenon along a hierarchical
structure, and techniques to robustly, yet locally, estimate whether a node lies
on the boundary of a phenomenon or not.

Rather more attention has been devoted to application-level primitives for
point phenomena. One can decompose the problem of sensing such phenomena
into two smaller problems: target localization, which determines where the
point phenomenon or target is, and tracking, which updates the path of the
target as it moves. Both of these problems have been examined in the sensor
network context.

For target localization, a simple technique would be to use the “closest
point of approach”, i.e., to say that the location of the target is the location of
the sensor which detects the target with the highest intensity. Variants of this
algorithm might pinpoint the target as being located at the weighted centroid
of all sensors that sense the target. The accuracy of such techniques depends
heavily on deployment density. A more sophisticated approach, and one that
has been studied fairly extensively in the signal processing literature, relies
on triangulating the target position based on the observed delay differences in
the received signal at a cluster of sensors within the network. This technique
has been shown to work quite well [7].

Having localized the target, the next challenge is to track the target as
it moves through the sensor field. A simple representation of the target’s
track is the sequence of its locations over time, and this may be computed by
sending the target’s location periodically to a base station. This approach can
incur significant communication cost, so more sophisticated techniques rely
on handing off the track to sensors along the target’s path. Furthermore, it
is possible to be more energy efficient by waking up sensors in advance of a
target’s arrival. However, this requires techniques that can predict the target’s
track. A body of work has focused on information-directed approaches to solve
this problem [52]. These approaches maintain a continuously updated belief
state about target location that allows them to probabilistically determine to
which sensor the target’s track should be handed off.



www.manaraa.com

Embedded Sensor Networks 733

4 Applications

The sensor network community is investigating several disciplines in which
sensor networks might be applicable for various purposes. The following para-
graphs discuss these potential applications briefly, sketching applications in
the military, the sciences and environmental monitoring, and civil and indus-
trial areas. For many of these applications, sensor networks will enable in situ
sensing at unprecedented spatial scales.

Military applications

Military applications supported much early work in sensor networks. Securing
an area to detect intruders and monitoring vehicle traffic on a road or in open
terrain were a focus of the DARPA SensIT program. More recently researchers
have demonstrated a sensor-network-based sniper localization system [41].

Environmental monitoring applications

Many current applications for sensor networks are in areas of biology and life
sciences, where a common theme is the ability of sensors to take observations
in much more detail and for much longer than is possible today. We briefly
evaluate habitat monitoring, marine microorganism monitoring, contaminant
transport, and precision farming.

Habitat monitoring has been the focus of great interest in the sensor net-
work community [45]. Examples include micro-climate monitoring at James
Reserve, and nest monitoring at Great Duck Island (see [45] for details and
additional references). These applications provide an ideal testing ground for
sensor networks because they require fairly simple monitoring (light, temper-
ature, sound, perhaps presence or absence of an animal) at tens of stations.
This level of monitoring is not possible without sensor networks because hu-
man observations would be too invasive to the environment and centralized
or wired monitors cannot span the physical area.

Marine biologists envision using sensor networks to obtain data at fine
spatial scales (a few meters to tens of meters). There is a need for such data
in their application domain, and current instrumentation technology is inad-
equate or too expensive to fulfill this need. The time evolution of red tides
(rapidly formed colonies of algae that are harmful to fish and birds) is poorly
understood, and appears to be triggered by small scale temperature, light,
and nutrient variations. Sensor networks can be deployed at this scale, and
have been used in a laboratory setting to gather data. An interesting twist
is the addition of limited actuation to such networks, where the sensors may
move (e.g., in a small boat) a little in order to obtain better quality data or
to vary spatial coverage.

A similar use is envisioned by environmental engineers, who see sensor
networks helping them build accurate models of contaminant seepage in soil.
Data at fine spatial scales can be used to more precisely model contaminant
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flow [16] and thus predict contamination of scarce groundwater resources. In
the longer term, such networks can be used for monitoring the compliance of
industries to regulations that govern the release of contaminants into the soil.
A closely related area is precision farming, where detailed monitoring enabled
by dense sensor deployment could allow more effective use of fertilizers.

Civil and commercial applications

Finally, there is growing interest in sensor networks in civil engineering and
industrial applications.

Seismologists envision using sensor networks to understand the propaga-
tion of earthquakes at fine spatial scales. This propagation is critically affected
by soil conditions, and can impact how much earthquakes affect buildings and
other structures. A related application is structural monitoring [6]: sensor net-
works can be used to measure the response of a building to vibrations, and
the variation of these responses over time can be used to detect and localize
damage in a variety of structures (buildings, bridges, ships).

Transportation networks are an important economic part of all cities, and
it is not surprising that there is a fairly large investment in traditional fixed
sensors and centralized traffic monitoring systems. Researchers are exploring
how sensor networks can augment this infrastructure in two different ways.
Rapidly deployable sensor networks for traffic monitoring may be useful to
temporarily collect data for development or pollution-related traffic studies in
areas that do not warrant long-term monitoring [15]. More radically, several
research groups have proposed a future where each car has its own sensors
that can communicate with nearby cars, avoiding centralized management
and enabling new applications.

Finally, there is growing interest in industrial applications of sensor net-
works to closely monitor manufacturing and safety conditions. Although these
applications are just now emerging, promising areas include industrial moni-
toring in the oil industry (Ember), environmental monitoring in semiconductor
processing facilities (Intel), and even monitoring of art in museums (Sensi-
cast).

5 Conclusions

This chapter has surveyed embedded sensor networks. With recent hardware
advances for small, inexpensive, networked sensors, a growing body of software
components to link them together into a whole, and applications in many
areas, embedded sensor networks are an active and growing area of embedded
computing.
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1 Introduction

The Controller Area Network (CAN) is a serial bus communications proto-
col developed by Bosch in the early 1980s. It defines a standard for efficient
and reliable communication between sensor, actuator, controller, and other
nodes in real-time applications. CAN is the de facto standard in a large vari-
ety of networked embedded control systems. The early CAN development was
mainly supported by the vehicle industry: CAN is found in a variety of passen-
ger cars, trucks, boats, spacecraft, and other types of vehicles. The protocol is
also widely used today in industrial automation and other areas of networked
embedded control, with applications in diverse products such as production
machinery, medical equipment, building automation, weaving machines, and
wheelchairs.

In the automotive industry, embedded control has grown from stand-alone
systems to highly integrated and networked control systems [7, 11]. By net-
working electro-mechanical subsystems, it becomes possible to modularize
functionalities and hardware, which facilitates reuse and adds capabilities.
Fig. 1 shows an example of an electronic control unit (ECU) mounted on a
diesel engine of a Scania truck. The ECU handles the control of engine, turbo,
fan, etc. but also the CAN communication. Combining networks and mecha-
tronic modules makes it possible to reduce both the cabling and the number

∗The work of K. H. Johansson was partially supported by the European Com-
mission through the ARTIST2 Network of Excellence on Embedded Systems Design,
by the Swedish Research Council, and by the Swedish Foundation for Strategic Re-
search through an Individual Grant for the Advancement of Research Leaders.

†The work of M. Törngren was partially supported by the European Commission
through ARTIST2 and by the Swedish Foundation for Strategic Research through
the project SAVE.
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Fig. 1. An ECU mounted directly on a diesel engine of a Scania truck. The arrows
indicate the ECU connectors, which are interfaces to the CAN. (Courtesy of Scania
AB.)

of connectors, which facilitates production and increases reliability. Introduc-
ing networks in vehicles also makes it possible to more efficiently carry out
diagnostics and to coordinate the operation of the separate subsystems.

The CAN protocol standardizes the physical and data link layers, which
are the two lowest layers of the open systems interconnection (OSI) communi-
cation model (see Fig. 2). For most systems, higher-layer protocols are needed
to enable efficient development and operation. Such protocols are needed for
defining how the CAN protocol should be used in applications, for example,
how to refer to the configuration of identifiers with respect to application mes-
sages, how to package application messages into frames, and how to deal with
start-up and fault handling. Note that in many cases only a few of the OSI
layers are required. Note also that real-time issues and redundancy manage-
ment are not covered by the OSI model. The adoption of CAN in a variety
of application fields has led to the development of several higher-layer proto-
cols, including SAE J1939, CANopen, DeviceNet, and CANKingdom. Their
characteristics reflect differences in requirements and traditions of application
areas. An example is the adoption of certain communication models, such as
either the client-server model or the distributed data-flow model [13].

The progress and success of CAN are due to a number of factors. The
evolution of microelectronics paved the way for introducing distributed con-
trol in vehicles. In the early 1980s there was, however, a lack of low-cost and
standardized protocols suitable for real-time control systems. Therefore, in
1983 Kiencke started the development of a new serial bus system at Bosch,
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Fig. 2. The CAN protocol defines the lowest two layers of the OSI model. There exist
several CAN-based higher-layer protocols that are standardized. The user choice
depends on the application.
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Fig. 3. The number of CAN nodes sold per year is currently about 400 million.
(Data from the association CAN in Automation [3].)

which was presented as CAN in 1986 at the SAE congress in Detroit [8]. The
CAN protocol was internationally standardized in 1993 as ISO 11898-1. The
development of CAN was mainly motivated by the need for new functionality,
but it also reduced the need for wiring. The use of CAN in the automotive
industry has caused mass production of CAN controllers. Today, CAN con-
trollers are integrated on many microcontrollers and available at a low cost.
Fig. 3 shows the number of CAN nodes that were sold during 1999–2003.
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Node 1

Bus

Node 3Node 2

Fig. 4. Three nodes connected through a CAN bus

The purpose of this chapter is to give an introduction to CAN and some
of its vehicle applications. The outline is as follows. Section 2 describes the
CAN protocol, including its message formats and error handling. The section
is concluded by a brief history of CAN. Examples of vehicle application ar-
chitectures based on CAN are given in Section 3. A few specific control loops
closed over CAN buses are discussed in Section 4. The paper is concluded
with some perspectives in Section 5, where current research issues such as
x-by-wire and standardized software architectures are considered. The exam-
ples are described in more detail in [14]. A detailed description of CAN is
given in the textbook [6]. Another good resource for further information is
the homepage of the organization CAN-in-Automation (CiA) [3]. The use of
CAN as a basis for distributed control systems is discussed in [13].

2 Controller Area Network

The Controller Area Network (CAN) is a serial communications protocol
suited for networking sensors, actuators, and other nodes in real-time sys-
tems. In this section, we first give a general description of CAN including its
message formats, principle of bus arbitration, and error-handling mechanisms.
Extensions of CAN, such as application-oriented higher-layer protocols and
time-triggered CAN, are described, followed by a brief history of CAN.

2.1 Description

A CAN bus with three nodes is depicted in Fig. 4. The CAN specification [4]
defines the protocols for the physical and the data link layers, which enable
the communication between the network nodes. The application process of a
node, e.g., a temperature sensor, decides when it should request the trans-
mission of a message frame. The frame consists of a data field and overhead,
such as identifier and control fields. Since the application processes in gen-
eral are asynchronous, the bus has a mechanism for resolving conflicts. For
CAN, it is based on a non-destructive arbitration process. The CAN protocol
therefore belongs to the class of protocols denoted as carrier sense multiple
access/collision avoidance (CSMA/CA), which means that the protocol listens
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Data ACKCRC EOFSOF Identifier RTR Control

Fig. 5. CAN message frame

to the network in order to avoid collisions. CSMA/CD protocols like Ether-
net have instead a mechanism to deal with collisions once they are detected.
CAN also includes various methods for error detection and error handling.
The communication rate of a network based on CAN depends on the physical
distances between the nodes. If the distance is less than 40 m, the rate can be
up to 1 Mbps.

Message formats

CAN distinguishes four message formats: data, remote, error, and overload
frames. Here we limit the discussion to the data frame, shown in Fig. 5. A data
frame begins with the start-of-frame (SOF) bit. It is followed by an eleven-bit
identifier and the remote transmission request (RTR) bit. The identifier and
the RTR bit form the arbitration field. The control field consists of six bits
and indicates how many bytes of data follow in the data field. The data field
can be zero to eight bytes. The data field is followed by the cyclic redundancy
checksum (CRC) field, which enables the receiver to check if the received bit
sequence was corrupted. The two-bit acknowledgment (ACK) field is used
by the transmitter to receive an acknowledgment of a valid frame from any
receiver. The end of a message frame is signaled through a seven-bit end-of-
frame (EOF). There is also an extended data frame with a twenty-nine-bit
identifier (instead of eleven bits).

Arbitration

Arbitration is the mechanism that handles bus access conflicts. Whenever the
CAN bus is free, any unit can start to transmit a message. Possible conflicts,
due to more than one unit starting to transmit simultaneously, are resolved by
bit-wise arbitration using the identifier of each unit. During the arbitration
phase, each transmitting unit transmits its identifier and compares it with
the level monitored on the bus. If these levels are equal, the unit continues to
transmit. If the unit detects a dominant level on the bus, while it was trying to
transmit a recessive level, then it quits transmitting (and becomes a receiver).
The arbitration phase is performed over the whole arbitration field. When it
is over, there is only one transmitter left on the bus.

The arbitration is illustrated by the following example with three nodes
(see Fig. 6). Let the recessive level correspond to “1” and the dominant level
to “0”, and suppose the three nodes have identifiers Ii, i = 1, 2, 3, equal to
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Node 1

O

Bus

Node 3

Node 2

ControlIdentifier

R
T
R

1110987654321F

S

Fig. 6. Example illustrating CAN arbitration when three nodes start transmitting
their SOF bits simultaneously. Nodes 1 and 2 stop transmitting as soon as they
transmit one (recessive level), and Node 3 is transmitting zero (dominant level). At
these instances, Nodes 1 and 2 enter the receiver mode, indicated in grey. When
the identifier has been transmitted, the bus belongs to Node 3 which thus continues
transmitting its control field, data field, etc.

I1 = 11001101010, I2 = 11001011011, I3 = 11001011001.

If the nodes start transmitting simultaneously, the arbitration process illus-
trated in the figure takes place. First all three nodes send their SOF bit. Then,
they start transmitting their identifiers and all of them continue as long as
they are equal. The sixth bit of I1 is at the recessive level, while the corre-
sponding bits are at the dominant level of I2 and I3. Therefore, Node 1 stops
transmitting immediately and continues only listening to the bus. This listen-
ing phase is indicated in Fig. 6 with the grey field. Since the tenth bit of I2
is at the recessive level while it is dominant for I3, Node 3 is the transmitter
that has access to the bus after the arbitration phase and thus continues with
the transmission of the control and data fields, etc.

There is no notion of message destination addresses in CAN. Instead each
node picks up all traffic on the bus. Hence, every node needs to filter out
the interesting messages on the bus. The arbitration mechanism of CAN is
an effective way to resolve bus conflicts. Note that a minimum amount of
address data is transmitted and that no extra bus control information has to
be transmitted. A consequence of the arbitration mechanism, however, is that
units with low priority may experience large latency if high-priority units are
very active.

Error handling

Error detection and error handling are important for the performance of CAN.
Because of complementary error detection mechanisms, the probability of hav-
ing an undetected error is very small. Error detection is done in five different
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ways in CAN: bit monitoring and bit stuffing, as well as frame check, ACK
check, and CRC. Bit monitoring simply means that each transmitter monitors
the bus level, and signals a bit error if the level does not agree with the trans-
mitted signal. (Bit monitoring is not done during the arbitration phase.) After
having transmitted five identical bits, a node will always transmit the oppo-
site bit. This extra bit is neglected by the receiver. The procedure is called
bit stuffing, and it can be used to detect errors. The frame check consists of
checking that the fixed bits of the frame have the values they are supposed
to have, e.g., EOF consists of seven recessive bits. During the ACK in the
message frame, all receivers are supposed to send a dominant level. If the
transmitter, which transmits a recessive level, does not detect the dominant
level, then an error is signaled by the ACK check mechanism. Finally, the
CRC is that every receiver calculates a checksum based on the message and
compares it with the CRC field of the message.

Every receiver node obviously tries to detect errors within each message. If
an error is detected, it leads to an immediate and automatic retransmission of
the incorrect message. In comparison to other network protocols, this mech-
anism leads to a high data integrity and a short error recovery time. CAN
thus provides elaborate procedures for error handling, including retransmis-
sion and reinitialization. The procedures have to be studied carefully for each
application to ensure that the automated error handling is in line with the
system requirements.

2.2 Protocol extensions

CAN provides the basic functionality described above. In many situations,
it is desirable to use standardized protocols that define the communication
layers on top of the CAN. Such higher-layer protocols are described below to-
gether with CAN gateways and the time-triggered extension of CAN denoted
TTCAN, which allows periodic access to the communication bus with a high
degree of certainty.

Higher-layer protocols

The CAN protocol defines the lowest two layers of the OSI model in Fig. 2.
In order to use CAN, protocols are needed to define the other layers. Field-
bus protocols usually do not define the session and presentation layers, since
they are not needed in these applications. The users may either decide to
define their own software for handling the higher layers, or they may use a
standardized protocol. Existing higher-layer protocols are often tuned to a
certain application domain. Examples of such protocols include SAE J1939,
CANopen, and DeviceNet. It is only SAE J1939 that is specially developed
for vehicle applications. Recently, attempts have been made to interface CAN
and Ethernet, which is the dominant technology for local area networks and
widely applied for connecting to the Internet.
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SAE J1939 is a protocol that defines the higher-layer communication con-
trol. It was developed by the American Society of Automotive Engineers
(SAE) and is thus targeted to the automotive industry. The advantage of
having a standard is considerable, since it enables independent development
of the individual networked components, which also allows vehicle manufac-
turers to use components from different suppliers. SAE J1939 specifies, e.g.,
how to read and write data, but also how to calibrate certain subsystems.
The data rate of SAE J1939 is about 250 kbps, which gives up to about 1850
messages per second [6]. Applications of SAE J1939 include truck-and-trailer
communication, vehicles in agriculture and forestry, as well as navigation sys-
tems in marine applications.

CANopen is a standardized application defined on top of CAN and widely
used in Europe for the application of CAN in distributed industrial automa-
tion. It is a standard of the organization CAN in Automation (CiA) [3].
CANopen specifies communication profiles and device profiles, which enable
an application-independent use of CAN. The communication profile defines
the underlying communication mechanism. Device profiles exist for the most
common devices in industrial automation, such as digital and analog I/O
components, encoders, and controllers. The device can be configured through
CANopen independent of its manufacturer. CANopen distinguishes real-time
data exchange and less critical data exchange. It provides standardized com-
munication objects for real-time data, configuration data, network manage-
ment data, and certain special functions (e.g., time stamp and synchronization
messages).

DeviceNet is another standardized application defined on top of CAN for
distributed industrial automation. It is mainly used in the U.S.A. and Asia
and was originally developed by Rockwell Automation. DeviceNet, Control-
Net, and transmission control protocol/Internet protocol (TCP/IP) are open
network technologies that share upper layers of the communication protocol,
but are based on lower layers: DeviceNet is built on CAN, ControlNet on a
token-passing bus protocol, and TCP/IP on Ethernet.

CANKingdom is a high-layer protocol used for motion control systems.
It is also used in the maritime industry, as described in a boat example in
Section 3. CANKingdom allows the changing of network behavior at any time,
including while the system is running. For example, CANKingdom allows the
system troubleshooter to turn off individual nodes. The CAN node identifiers
and the triggering conditions for sending messages can be changed while the
system is running. One instance when real-time network reconfiguration is
used is during failure conditions. An example is a loss of a radio link ECU
in a maritime application. The network monitor, also known as the King,
in that case first shuts off the radio node to keep it from sending any more
commands, and then tells the appropriate nodes to get data from the King.
This operation eliminates the problem of a node receiving two simultaneous
but conflicting commands. It also eliminates the problem of two nodes sending
the same CAN id.
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The high-level protocols described above have been developed with differ-
ent applications and traditions in mind, which is reflected, for example, in their
support for real-time control. Although SAE J1939 is used for implementing
control algorithms, it does not provide explicit support for time-constrained
messaging. In contrast, such functionalities are provided by CANKingdom
and CANopen, which handle explicit support for inter-node synchronization.
CANKingdom and CANopen allow static and dynamic configuration of the
network, whereas SAE J1939 provides little flexibility.

CAN gateways

Gateways and bridges enable CAN-based networks to be linked together or
linked to networks with other protocols. A gateway between a CAN and
another communication network maps the protocols of the individual net-
works. There exist many different types of CAN gateways, e.g., CAN-RS232
and CAN-TCP/IP gateways. The latter can provide remote access to a CAN
through the Internet, which allows worldwide monitoring and maintenance.
The networks connected through a gateway or a bridge are disconnected in
terms of their real-time behavior, so obviously the timing and performance
of the complex inter-connected network can be hard to predict even if the
individual networks are predictable.

Ethernet (or rather Ethernet/IP) is quite a different communication proto-
col compared to CAN, but is still of growing importance in industrial automa-
tion either in constellations with CAN or on its own. Traditionally, Ethernet
is used in office automation and multimedia applications, while CAN domi-
nates in vehicles and in certain industrial automation systems. The strength
of Ethernet is the ability to quickly move large amounts of data over long
distances and that the number of nodes in the network can be large. CAN, on
the other hand, is optimized for transmitting small messages over relatively
short distances. A drawback with a network based on the Ethernet protocol
is that the nodes need to be quite powerful and complex (and therefore more
expensive) in order to handle the communication control. Another drawback
with Ethernet is that during network traffic congestion the delay jitter can be
severe and unpredictable, although at low network load Ethernet gives almost
no delay.

Time-triggered communication on CAN

Traditional CAN communication is event based: asynchronous events are trig-
gered by node applications that initialize each transmission session. In many
cases, this strategy is an efficient way to share the network resource. There
are a variety of applications, however, that require a guaranteed access to the
communication bus with a fixed periodic rate. This constraint is typical for
sampled-data feedback control systems. In the automotive industry, x-by-wire
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systems are examples of such control systems with deterministic communica-
tion behavior during regular operation.

By introducing the notion of global network time, the standard ISO 11898-
4 defines the extension Time-triggered communication on CAN (TTCAN).
It is built on top of the traditional event-triggered CAN protocol and en-
ables existing CAN nodes to work in parallel with TTCAN nodes. The global
clock requires hardware implementation; otherwise, TTCAN is a pure soft-
ware extension of CAN. The synchronization in TTCAN takes place through
a periodic reference message, which all TTCAN nodes recognize and use to
synchronize their clocks. The nodes are configured to know when to send their
message after the reference message. The period time of the transmission of a
periodic node should be a multiple of the reference period. Traditional CAN
nodes (or event-based TTCAN nodes) compete for the access of the free win-
dows between the reference messages, along the line of the conventional CAN
protocol. This mechanism is thus the reason why time-triggered and event-
triggered scheduling is possible simultaneously in TTCAN.

The sender of the reference message is obviously a crucial node in TTCAN
to guarantee clock synchronization. Therefore, an automatic procedure is pro-
vided for letting another node take over if the reference sender fails, and taking
the reference back when the original clock master recovers. It is possible to
use an external clock, for example, from the global positioning system (GPS).

2.3 A brief history

The evolution of microelectronics paved the way for introducing distributed
control systems in vehicles. In the early 1980s there was, however, no low-cost
and standardized protocol that was suitable for real-time control systems.
Therefore, as we stated before, in 1983 Kiencke started the development of
a new serial bus system at Bosch, which was presented as CAN in 1986 at
the SAE congress in Detroit [8]. The development of CAN was mainly mo-
tivated by the need for new functionalities, but it also substantially reduced
the need for wiring. The Bosch CAN Specification 2.0 was published in 1991
and then two years later the CAN protocol was internationally standardized
as ISO 11898-1. The need for higher-layer protocols was recognized early. In
1991, CANKingdom was introduced by Kvaser. DeviceNet, another higher-
layer protocol, was introduced by Allen-Bradley in 1994, and CANopen by
CAN in Automation (CiA) in 1995. CiA is an international users and man-
ufacturers group, which was founded in 1992. Mercedes-Benz has been using
CAN in its passenger cars since 1992. Originally, CAN was used only for
engine control, but today there are a variety of CAN nodes not only for pow-
ertrain and chassis control but also for body electronics and infotainment
systems. Many other car manufacturers base their control architecture on
CAN, including BMW, Fiat, Renault, SAAB, Volkswagen, and Volvo. The
CAN architecture for a Volvo passenger car is described in the next section.
The notion of time-triggered protocols for real-time systems was introduced
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by Kopetz and co-workers [10]. Time-triggered extensions of CAN were dis-
cussed in the late 1990s and early 2000s. This led to the standardization of
TTCAN as ISO 11897-4 in 2004. Currently, there are intensive activities on
utilizing TTCAN in a variety of vehicle applications.

3 Architectures

In this section, four vehicular examples of distributed control architectures
based on CAN are presented. The architectures are implemented in a passen-
ger car, a truck, a boat, and a spacecraft.

3.1 Volvo passenger car

In the automotive industry, there has been a remarkable evolution over the
last few years in which embedded control systems have grown from stand-
alone control systems to highly integrated and networked control systems.
Originally motivated by reduced cabling and the specific addition of function-
alities with sensor sharing and diagnostics, there are currently several new
x-by-wire systems under development that involve distributed coordination of
many subsystems.

Fig. 7 shows the distributed control architecture of the Volvo XC90. The
blocks represent ECUs and the thick lines represent networks. The actual lo-
cation of an ECU in the car is approximately indicated by its location in the
block diagram. There are three classes of ECUs: powertrain and chassis, info-
tainment, and body electronics. Many of the ECU acronyms are defined in the
figure. Several networks are used to connect the ECUs and the subsystems.
There are two CAN buses. The leftmost network in the diagram is a CAN for
power train and chassis subsystems. It connects for example engine and brake
control (TCM, ECM, BCM, etc.) and has a communication rate of 500 kbps.
The other CAN connects body electronics such as door and climate control
(DDM, PDM, CCM, etc.) and has a communication rate of 125 kbps. The
central electronic module (CEM) is an ECU that acts as a gateway between
the two CAN buses. A media oriented system transport (MOST) network de-
fines networking for infotainment and telematics subsystems. It consequently
connects ECUs for multimedia, phone, and antenna. Finally, local intercon-
nect networks (LINs) are used to connect slave nodes into a subsystem and are
denoted by dashed lines in the block diagram. The maximum configuration
for the vehicle contains about 40 ECUs [7].

3.2 Scania truck

There are several similarities between the control architecture in passenger
cars and trucks. There are also many important differences, some of which
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Powertrain and chassis Body electronics
TCM Transmission control module CEM Central electronic module
ECM Engine control module SWM Steering wheel module
BCM Brake control module DDM Driver door module
BSC Body sensor cluster REM Rear electronic module
SAS Steering angle sensor SWM Steering wheel module
SUM Suspension module DDM Driver door module
AUD Audio module PDM Passenger door module

REM Rear electronic module
Infotainment/Telematics CCM Climate control module

MP1,2 Media players 1 and 2 ICM Infotainment control
PHM Phone module UEM Upper electronic module
MMM Multimedia module DIM Driver information module
SUB Subwoofer AEM Auxiliary electronic
ATM Antenna tuner module

Fig. 7. Distributed control architecture for the Volvo XC90. Two CAN buses and
some other networks connect up to about 40 ECUs. (Courtesy of Volvo Car Corpo-
ration.)

are due to the fact that trucks are configured in a large number of physical
variants and have longer expected life times. These characteristics impose
requirements on flexibility with respect to connecting, adding, and removing
equipments and trailers.

The control architecture for a Scania truck is shown in Fig. 8. It consists
of three CAN buses, denoted green, yellow, and red by Scania due to their
relative importance. The leftmost (vertical) CAN contains less critical ECUs
such as the audio system and the climate control. The middle (vertical) CAN
handles the communication for important subsystems that are not directly
involved in the engine and brake management. For example, connected to this
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Green bus Yellow bus
AUS Audio system LAS Locking and alarm system
CSS Crash safety system AWD All wheel drive system
ACC Automatic climate control ICL Instrument cluster system
WTA Auxiliary heater water-to-air TCO Tachograph system
ATA Auxiliary heater air-to-air VIS Visibility system
CTS Clock and timer system APS Air processing system
RTG Road transport info gateway BWS Body work system
RTI Road transport info system BCS Body chassis system

Red bus
GMS Gearbox management system COO Coordinator system
ACS Articulation control system
EMS Engine management system
EEC Exhaust emission control
BMS Brake management system
SMS Suspension management system
SMD Suspension management dolly

Fig. 8. Distributed control architecture for a Scania truck. Three CAN buses (de-
noted green, yellow, and red due to their relative criticality) connect up to more
than twenty ECUs. The coordinator system ECU (COO) is a gateway between the
three CAN buses. (Courtesy of Scania AB.)
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bus is the instrument cluster system. Finally, the rightmost (horizontal) bus
is the most critical CAN. It connects all ECUs for the driveline subsystems.
The coordinator system ECU (COO) is a gateway between the three CAN
buses. Connected to the leftmost CAN is a diagnostic bus, which is used to
collect information on the status of the ECUs. The diagnostic bus can thus
be used for error detection and debugging. Variants of the truck are equipped
with different numbers of ECUs (the figure illustrates a configuration close to
maximum). As for passenger cars, there are also subnetworks, but these are
not shown in the figure.

SAE J1939 is the dominant higher-layer protocol for trucks. It facilitates
plug-and-play functionality, but makes system changes and optimization diffi-
cult, partly because the priorities for scheduling the network traffic cannot be
reconfigured. Manufacturers are using loopholes in SAE J1939 to work around
these problems, but their existence indicates deficiencies in the protocol.

3.3 US Navy boat

There are several maritime applications of CAN. Here we give an example on
unmanned seaborne targets provided by the United States Navy. The Navy
has developed a distributed electronics architecture denoted SeaCAN, which
is installed in all new seaborne targets and has been retrofitted into a num-
ber of older targets. A SeaCAN architecture for a 7 m remotely controlled
rigid-hull inflatable boat is shown in Fig. 9. The system implements, for ex-
ample, an autopilot based on a feedback control loop closed over the network.
It involves the nodes Rudder Feedback, GPS Receiver, Pitch/Roll/Heading,
Command/Control, and the two engine throttle nodes. The SeaCAN system
uses a number of CPU boards with Infineon C167 microcontrollers connected
together via a CAN bus running at 125 kbps. The lower communication rate
is chosen to allow longer runs of copper and fiber suitable for larger boats and
ships.

The SeaCAN system utilizes an operating system built around the CAN
bus and based on the higher-layer protocol CANKingdom. The operating
system contains a scheduler for tasks, which is synchronized with a higher-
layer implementation of a global clock. It is thus possible to have coordinated
behavior between two nodes, without any extra network communication. This
functionality is used for generating periodic sampling, used in, e.g., the rudder
servo control loop. In that case, the rudder sensing node samples the rudder
angle at a rate of 10 Hz. The reception of the data messages from the rudder
sensing node at the rudder actuator controller triggers the control loop routine.
Because these messages have high priority on the bus and they are clocked
out at a known rate, the control loop variability and data delay are very low,
which thus enables a well-performing control loop.

Characteristics of SeaCAN include low usage of bandwidth in the order of
5%, global clock with a resolution of about 100 µsec, and special provisions
with respect to safety and fail-safe shut-down. Network scheduling based on
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Fig. 9. Distributed control architecture for a boat. The block diagram shows a
SeaCAN system for a 7 m remotely controlled rigid-hull inflatable boat. (Courtesy
of the US Navy.)

the global clock is used to enforce a mixture of time-triggered and event-
triggered communication.

3.4 SMART-1 spacecraft

The CAN protocol is also used in spacecraft and aircraft. SMART-1 is the first
European lunar mission, where the acronym stands for “small missions for ad-
vanced research in technology.” The spacecraft was successfully launched on
September 27, 2003 by the European Space Agency on an Ariane V launcher.
The Swedish Space Corporation was the prime contractor for SMART-1 and
has developed several of the on-board subsystems including the on-board com-
puter, avionics, and the attitude and orbit control system [2]. The main pur-
pose of SMART-1 is to demonstrate the use of solar-electric propulsion in a
low-thrust transfer from earth orbit into lunar orbit. The spacecraft carries
several scientific instruments, and scientific observations are to be performed
on the way to and in its lunar orbit. Currently (October 2004), SMART-1 is
preparing for the maneuvers that will bring it into orbit [5].

Part of the distributed computer architecture of SMART-1 is presented
in Fig. 10. The block diagram illustrates the decomposition of the system
into two parts: one subsystem dedicated to the SMART-1 control system and
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Fig. 10. Part of the distributed control architecture for the SMART-1 spacecraft.
The system has two CAN buses: one for the control of the spacecraft and one for the
payload. The spacecraft controllers are redundant and denoted CON-A and CON-B
in the middle of the block diagram. (Courtesy of the Swedish Space Corporation.)

another for scientific experiments. Each of them is using a separate CAN, so
there is one system CAN and one payload CAN. The spacecraft control is
performed by the redundant controllers CON-A and CON-B, in the middle
of the figure. Most control loops are closed over the system CAN with CAN
nodes providing sensing and actuation capabilities. CAN nodes on the system
bus include not only the spacecraft controller, but also nodes for telemetry
and telecommand (earth communication), thermal control, star tracker and
sun sensors, gyro and reaction wheels, hydrazine thruster, power control and
distributions, and electronic propulsion and orientation.

Several provisions have been taken to ensure system robustness. All nodes
are redundant; some in an active, others in a passive fashion. Each CAN
bus has one nominal and one redundant communication path. A strategy
and a hierarchy for error detection, redundancy management, and recovery
have been defined. The spacecraft controller can take the decision to switch
over to the redundant bus (but not back again). Most other nodes will check
for the life sign message from the spacecraft controller. If the life sign is
not available, the nodes will attempt to switch to the other bus. The power
unit has highest authority in the autonomy hierarchy and will switch to the
redundant spacecraft controller if the primary controller is considered to have
failed. The power unit can also control the activation and deactivation of the
other nodes. As a last means for recovery, ground can intervene manually.
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Radiation tolerance and the detection of radiation-induced errors are cru-
cial for SMART-1. It was not possible to use ordinary CAN controllers because
they are not radiation tolerant. Instead, the license to use the VHDL-code for
CAN was purchased from Bosch and was used to implement a CAN con-
troller in a radiation-tolerant field programmable gate array (FPGA). Some
other features were added to the CAN protocol simultaneously, such as specific
error detection and error handling mechanisms. In addition, clock synchroniza-
tion was added, so that the resolution of the global clock became better than
1 msec. Effects due to radiation can still cause corrupted frames. Therefore,
one of the identifier bits was chosen to be used as an extra parity bit for the
identifier field.

4 Control Applications

Two vehicular control systems with loops closed over CAN buses are discussed
in this section. The first example is a vehicle dynamics control system for
passenger cars that is manufactured by Bosch. The second example is an
attitude and orbit control system for the SMART-1 spacecraft discussed in
the previous section.

4.1 Vehicle dynamics control system

Vehicle dynamics control4 systems are designed to assist the driver in over-
steering, under-steering and roll-over situations [9, 15]. The principle of a ve-
hicle dynamics control (VDC) system is illustrated in Fig. 11. The left figure
shows a situation where over-steering takes place, illustrating the case where
the friction limits are reached for the rear wheels causing the tire forces to
saturate (saturation on the front wheels will instead cause an under-steer sit-
uation). Unless the driver is very skilled, the car will start to skid, meaning
that the vehicle yaw rate and vehicle side slip angle will deviate from what the
driver intended. This is the situation shown for the left vehicle. For the vehicle
on the right, the on-board VDC will detect the emerging skidding situation
and will compute a compensating torque, which for the situation illustrated is
translated into applying a braking force to the outer front wheel. This braking
force will provide a compensating torque and the braking will also reduce the
lateral force for this wheel.

The VDC system compares the driver’s estimated intended course, by
measuring the steering wheel angle and other relevant sensor data, with the
actual motion of the vehicle. When these deviate too much, the VDC will
intervene by automatically applying the brakes of the individual wheels and
also by controlling the engine torque, in order to make the vehicle follow the

4Also known as electronic stability program, dynamic stability control, or active
yaw control.
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Fig. 11. Illustration of behavior during over-steering for vehicle with and without
VDC system (left figure). Central components of VDC (right figure). (Based on
figures provided by the Electronic Stability Control Coalition.)

path intended by the driver as closely as possible. The central components of
VDC are illustrated on the right in Fig. 11. In essence, the VDC will assist
the driver by making the car easier to steer and by improving its stability
margin. See [9] for details.

A block diagram of a conceptual VDC is shown in Fig. 12. The cascade con-
trol structure consists of three controllers: (1) the yaw/slip controller, which
controls the overall vehicle dynamics in terms of the vehicle yaw rate and the
vehicle side slip angle; (2) the brake controller, which controls the individual
wheel braking forces; and (3) the engine controller, which controls the engine
torque. The inputs to the yaw/slip controller include the driver’s commands:
accelerator pedal position, steering wheel angle, and brake pressure. Based
on these inputs and other sensor data, nominal values for the yaw rate and
the vehicle side slip are computed. They are compared with the measured
yaw rate and the estimated side slip. A gain-scheduled feedback control law
is applied to derive set-points for the engine and brake controllers; for ex-
ample, during over-steering, braking actions are normally performed on the
front outer wheel and for under-steering normally on the rear inner wheel.
The gains of the controllers depend on the driving conditions (e.g., vehicle
speed, under-steering, over-steering). The brake and the engine controllers
are typically proportional-integral-derivative (PID) controllers and also use
local sensor information such as wheel speed. The VDC system has to take
the driver behavior into account as well as disturbances acting on the vehicle,
including cross-wind, asymmetric friction coefficients, and even a flat tire.

The VDC system utilizes the CAN bus, as it is depending on several ECUs,
although the main functionality resides in a specific ECU. The implementa-
tion strongly depends on the choice of braking mechanics (e.g., hydraulics,
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Fig. 12. Cascade control structure of VDC system

pneumatics, electro-hydraulics, or even electro-mechanics), the availability of
a transmission ECU, and the interface to the engine ECU. A separate dis-
tributed control system is often used for the brakes, extending from a brake
control node; for example, trucks often have one ECU per wheel pair and
an additional controller for the trailer. Since some of the control loops of a
VDC system are closed over a vehicle CAN, special care has to be taken with
respect to end-to-end delays and faults in the distributed system.

4.2 Attitude and orbit control system

This section describe parts of the SMART-1 attitude and orbit control system
and how it is implemented in the on-board distributed computer system [2].
The control architecture and the CAN buses of SMART-1 were described in
Section 3. The control objectives of the attitude and orbit control system
are to

• follow desired trajectories according to the goals of the mission,
• point the solar panels toward the sun, and
• minimize energy consumption.

The control objectives should be fulfilled despite the harsh environment and
torque disturbances acting on the spacecraft, such as aero drag (initially when
close to earth), gravitational gradient, magnetic torque, and solar pressure
(mechanical pressure from photons). There are several phases that the control
system should be able to handle, including the phase just after separation from
the launcher, the thrusting phases on the orbit to the moon, and the moon
observation phase.

The sensors and actuators used for controlling the spacecraft’s attitude
are illustrated in Fig. 13. Sensors are a star tracker and solid-state angular
rate sensors. The star tracker provides estimates of the sun vector. It has one
nominal and one redundant processing unit and two hot redundant camera
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Sun sensors
(3 in total)

Reaction wheels
(4 in total)

EP thruster and orientation 
mechanism

Star trackers (2 in total) 

Hydrazine thrusters
(4 in total)

Fig. 13. Structure of SMART-1 spacecraft with sensors and actuators for the atti-
tude and orbit control system. (Courtesy of the Swedish Space Corporation.)

heads, which can be operated from either of the two processing units. Five an-
gular rate sensors are included to allow for detection and isolation of a failure
in a sensor unit. The rate sensors can provide estimates of spacecraft attitude
during shorter outages of attitude measurements from the star tracker. Ac-
tuators for the attitude control are reaction wheels and hydrazine thrusters.
There are four reaction wheels aligned in a pyramid configuration based on
considerations of environmental disturbances and momentum management.
The angular momentum storage capability is 4 Nms per wheel with a reac-
tion torque above 20 mNm. The hydrazine system consists of four nominal
and four redundant 1 N thrusters.

The attitude and orbit control system consists of a set of control functions
for rate damping, sun pointing, solar array rotation, momentum reduction,
three-axis attitude control, and electric propulsion (EP) thruster orientation.
The system has a number of operation modes, which consist of a subset of
these control functions. The operation modes include the following:

• Detumble mode: In this mode, rotation is stabilized using one P-controller
per axis with the aid of the hydrazine thrusters and the rate sensors.

• Safe mode: Here the EP thruster is pointed toward the sun and set to rotate
one revolution per hour around the sun vector. The attitude is controlled
using a bang-bang strategy for large sun angles and a PID controller for
smaller angles. Both controllers use the reaction wheels as actuators and
the sun tracker as sensor. The spacecraft rotation is controlled using a
PI controller. When the angular velocity of the reaction wheels exceeds a
certain limit, their momentum is reduced by use of the hydrazine thrusters.
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Fig. 14. Attitude control system under operation in Science mode. Disturbances
include gravity, particles, and aero drag affecting the spacecraft.

• Science mode: In this mode, ground provides the attitude set-points for the
spacecraft and the star tracker provides the actual attitude. The reaction
wheels and the hydrazine thrusters are used.

• Electric propulsion control mode: This mode is similar to the science mode
apart from the additional control of the EP orientation mechanism. This
mechanism can be used to tilt the thrust vector in order to off-load the
reaction wheel momentum about the two spacecraft axes that form the
nominal EP thrust plane. This reduces the amount of hydrazine needed.
The EP mechanism is controlled in an outer and slower control loop (PI)
based on the speed of the reaction wheels and the rotation of the spacecraft
body.

Let us describe the Science mode in some detail. Fig. 14 shows a block di-
agram of the attitude control system in Science mode. As was described for
the Safe mode above, different controllers are activated in the Science mode
depending on the size of the control error. This switching between controllers
is indicated by the block “Mode logic” in the figure. Anti-windup compensa-
tion is used in the control law to prevent integrator windup when the reaction
wheel commands saturate. Also, as in the Safe mode, the hydrazine thrusters
are used to introduce an external momentum when the angular momentum
of the reaction wheels grows too high. The attitude control works indepen-
dently of the thruster commanding. The entire control system is sampled at
1 Hz. The time constant for closed-loop control is about 30 sec for the Science
mode (and 300 sec for the Safe mode). The estimation block in Fig. 14 pro-
vides filtering of signals such as the sun vector and computes the spacecraft
body rates. It includes a Kalman filter with inputs from the star tracker and
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the rate sensors. The main purpose is to provide estimates of the attitude
for short periods when the star tracker is not able to deliver the attitude, for
example, due to blinding of the sensor camera heads. The control algorithms
of the attitude and orbit control system reside in the spacecraft controllers of
the control architecture depicted in Fig. 10. With a period of 1 sec, the space-
craft controller issues polling commands over the CAN to the corresponding
sensors, including the gyros and the sun sensors. When all sensor data are
received, the control commands are computed and then sent to the actuators,
including the reaction wheels and the hydrazine thrusters. The maximum nor-
mal utilization of the CAN is about 30%, but under heavy disturbance, due to
retransmission of corrupted messages, it rises to about 40%. The total com-
munication time for communication over the CAN network for attitude and
orbit control sensing and actuating data is approximately 12 msec. It is thus
small compared to the sampling period.

The on-board software can be patched by uploading new software from
ground during operation in space. So far this has been carried out once for the
star tracker node. The need arose during a very intensive solar storm, which
necessitated modification of software filters to handle larger disturbance and
noise levels than had been anticipated.

During operation, the system platform software is responsible for detec-
tion of failing nodes and redundancy management. The control application
is notified of detected errors such as temporary unavailability of data from
one or more nodes. If the I/O nodes do not reply to poll messages for an
extended period of time, the redundancy management will initiate recovery
actions, including switching to the redundant slave nodes and attempting to
use the redundant network.

5 Perspectives

The development of vehicles is going through a dramatic evolution, in their
transition from pure mechanical systems to mechatronic machines with highly
integrated hardware and software subsystems. DaimlerChrysler estimates that
90% of the innovations in the automotive area lie in electronics and software.
A challenge in the development of vehicular embedded control systems is
safety and real-time requirements. The control systems are increasingly be-
ing implemented in distributed computer systems and require a multitude of
competences to be developed and integrated to meet quality requirements in
a cost-efficient way. A major research problem is to develop techniques and
tools to bridge the gap between functional requirements and the final design.
In this section, we describe two particular trends in the vehicular networked
embedded systems, namely, brake-by-wire and other x-by-wire systems, and
standardized platforms and open-ended architectures for distributed control
units in vehicles.
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5.1 X-by-wire systems

X-by-wire is a term for the addition of electronic systems to the vehicle to
improve tasks that were previously accomplished purely with mechanical and
hydraulic systems. Examples of x-by-wire systems are steer-by-wire and brake-
by-wire, where steering and braking data, respectively, are communicated elec-
tronically from the driver to the actuators. For a brake-by-wire control system,
it is common that the information transfer from the brake pedal to the brak-
ing actuator is handled electronically, but that the actuators are hydraulic or
pneumatic. Sometimes the actuators are replaced with electrical motors, so
that a full brake-by-wire system is created.

An early x-by-wire system is the fly-by-wire application in the Airbus
aircraft A310, which has been in use since 1983. Airbus 320, which was cer-
tified in 1988, is the first aircraft that depends entirely on x-by-wire control.
Examples of early x-by-wire systems in the automotive industry include au-
tomated manual transmission, which eliminates the mechanical connection to
the transmission, so that the gears can be chosen manually by pushing but-
tons or automatically by a computer that runs a gear selection program. The
technology, which was first developed for motor sports to relieve the driver
from using the clutch, is available from many passenger car manufacturers
including Alfa Romeo, BMW, Mercedes-Benz, Porsche, and Volkswagen. Sev-
eral solutions are also available for heavy vehicles, under names like I-Shift
from Volvo Trucks and Opticruise from Scania. In the marine industry, a re-
cent x-by-wire system is the throttle-by-wire system available from Mercury
Marine, which is based on dual redundant CAN buses operating at 250 kbps.

Challenges for further applications of x-by-wire systems in the automotive
industry are legislation, safety demands, cost efficiency, and user expectations.
It should be noted that x-by-wire systems in cars are not the same as fly-by-
wire systems. Differences include the sensitivity to frequency of failure in
operations, and the cost sensitivity. Consequently, the technological concepts
used for by-wire systems in airplanes are not necessarily cost efficient for the
automotive industry.

5.2 Standardized software architectures

Standards in the automotive industry have been developed for communica-
tion, but the other parts of the distributed control systems of cars have mainly
remained closed; for example, note that most automotive systems use propri-
etary real-time operating systems. The lack of existing standardization has
generated research projects to standardize diagnostics and measurement sys-
tems, description languages, and software platforms. Two related initiatives
focused on software platforms are OSEK/VDX [12] and AUTOSAR [1].

OSEK/VDX is a joint project of the automotive industry that aims at an
industry standard for an open-ended architecture for distributed control units
in vehicles. OSEK stands for Offene Systeme und deren Schnittstellen für
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die Elektronik im Kraftfahrzeug (open systems and the corresponding inter-
faces for automotive electronics) and was founded by the German automotive
industry. VDX, which is an acronym for vehicle distributed executive, was
originally defined as part of a joint effort by the French companies PSA and
Renault. In 1995 the OSEK/VDX group presented their first results of a spec-
ification. A goal of OSEK/VDX is to support the portability and reusability
of application software. The open architecture defines three substandards of
communication, network management, and operating system. It includes data
exchange within and between ECUs, network configuration and monitoring,
and real-time executive for ECU software. The basic idea of OSEK/VDX is
to define standardized services, so that the costs are reduced to maintain and
port application software. Obviously, by imposing portability, it should be
possible to transfer application software from one ECU to another ECU. The
application software module can have several interfaces. For example, there
exist interfaces to the operating system for real-time control, but there also ex-
ist interfaces to other software modules. The interfaces should be rich enough
to represent a complete functionality in a system. An OSEK/VDX implemen-
tation language has also been defined. It supports a portable description of
all OSEK/VDX specific objects such as tasks and alarms. It remains to be
seen whether the OSEK/VDX effort will be successful or not.

Automotive Open System Architecture (AUTOSAR) is a development
partnership with the goal of standardizing basic system functions and func-
tional interfaces in vehicles. The initiative is an indication of the difficulties
faced today to fulfill the growing passenger and legal requirements, despite the
increased system complexity. There needs to be a clear notion of how software
components should be specified and integrated in automotive applications.
The AUTOSAR standard is intended to serve as a platform upon which fu-
ture vehicle applications could be implemented. The AUTOSAR project plan
was released in 2003, so extensive test and verification remain to be done
before AUTOSAR can be used in practice.
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1 Background

An example of a reactive, mobile, embedded control system that has re-
ceived considerable attention during the last decade is the autonomous mobile
robot. The flurry of research activities in this area can be directly traced to
the many exciting current and future applications where robotic systems are
safer/cheaper/more effective than their human counterparts. Examples of cur-
rent applications include

• Domestic service robots, such as autonomous vacuum cleaners, lawn mow-
ers, and pool cleaners;

• Planetary exploration robots, such as the NASA Mars rovers Spirit and
Opportunity;

• Autonomous robots for military applications, including surveillance and
search-and-destroy robots; and

• Robots for monitoring, exploring, and securing unsafe environments, such
as bomb sniffers, disaster site robots, and mine sweepers.

Notably absent from this list are the many robots employed in industrial
settings. Such industrial robots are not considered here since they typically op-
erate in highly structured environments, where the maneuvers can be planned
in advance, resulting in challenging, yet standard, tracking problems. In con-
trast to this, autonomous mobile robots operate in partially or completely
unknown environments, where the occurrences of unmodeled obstacles are
commonplace. What this means is that the complexity of the control task
is increased due to the complexity of the environment in which the system
operates, which imposes a number of challenges on the control design. In this
chapter we will cover modeling and architectural design issues for such sys-
tems. We will moreover discuss some implementation aspects as well as outline
a collection of major challenges that still remain to be solved.
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2 Multi-Modal Control

For mobile, autonomous robots the ability to function in and interact with a
dynamic, changing environment is of key importance. As such, they fall un-
der a class of reactive, mobile systems where environmental changes trigger
changes in what objectives the control system must meet. The standard way
of structuring the control system in order to deal with this problem is within
a multi-modal control framework, sometimes referred to in the robotics liter-
ature as the behavior-based robotics framework [1, 4, 11]. The main idea is to
identify different controllers, responses to sensory inputs, with desired robot
behaviors. This way of structuring the control system into separate behav-
iors, dedicated to performing certain tasks, has gained significant momentum
within the robotics community. This momentum stems from the fact that a
modular design both simplifies the design process and also makes it possible
to add new behaviors to the system without causing any major increase in
complexity.

Once a collection of behaviors has been designed, different options present
themselves at the supervisory level. For instance, one can let different behav-
iors run concurrently in the sense that they all can have an effect on the low-
level motor commands according to some coordination rule. This construction
with concurrent behaviors makes it relatively straightforward to stress robust-
ness issues explicitly, since, for example, an “avoidance behavior” can just be
given a higher priority or weight than a “reach target behavior.” However, as
multiple behaviors are allowed to affect the system simultaneously, a number
of theoretical as well as practical issues present themselves. For example, given
a collection of individual behaviors, how should these be coordinated in order
to achieve a satisfactory, global behavior?

An alternate route to take is to insist on letting only one behavior affect
the system at each time instant. This somewhat simplifies the analysis since
the resulting system is a hybrid system for whose analysis a number of tools
are available. But, as we will see, hard switches between behaviors may cause
the performance of the system to degrade if care is not taken when dealing
with chattering and other issues.

2.1 Behaviors

If we let the autonomous robot be modeled at the kinematic level as a unicycle

ẋ = v cosφ
ẏ = v sinφ
φ̇ = ω,

where (x, y) denotes the position of the robot, and φ denotes its orientation,
a behavior is characterized by the way sensory data is mapped to the con-
trol inputs v and ω, corresponding to translational and angular velocities,
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respectively. Now, relative to this robot model, a straightforward way [1] of
specifying the effect of individual behaviors is to let the behavior define a
vector

B = rB

(
cos(φB)
sin(φB)

)
,

where rB is the “magnitude” of the behavior vector, and φB is its orientation.
This vector formalism allows us to map behavior vectors to control values
using some appropriate map F (B) = (v, ω)T . For example, one can let(

v
ω

)
= F (B) =

(
min{v0, 1/rB}
C(φB − φ)

)
.

Here, the translational velocity achieves its nominal value v0 > 0 when the
magnitude of the behavior vector is small, but is reduced as this magnitude
grows. Furthermore, the angular velocity is simply given by a proportional
error feedback law, with C > 0 being the gain. Note that it is also quite
standard to let the gain vary as a function of rB.

Now, if we are given B1 and B2, i.e., two vectors corresponding to two
different behaviors, they can be combined directly using a vector addition
operation B1 + B2 in order to produce a new behavior, and this semigroup
property is why the vector notation is particularly appealing. Here the coor-
dination mechanism is thus explicitly given. Moreover, the magnitude of the
behavior vector, rB, is what determines how much weight that particular be-
havior is given in the summation. As we will see in the next few paragraphs,
avoidance behaviors should increase in magnitude, typically according to an
inverse square law, as the robot draws closer to the obstacles.

To make matters more concrete, let us in consider an obstacle-avoidance
behavior (denoted OA in what follows) in some detail. Most mobile robots
are equipped with a collection of k range sensors, such as ultrasonic sonars
or infrared sensors, and a standard sonar ring typically consists of 8 or 16
sensors. Each of these sensors measures the distance to the closest obstacle
along a particular, fixed relative orientation; we let dj denote the distance to
the closest obstacle detected by sensor j, and we let φj be the corresponding
angle. We can then define the obstacle avoidance behavior, BOA, through the
vector summation

BOA = BOA,1 + BOA,2 + . . .+ BOA,k,

where the behavior vectors are given by

rBOA,j
=

{
0 if dj > D

COA
(D−dj)

d3
j

otherwise

φBOA,j
= π + φj ,

where COA > 0, and D is the safety distance at which the obstacle-avoidance
behavior starts affecting the system.
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In a similar manner, we can define an “approach target behavior,” BAT ,
as

rBAT
= CAT

φBAT
= arctan((yg − y)/(xg − x)),

where CAT > 0 is the constant magnitude, and the goal is located at (xg, yg),
as shown in Fig. 1.

BOA

BAT

BOA + BAT

D

goal

obstacle

Fig. 1. Vector addition of “obstacle-avoidance” and “approach target” behaviors

2.2 Regularizations

However, it may not always be desirable to let different behaviors affect the
system simultaneously, even though such an approach results both in nota-
tional convenience as well as an intuitively appealing mechanism for combining
multiple control objectives. Unfortunately, such an approach ruins the mod-
ularity that comes with a switched control strategy in the sense that if a new
behavior is introduced, its impact on the system is almost impossible to char-
acterize analytically. This lack of analytical characterization tools is one of
the main reasons why emergent behaviors, i.e., unpredictable global behaviors
obtained through local rules, have received considerable attention in the liter-
ature. Moreover, if an obstacle-avoidance behavior has been designed so that
the robot is guaranteed not to hit static obstacles, by combining this behavior
with other behaviors, this guarantee no longer holds.

A remedy to this problem is to let the control system switch between
different behaviors. Unfortunately, such an approach may have a negative im-
pact on the performance of the system since it increases the risk of introducing
chattering into the system. Chattering is a phenomenon that occurs when two
vector fields, corresponding to two different behaviors, both point in toward
the switching surface that dictates when the robot should switch between the
behaviors. In other words, if we switch from mode 1, where ẋ = f1(x), to
mode 2, where ẋ = f2(x), when x leaves the region g(x) < 0, where g is a
smooth map from Rn to R, then chattering occurs if
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∂g(x)
∂x

f1(x) > 0 and
∂g(x)
∂x

f2(x) < 0

on the boundary g(x) = 0.
The standard way out of this problem is to regularize the system so that

sliding is allowed to occur. For example, assume that we have access to instan-
taneous heading control in our control laws. When an obstacle is closer to the
robot than D, the obstacle-avoidance behavior is active. Since the repulsive
potential field from that behavior will be orthogonal to the surface on which
the behavior becomes active, the sliding solution is given by

BS = αBOA + (1− α)BAT ,

for some α ∈ [0, 1] such that BS ⊥ BOA.
Some results from applying this regularization approach to the chattering

problem are shown in Fig. 2, where (a) shows a situation when vector sum-
mation is used. Fig. 2(b) corresponds to switches between the behaviors, and
it is clear that a chattering-like behavior is produced. In (c), the regularized
solution is shown. Even though we only have one behavior active at a time,
the performance is clearly satisfactory in that case.

(a) (b) (c)

Fig. 2. (a) Combined behaviors using vector summation, (b) switches between the
different behaviors, and (c) a regularized solution. These results were obtained on
the Nomad simulator, the Nserver.

By incorporating this type of information about the different behaviors, it
is possible to generate the sliding modes automatically. It furthermore suggests
that this method would scale when more than two behaviors affect the motion
of the robot, as long as an automatic procedure for designing the sliding
solutions can be identified. Hence we assume throughout the remainder of
this chapter that only one behavior affects the robot at each time instant,
and that, when appropriate, a sliding mode may be induced from the system
dynamics. In the next section we will consider this issue to be settled and
instead focus on the question of how one should model and specify multi-
modal control procedures for robotics tasks.
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3 Task Specifications

As an example, consider the scenario that is played out in Fig. 3. The problem
the robot is instructed to solve is to find the door while avoiding obstacles.
Once the door is found, the robot should go though the door and then start
following the wall.

Fig. 3. The robot finds the door and then moves into a corridor, where it follows
the wall. The reason why the sonar readings seem rather inaccurate is due both to
the odometric drift and the coarseness of the sonar resolution.

3.1 Hybrid automata

There are, of course, a number of ways in which this particular navigation
problem can be solved. If we let our solution lay within the multi-modal
framework, we first note that the behaviors needed to solve this problem
could be

• Wander;
• Avoid obstacle;
• Go through door; and
• Follow wall.

Moreover, it is clear that by designing the individual behaviors, a complete,
executable multi-modal control procedure has not yet been produced in the
sense that we cannot run it directly on the robot. What is missing is the set
of rules for switching between the different behaviors. For instance, if we let
the dynamics of the system be

ẋ = f(x, u), x ∈ Rn, u ∈ U ⊂ Rm

y = h(x), y ∈ Y ⊂ Rp,

then the different behaviors correspond to particular feedback laws uB : Y →
U . If we let u1 and u2 be two such behaviors, then, in mode 1, we have
ẋ = f(x, u1(h(x))) and, in mode 2, ẋ = f(x, u2(h(x))). We moreover choose to
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switch between these two modes as a certain property, defined on the sensory
inputs, is satisfied. We can thus define a Boolean map ξ : Y → {0, 1} and use
mode 1 as long as ξ(y) = 0, and switch to mode 2 when ξ(y) = 1. Such a
mapping is referred to as a guard in the hybrid systems literature, and in Fig.
4, a hybrid automaton is shown that generates the desired switched behavior.
The interpretation here is that the system starts at the initial condition x = x0
in mode 1, and switches to mode 2 as the guard condition is satisfied.

x := x0

ẋ = f(x, u1(y)) ẋ = f(x, u2(y))

ξ(y)

Fig. 4. A simple hybrid automaton

If we now return to the problem of having the robot find the door and
then go through it, a hybrid automaton that would implement a solution
to this problem is shown in Fig. 5, where uW corresponds to the “wander”
behavior, uO corresponds to “obstacle avoidance,” uD corresponds to “go
through door,” and uF to “follow wall.” Moreover, ξO = 1 if an obstacle is
too close, while ξS = 1 when this is no longer the case. ξD = 1 when the door
has been detected, and ξT = 1 when the robot has passed through the door.

x := x0

ẋ = f(x, uW (y))

ẋ = f(x, uO(y))

ẋ = f(x, uD(y)) ẋ = f(x, uF (y))ξO(y)ξS(y)

ξD(y)

ξD(y)

ξT (y)

Fig. 5. A hybrid automaton for the scenario in Fig. 3

The hybrid automaton in Fig. 5 captures the switched aspects of a multi-
modal control procedure in a very natural way. As such, it has been the main
model used when analyzing the performance of autonomous mobile robots gov-
erned by reactive, multi-modal control strategies. Formally, a hybrid automa-
ton can be defined as H = (Q,X, f,E,Ξ, x0, q0), where Q = {q1, q2, . . . , qN}
is the set of discrete states (or modes). X is the state space on which the
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continuous state is evolving, e.g., X = Rn, and f : X×Q→ TX is the mode-
dependent differential equation that dictates the evolution of the continuous
state. Moreover, E ⊂ Q×Q is the edge set, and Ξ is the set of guards, with
Ξ ' ξ : X × E → {0, 1}. (We will suppress ξ’s dependence on e ∈ E when-
ever this dependence is clear from the context.) Finally, q0 and x0 denote,
respectively, the initial discrete mode and continuous state [8].

Due to its expressiveness, the hybrid automaton is a useful modeling and
analysis tool. However, from a specification and implementation point of view,
we note that it may be more beneficial to use a more compact notation,
which leads us to the idea of a formal language. (See, for example, [9] for an
introduction to this subject.)

3.2 Motion description languages

We are given a finite automaton A = (Q,Γ, δ, q0), where Q (finite) is the state
space, Γ (finite) is the event set, q0 is the initial condition, and δ : Q×Γ → Q
is the transition function. We say that A generates the language L(A), where

L(A) = {s ∈ Γ � | δ(q0, s) is defined }.

Here Γ � is the free monoid over Γ , i.e., the set of all finite length words
over Γ (including the empty word ε). In other words, Γ � is the set of all
finite length concatenations of events, and if s = γ1 · γ2 · · · γN then δ(q0, s) =
δ(· · · δ(δ(q0, γ1), γ2), · · · , γN ).

Consider, for example, the case where we ignore the differential equations
in the automaton in Fig. 5, and use ξ and u as shorthand for the event ξ(y) = 1
and the mode corresponding to the behavior ẋ = f(x, u), respectively. Then
Q = {uW , uO, uD, uF }, Γ = {ξO, ξS , ξD, ξT }, q0 = uW , and δ(u, ξ) is given by
the discrete transitions in the automaton. In this case, the generated language
becomes

L(A) = {(ξO · ξS)�} · {ξD · ξT },

where, given a language L ⊂ Γ �, L = {s ∈ Γ � | l = s · t ∈ L for some t ∈ Γ �}
is the prefix closure of the language L, the language concatenation L1 · L2 =
{s ∈ Γ � | s = l1 · l2 for some l1 ∈ L1, l2 ∈ L2}, and, given s ∈ Γ �, s� =
{ε, s, s · s, s · s · s, . . .}, where ε is the empty word.

Now, given A and a string s ∈ L(A), this string completely determines the
evolution of A, as long as A is deterministic. However, it does not capture the
structure of A itself. In other words, from L(A) we can analyze the evolution of
A, but as a tool for specifying and implementing finite automata it falls short.
And, since we in this section are interested in finding compact yet expressive
ways for implementing and specifying multi-modal control procedures, where
each discrete state corresponds to a particular mode, the specification lan-
guage must include a description of what behaviors to use as well as what
guard relations should characterize the mode transitions.
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One such language that has appeared in the literature is the motion de-
scription language. Given a finite set of behaviors B (or more precisely, sym-
bols that correspond to behaviors) and interrupts Ξ, we can let a motion
description language be a subset of the set (B ×Ξ)�, i.e., a multi-modal con-
trol procedure contains strings of behavior-guard pairs, where the behavior
specifies what control law to use, while the guard (or interrupt) dictates under
which conditions this behavior should terminate. Using these ideas (and using
the convention that u is a symbol corresponding to the map u : Y → U), the
multi-modal control procedure implemented in Fig. 5 is

(((uW , ξO) · (uO, ξS))�, ξD) · (uD, ξT ) · (uF , ξε),

where ξε(y) = 0, ∀y ∈ Y . The interpretation here is that the “meta-behavior”
(uW , ξO) ·(uO, ξS) is repeated until ξD(y) = 1, followed by the string (uD, ξT ) ·
(uF , ξε).

3.3 Complexity issues

Given that motion description languages are used for specifying and imple-
menting multi-modal control procedures on embedded robotics systems, one
has access to a formalism in which control procedures can be thought of as
having an information theoretic content. In other words, they need to be coded
using a certain number of bits. This is facilitated by the fact that a behavior-
interrupt pair corresponds to a particular symbol in a finite set. Each such
symbol thus represents a different control actions that, when applied to a
specific machine, define a particular segment of motion [3, 6, 10,12].

Now, assume that we are given a string of modes s ∈ (B×Ξ)�. The number
of bits needed for describing s uniquely is given by the description length:

D(s,B ×Ξ) = |s| log2(card(B ×Ξ)),

where |s| denotes the length of s, i.e., the number of modes in the string, and
card(·) denotes cardinality. The description length thus tells us how compli-
cated s is, i.e., how many bits we need for describing it.

Now, since Y corresponds to the set in which the sensor readings take on
their values, and since every physical sensor has a finite range and resolution,
we can assume that Y has finite cardinality. A similar argument can be applied
on the actuator side as well, and hence we can assume that both Y and U are
finite sets, which is the case in the emerging area of quantized control as well
[5].

Moreover, since

card(B ×Ξ) = card(U)card(Y )2card(Y ),

we see directly that a higher resolution measurement results in a larger Y
(and hence in a potentially higher description length) than a lower resolution
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measurement does. A better sensor might thus make the control procedures
significantly more complicated while only providing marginally better per-
formance. This trade-off between complexity and performance is something
that can be capitalized on when designing control laws. The idea is simply
(in theory) to pick (U, Y, s ∈ (B × Ξ)�) in such a way as to make the robot
behave satisfactorily, while minimizing the description lengths of the control
procedures.

For example, in [6], a quantitative analysis was given, showing that the
availability of feedback can reduce the length of the shortest description of the
multi-modal control procedures. In particular, it was shown that the length
of the description can be reduced by a factor that depends on the ratio of the
size of the entire state space to the size of the set of states for which feedback
is locally effective, i.e., where convergent observers can be constructed. In
other words, in some situations it is better to rely on sensors than to work
solely with map-based open-loop instructions if one wants to minimize the
description length of the multi-modal control procedure.

This result holds the promise of further generalizations since it can be
thought of as a special case of the sensor selection problem (what sensors are
needed to carry out the navigation task successfully?), as it tells us whether or
not sensors should be used at all. Furthermore, the many visible and success-
ful applications of feedback mechanisms at work testify to their effectiveness
and, over the years, various arguments have been advanced showing why, in
particular settings, feedback is useful. The models commonly used bring to the
fore considerations of sensitivity, uncertainty, etc., and specific formalizations
include

1. H.S. Black’s argument for reducing the effect of drift in a high-gain am-
plifier by the use of a relatively constant, but low gain, feedback term;

2. The stochastic disturbance argument for using measurements to reduce
the effect of probabilistic uncertainty; and

3. The game theoretic argument in which a saddle point condition is enforced
by feedback. (H∞ control can be thought of this way.)

To this list a fourth item has thus been added that can be cast in terms
of the effect feedback has on reducing the description length of the control
procedures for robot navigation tasks:

4. The complexity argument, showing that feedback can shorten the descrip-
tion of the control procedure if reliable sensory information is available.

Some extensions to this work were undertaken in [7] based on the observa-
tion that goals are seldom final goals. More often they tend to be intermediary
goals in a grander scheme, which, for instance, is the case when mobile robots
are navigating using sequences of landmarks. A collection of results was de-
rived that describe how the complexity of the input signals decrease if the
robot is navigating in an environment populated by many, easily detectable
landmarks.
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However, the description length does not tell the whole story. If we assume
that we have been able to establish a probability distribution over B ×Ξ, we
can use optimal coding schemes, such as the Huffman code, for finding the
shortest expected number of bits l�(B × Ξ) needed for coding an element
drawn at random from B × Ξ. Shannon’s classic source coding theorem tells
us that H(B×Ξ) ≤ l�(B×Ξ) < H(B×Ξ)+1, where the entropy H(B×Ξ)
is given by

H(B ×Ξ) = −
card(B×Ξ)∑

i=1

pi log2 pi.

Here the interpretation is that the behavior-interrupt pair si ∈ B ×Ξ occurs
with probability pi, and it should be noted that a probability distribution over
B × Ξ corresponds to a specification of which modes are potentially useful.
But, to establish such a probability distribution over a structured set, such as
the set of modes, is not a trivial task, and only initial work has been conducted
along these lines [2].

4 Final Remarks

The main focus of this chapter has been on the modeling and specification
issues that arise when dealing with autonomous mobile robots. In particular, a
multi-modal control framework has been promoted as a way to decompose the
control system into a collection of building blocks. The resulting hybrid control
system is particularly suited to the reactive character of the navigation system
that complex and unknown environments inevitably give rise to. However,
there are a number of challenging research issues that remain largely unsolved
and need to be addressed. To conclude this chapter, we present a partial list
over such areas of particular importance in robotics research.

• From local rules to global behaviors: Given a multi-modal control procedure
(or a class of such procedures), what can be said about the resulting system
in terms of stability, robustness, expressiveness, and task completion?

• From global behaviors to local rules: Given a desired overall behavior, what
local behaviors, or modes, are needed in order to achieve the global task?

• Adaptive multi-modal control: Given a collection of behaviors and guards,
can they be adaptively varied over time in order to achieve a better overall
performance?

• Computational complexity versus real time: In robotics, a distinction is
made between deliberative and reactive behaviors, where the former relies
on internal representations of the environment, which facilitates the use of
planning of optimal paths, etc. Given constraints on the reaction time, can
a trade-off be achieved between the complexity of the control algorithm
and the time in which the algorithm has to terminate with an answer?
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Summary. This chapter introduces and summarizes the specifications of the Blue-
tooth wireless protocol and is intended for control engineers wanting to implement
Bluetooth networking. It explains the basics of forming connections and networks
in the context of a control application. The chapter also includes specific examples
and a list of useful resources and methods of acquiring more information about
Bluetooth.

1 What is Bluetooth?

A cable-replacement technology

Simply put, Bluetooth is a wire-replacement technology. It is an open-stack
protocol, designed by Ericsson and adopted by thousands of companies [1],
including Intel, Microsoft, IBM, Motorola, and Nokia. It is meant for short-
range wireless applications with a capacity of 1Mbps. Cables for peripherals
such as printers, computer mice, personal digital assistants (PDAs), or even
headphones and refrigerators can all be replaced by a Bluetooth channel.

Usually, there is a host device, like a computer or PDA, which connects
via an external Bluetooth board to the peripheral, which also has a Bluetooth
board, most likely internal, as shown in Fig. 1. The Bluetooth boards1 them-
selves have a Bluetooth chipset, which has the firmware and radio frequency
(RF) hardware along with an antenna.

1A Bluetooth “board” is usually referred to as a “controller” and sometimes as a
“dongle” or a “module.” As defined in the Bluetooth specification, it is a subsystem
containing the Bluetooth RF, baseband, resource controller, link manager, device
manager, and a Bluetooth HCI (Hardware Controller Interface).
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Fig. 1. An example Bluetooth link

Networks formed by Bluetooth devices are called Personal Access Networks
(PANs). The “role” of a device in a PAN is either “a master” or “a slave.”
A PAN must have a master device. The master device controls access to all
channels in the network and it forms what is called a “piconet”. Slave-to-slave
communication is not supported. Such communication can only be established
if the common master relays packets from slave to slave. As shown in Fig. 2,
when a slave device is also a master on its own piconet, a “scatternet” is
formed – the combination of the two piconets. Communication is done between
a master and a slave but not between the slaves. More explicitly, an example
of a scatternet would be a Bluetooth-enabled PC (master) connected with a
Bluetooth mouse (slave) and keyboard (slave) but also with a PDA (slave,
master) which in turn connects to a headset (slave) on its own piconet. There
can be up to 7 active slaves in a piconet. Bluetooth actually allows for slave
devices to be in a “parked” state, from which they can recover in less time
than the time required to establish a connection to the piconet from scratch.

Fig. 2. Two piconets forming a scatternet. Controller 2 is the master in the bottom
piconet and a slave in the top piconet.

Specifications

Bluetooth can generally connect devices that are in the same room. There
are three classes for transmitting power in Bluetooth: 1 mW,2 2.5 mW, and
100 mW. The 1 mW-enabled devices are strong enough to transmit to around

2milliWatt
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10 m or more, in an unobstructed environment. The third class reaches 100
m. The power class can be selectable on some Bluetooth chipsets.

The full specification is available on the web (see [2]), and so we only list
some basic facts and aspects important for control applications. One can find
several articles (for instance, [3]) and a plethora of web-pages on Bluetooth,
its specifications, and its applications. A very good place to start would be
the Palo Wireless website [4].

The Bluetooth access band is at 2.4 GHz, which sometimes causes in-
terference with 802.11b networks. Although the authors have never seen, in
practice, noticeable degradation in the performance of either 802.11b or Blue-
tooth when they are working simultaneously, there have been reports with
contrary results. In any case, the protocol most likely to be affected would be
802.11b and not Bluetooth. This is due to the fact that 802.11b uses spread
spectrum encoding whereas Bluetooth utilizes frequency hopping. The latter,
when interfered with, is likely to merely degrade in bandwidth but unlike
CDMA in 802.11b it will still be “on” (802.11b networks might stop function-
ing completely). Bluetooth uses forward error correction (FEC) and Gaussian
frequency shift keying (GFSK) for frequency hopping (1600 hops/second).

The master device always specifies the hopping sequence as well as the
access times for each of its slaves. That is why a slave device might not function
as expected when it has the “slave” role in multiple piconets.

Layers

Fig. 3 shows the lower layers of the Bluetooth specification. The Hardware
Controller Interface (HCI) layer provides access to all the hardware. It trans-
fers commands and data from the host microprocessor to the controller chipset
via universal serial bus (USB), universal asynchronous receiver and transmit-
ter (UART), PC-Card, and other interfaces.

Based on commands and settings from the host, the HCI firmware interacts
with the link manager (LM) firmware and baseband controller to scan for
other devices, establish connections, and transmit and receive data. Fig. 4
shows how the HCI transfers data to and from the hardware.

In addition, most Bluetooth chipsets on the market (CSR Bluecore, Er-
icsson ROK) have their own customized HCI commands that are applicable
only on a specific brand. These commands are always used in addition to the
standard HCI commands conforming with the standard.

Pulse code modulated (PCM) data can also be sent directly to the lower
layers for transmission. All layers above the HCI device driver are software.
The HCI layer is implemented in both firmware and software, on the Blue-
tooth chipset and the host computer, respectively. The Logical Link Control
and Adaptation Protocol (L2CAP) layer handles connections of Synchronous
Connection-Oriented (SCO) and Asynchronous Connection-Oriented Link
(ACL) types.
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Fig. 3. The lower layers of the Bluetooth specification

Functions

Above the L2CAP layer several application-specific layers exist. The specifi-
cation calls them “profiles.” Such is the RFCOMM, a serial cable emulation
protocol and HID which handles connections to human interface devices (mice,
keyboards). Even the Internet protocol (IP) stack can be implemented on top
of L2CAP. The 1.2 version of the specification defines many more profiles such
as General Access Video Distribution and others.

The reader is encouraged to read through the different volumes of the
specification [2] on Bluetooth profiles. At the time the authors first consid-
ered Bluetooth for wireless communication in controls, the HCI layer was the
simplest (in software) and fastest way to implement the communication link
between two control agents. Given enough computer memory for implementa-
tion of more complicated profiles, the reader might find a profile suitable for
control on layers above L2CAP. As the next section discusses the connection
establishment and communication technicalities, it will be more obvious what
one requires for a particular application.

2 Link Overview

To the controls engineer, the RF and baseband technicalities are of minor
interest. The engineer only needs to go through the connection procedure at
the software level and model the connection statistics.
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Fig. 4. Accessing hardware via HCI UART

HCI layer

The HCI layer is where software meets hardware in Bluetooth. Let us assume
an example scenario where there is a PC with a serial universal asynchronous
receiver and transmitter (UART) interface; note that the HCI can also work
over USB, PCMCIA, and other interfaces as well, but accessing the HCI layer
is always done in a serial-data manner.

Usually a driver deals with HCI, as well as L2CAP and access to the
Bluetooth device is only through higher layers. However, a controls engineer
might be interested in the HCI layer, not only because it is the basis of software
access to the Bluetooth controller but because in some cases it is not possible
to have enough software running in the upper layers.

HCI works with command, event, and data packets. Commands are sent
to the controller from the host, events are sent in reply to the controller,
and data packets are sent both ways. The HCI packet format is given in the
specification.

Bluetooth commands are divided into logical groups by function. Some of
the group functions include controller configuration and information, device
discovery, quality of service, link information, authentication and encryption,
and testing.



www.manaraa.com

784 V. Vladimerou and G. Dullerud

An essential Bluetooth feature is the ability to scan for remote controllers.
An “inquiry” command is issued to the HCI firmware, which sends a beacon
signal out to scan for other devices. If there are devices that have “inquiry
scanning” enabled3 they will respond with their Bluetooth device address
(BDA). The BDAs will be returned to the host in the form of event packets.

ACL connections

The inquiring host can issue a connection request to the controller if it knows
the BDA of the remote device. This is done with a connection request com-
mand. For commands that take time to complete (like a connection request),
there is a command status event packet returned from the controller before
the command is even complete. The connection requested will be of an ACL
type. An ACL connection can be “upgraded” to an SCO connection. Also,
when initiating a connection, a device assumes the role of the master. If the
“allow role switch” bit is set (in the connection request command), then the
connection-accepting device can switch from slave to master. In this case, the
device that initiated the connection will end up being the slave.

Bluetooth ACL data is reliable due to the FEC applied on each packet.
A number of packet types can be used on each connection. They are speci-
fied to the controller when the create connection command is issued. Fig. 5
shows the steps (commands and events) involved in successfully establishing a
connection. An ACL connection handle is returned in the connection accepted
packet.

Fig. 5. Commands and events on two sides establishing an ACL connection

By default, the controller that issues the create connection command be-
comes the master. However, referring to the specification, one notices that
there is a field in the create connection command that allows an automatic
role switch. A role switch can also occur later by another explicit command.

3Inquiry scanning and page (connection) scanning can be disabled to save band-
width and power.
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3 Control Applications

Bluetooth is very handy when it comes to control applications. The reasons in-
clude its low power consumption and the ease of implementation. A Bluetooth
ACL connection is not only capable of transmitting switching commands to
a controller, it is also very capable of reliably transmitting periodic feedback
from a sensor or control commands to an actuator at intervals of the order
of milliseconds. From a master controller, one can transmit FEC data pack-
ets to more than two client slave controllers with a delay of around 20 ms,
a ±5 ms jitter, or at bandwidths approaching 70%-80% of the specification4.
SCO connections can also be used to transmit data for control. They are used
mostly for sound applications (e.g., headsets).

Fig. 6 shows the Ericsson Development Module. It has a USB and a serial
UART interface. One can clearly spot the antenna, printed on the right side
of the circuit board, and the Ericsson ROK 101 chipset next to it.

Embedded systems

Fig. 6. Ericsson Development Kit

Depending on how customized the control hardware needs to be, an en-
gineer can either purchase a USB-capable microprocessor board or PC and a
USB Bluetooth dongle, or build a board using a Bluetooth chipset and micro-
processor of choice from scratch. The ROK 101 007 from Ericsson could be a
candidate for the Bluetooth chipset on such a board. Other chipsets include
the CSR Bluecore [5], the TI BRF6150, and many others. Bluetooth chipsets
are either single-chip or multi-chip ICs that have all hardware and firmware
below the HCI layer integrated. An antenna and some minor external circuitry
are also required.

4These are rough measurements that depend on the HCI interface (USB is prefer-
able), the make of modules used, and the environment setting. The numbers are
representative, in any case, of the capabilities of the system.
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With PC104-size (3.6 x 3.8 in), USB-capable Single Board Computers
(SBCs) widely available, the need to build a custom board occurs only in very
few, specific cases. A USB Bluetooth 1.1 module prices at around $30–$405

and a 400–600 MHz SBC costs around $400–$500.
The size, as shown on Figure 7, of the USB controllers is quite convenient

(compare with the USB connector), not larger than 2 inches in length.

Fig. 7. D-LinkTM and BelkinTM USB dongles

In the case where a USB-host-controller6 is not available, any board with
a microprocessor capable of serial communications can be converted or ex-
panded to use Bluetooth. In designing a UART interface, the MAXIM [7]
family of chips might be useful.

A variety of companies sell development boards for Bluetooth. These usu-
ally include a Bluetooth-integrated, PC-interfaced circuit board and sample
source code, along with software drivers. A simple web search on “bluetooth
development kit” should return a plethora of sites; for instance, [8] is an ex-
cellent example.

3.1 Operating systems and language platforms

Bluetooth source code is widely available throughout the World Wide Web.
Most language platforms have had at least one developer compose a Bluetooth
software stack for them. There are many Bluetooth implementations in Java,
Python, C, and other languages, and the same is true for hardware-specific
Bluetooth stacks (microprocessor-specific). Since the interface with HCI is

5Second quarter, 2004.
6An IC that interfaces with the main processor and masters a USB.
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basically serial message passing, and it is the only layer that communicates
with hardware, everything above that layer can easily be cross-platform. For
controls, a fast non-interpreted language like C is suggested.

All well-known operating systems support Bluetooth, most with a variety
of drivers.

An open-source implementation

Bluetooth is an open-stack protocol. Everything is documented by the speci-
fication, and any individual or company may implement the protocol in hard-
ware and software.

Linux, being an open-source operating system, has an open-source soft-
ware implementation of Bluetooth, compatible with almost all devices in the
market. The stack officially included with the operating system’s source code
is the Bluez stack.7

Bluetooth stacks

By looking into Bluez C source code, an engineer can write drivers for any op-
erating system or platform. Therefore, it is the software stack of choice for this
article. Documentation on the MS Windows implementation is available on
the Microsoft Developers’ Network (MSDN) web [10]. The Apple implementa-
tion is given in [11]. Bluez [9] uses the sockets layer to communicate Bluetooth
information back and forth to the user program and drivers. UNIX sockets
commands such as open(), socket(), write(), and recv() are used with
sockets of type SOCK SEQPACKET, protocols BTPROTO L2CAP or BTPROTO HCI,
and domain PAF BLUETOOTH.

Connections

One can either establish connections at the L2CAP level or at the HCI layer.
Since the interface is available, there is no reason not to use L2CAP, which
is a higher, neater layer. HCI-level functionality is still needed for issues such
as turning scan enable on, resetting the module, etc. There is practically
no overhead in processing time for running L2CAP sockets over raw HCI.
The L2CAP layer takes care of all the buffering that otherwise would be
done by the user program. No software buffering is done in the HCI layer—
it is merely the message passing layer which communicates with hardware.
There are events that specify how many commands can be accepted by the
controller and a command that lets the host specify how large its buffers for
receiving data are. This is the only regulation done in HCI. In general, raw
HCI should only be used when the socket interface is not available—in systems
with small memory, or in systems that do not have or need the Bluetooth stack
implemented to the L2CAP level.

7There are other software implementations that were developed under Linux, like
the Axis stack, which was abandoned after Bluez was chosen as the official Linux
stack.
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Lower level drivers

The HCI drivers hci usb.c and hci ldisc.c in the Linux kernel drivers/bluetooth
path are a good reference for building USB and UART drivers from scratch.

There might be a case in which the implementation is straightforward
and can be hard-coded into a system. No layering is required in that case.
An example would be a microcontroller which after booting connects via a
Bluetooth controller to a remote host and starts streaming data to it. In this
case, the user just needs to run a sequence of commands in series and await
the respective packets. The only robustness that can be built in would be
based on time-outs or erroneous and unexpected events at each stage of the
process. A fall-back then occurs, as shown in Fig. 8.

Fig. 8. Fall-back flow for two Bluetooth nodes (master above slave)

A layered approach allows a lower layer to keep track of connections simi-
larly to L2CAP, which lets all higher layers perform in a fire-and-forget mode.
If the lower layer, after a number of specified attempts, fails, then the failure
carries over to the layer above it, which in the meantime could have been
performing other tasks. The layered approach provides more robustness and
allows for multi-tasking. This is similar to how the L2CAP layer works.

Known issues

While designing for Bluetooth, one could run into several known issues that
may have been tackled in the past by designers. Some are operating-system
specific, some are hardware-brand specific, and some are generally applicable
to all setups.

• When sending ACL data packets at the HCI level, even though L2CAP
may not be implemented, the data packets need to be L2CAP valid.
That is, the Bluetooth controller will not send ACL packets if they do not
have a valid L2CAP header. The following listing shows how a byte stream
could be converted to a valid L2CAP ACL packet. See the specification
on more details and definitions of the packet headers.
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#define MAX_ACL_PKT_SIZE 256
#define ACL_PKT 0x02
int hci_send_acl_data(int handle, char *data,int count)
{
char c[MAX_ACL_PKT_SIZE];
c[0] = ACL_PKT;
c[1] = (char)handle;
c[2] = 0x20;
c[3] = (count+4) & 0x00ff;
c[4] = ((count+4) & 0xff00)>>8;
c[5] = (count) & 0x00ff;
c[6] = ((count) & 0xff00)>>8;
c[7] = (char)handle;
c[8] = 0x00;
memcpy(&c[9], data, count);
uart_write(c, count+9);
return 0;

}

• In Bluetooth, the controller that initiates the connection is the piconet’s
master, unless there is a role switch later on. When a device is active,
as mentioned before, it should not be configured to be slave in multiple
piconets. When multiple “clients” are initiating connections to a single
server, a role switch must occur after each connection so that the server
ends up being the only master in the network.
There are commands such as read local supported features that can be
issued at the HCI layer and will return the capabilities of the module. In
the Linux stack, the Bluez utility hciconfig will display the supported
features. These capabilities include the size of the controller’s buffers as
well as the number of SCO connections possible.

• To perform role switch under Linux, one can use the getsockopt() and
setsockopt() commands. The bit L2CAP LM MASTER determines if the lo-
cal controller will be the master.

• The best way to start a point-to-multipoint server-to-clients network is to
connect to all clients first (or have all clients connect to the server and then
perform a role switch for each client), and then start broadcasting data.
Some controllers have trouble connecting more slaves to their piconet if
they have already transmitted data to those already connected.

• To get started on writing software for HCI from scratch, try to issue a
reset command and read back the resulting event from a controller. After
that, try to enable inquiry scans and issue an inquiry command, and then
read the results. The source code for Bluez drivers, libraries, and utilities
is one of the best references.

• Some RF specification details:
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The range of 10 m for class 2 devices is actually more than specified. On
an open corridor, they range to 20 m or more. However, a wall boundary
(no door) is enough to stop a connection. Connections may take more than
5 s to establish at any range.
Therefore, if one is seeking to create an interesting ad-hoc network with
mobile agents that go out of range, the way to establish out-of-range dis-
connections is to have the agents switch rooms, not necessarily get far
away in line-distance from each other.

• The Bluez website has a listing of all hardware [12] that works with the
Bluez software. Some controllers require their firmware to be updated
every time the driver starts. They list “+bluefw” (“fw” for firmware) in
this case. The bluefw is also open source and available for download at the
Bluez website.

4 Reference Projects

4.1 The HoTDeC project

The Hovercraft Testbed for Decentralized Control [13] at the University of
Illinois utilizes Bluetooth to send commands and vision data from an over-
head camera to a group of hovercraft. The vision server, running on a Linux
Pentium PC, uses the Bluez software and drivers to communicate via a USB
Bluetooth controller. There are two versions of hovercraft. The first ran Blue-
tooth on a TI DSP and the latest version has a Linux SBC running the Bluez
stack like the server.

The network and information structure

The first version of the HoTDeC vision system generated coordinates x, y,
and θ of each of three moving objects, two hovercraft and one free-moving
airhockey puck, at 60 Hz. The coordinates of all objects were sent to both
hovercraft with a delay of approximately 25 ms. In Bluetooth terms, every
17 ms two slave controllers (hovercraft) in a single piconet received a 50-
byte packet (vision data) with a 25 ms delay from the originating host. As
mentioned above, the network connections were formed before any vision data
was transmitted for the first time to any of the receiving controllers.

Broadcasting

The vision data was transmitted using two methods: unicasting and broadcast-
ing. For every slave in the piconet, the master has a respective ACL connection
handle to use when sending or receiving data. Broadcasting to all slaves in the
piconet can be done by sending an ACL packet to a handle number that does
not correspond to any of the handles for the slaves. No gain in bandwidth or
delay was obtained by broadcasting, in the HoTDeC case.
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Transport layer issues

The receiving controllers on the hovercraft used UART HCI interfaces, which
are 20 times slower8 than USB. The latency experienced beyond the transport
layer remains the same whether HCI is USB or UART. Hence, even though
the second version of the HoTDeC network featured USB HCI controllers on
the hovercraft, the delay could not be limited below 20 ms.

Slave-to-slave messaging

For hovercraft-to-hovercraft communications, the messaging used was indi-
rect. Due to the fact that the bandwidth required for this was minimal, there
was no need to form more than one piconet: the messages from hovercraft to
hovercraft were relayed through the vision server’s controller.

Contacting the designers

HoTDeC was conceived and designed at Urbana, Illinois, by a group including
the authors. The source code is not open, but can be provided free of charge
and reused at no charge or warranty, if requested, for research purposes.

4.2 Tinyphoon

A commercial application, tinyphoon [14], incorporates Bluetooth in au-
tonomous wheeled robots that play robotic soccer.

4.3 Lund Institute of Technology

Research at Lund, Sweden, documented in Andreas Hörjel’s Masters thesis
[15] and [16] demonstrates and deals with delays and other issues in using
Bluetooth for control. Also, [17] is an excellent reference. The Harald Stack
[18] and JSR-000082 APIs [19] use Java for Bluetooth.

5 Finding More Information

Subscribing to the Bluez developer and user mail lists is suggested. The au-
thors of the Bluez software are very helpful and answer users’ questions,
through e-mail lists, almost in real time. Archives of the mailing list also
provide previous posts and answers to frequently asked questions. Since web-
pages are often removed, web-links might become invalid after a few years.
The best way to look for information is to use keywords and read newsgroups.
Some useful keywords/phrases that may not be obvious are: “bluez-devel”,
“bluetooth dongle”, “bluetooth stack”, “development kit”, “bluetooth chipset”,
“bluetooth single-chip”, etc.

856kbps for UART versus 1.1Mbps for USB 1.0.



www.manaraa.com

792 V. Vladimerou and G. Dullerud

Contacting the authors

Please feel free to e-mail vladimer@uiuc.edu for feedback or directions on
starting a Bluetooth project.
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1999–2003
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1 Introduction

What is RoboCup? Taken directly from the RoboCup Organization web site
(www.robocup.org):

RoboCup is an international research and education initiative. It is
an attempt to foster AI and intelligent robotics research by providing a
standard problem where a wide range of technologies can be integrated
and examined, as well as being used for integrated project-oriented
education.

While the scope of RoboCup has grown since its inception in 1997, the
main activity remains the robot soccer leagues: Simulation, Small Size, Middle
Size, Four-legged, and Humanoid. The Simulation league, as the name implies,
does not involve physical hardware, except for computer workstations. The
Four-legged league consists of Sony Aibos—robot dogs—programmed to play
soccer. The Humanoid league is still in its infancy; the main objective of this
league is to demonstrate basic skills, such as standing, walking, and kicking a
ball, with a two-legged robot. The remaining two leagues, the Small Size and
Middle Size leagues, involve the actual construction of robots that compete
in head-to-head soccer matches.

The main difference between the two leagues, contrary to what the names
suggest, is the allowed sensing technologies. Teams in the Middle Size league
are constrained to use local, on-board vision, while competitors in the Small
Size league are permitted to use global vision systems (in addition to local
vision systems, if they so desire). As a result, the Middle Size league is domi-
nated by robot localization and perception, while the main challenges in the
Small Size league are at the system and integration level. In addition, due
to the enhanced situational awareness obtained with global vision, the Small
Size league games are much faster and typically involve more team play and
collaboration, such as passing.
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This chapter describes the Small Size league Cornell RoboCup team in the
time period starting in 1999, the year it first competed, and ending in 2003,
after five years of competition. In this time period, the Cornell team won the
competition four times and placed third once. See Table 1 for a summary
of the competition outcomes since inception or the RoboCup web site for a
more detailed summary. The emphases of this chapter are on the parts of the
system that distinguished the Cornell team from its competitors and led to
its success in competition.

In the Small Size league the soccer matches are played by teams com-
posed of up to five robots. Similar to the real game of soccer, the objective is
to score more goals than the opponent, subject to well-defined rules and regu-
lations. For example, repeated pushing and charging fouls lead to yellow cards
(warnings) and eventual red cards (expulsions). The reader is referred to the
RoboCup web site for a detailed list of the rules. The robots and an off-field
computer are permitted to communicate via wireless transceivers. A global vi-
sion system is typically used for robot and ball position determination. Fig. 1
is a picture from a typical game.

Fig. 1. A typical RoboCup game, with the human referee getting ready to blow the
whistle and initiate game play

RoboCup is an excellent test bed for developing new tools and techniques
for controlling autonomous systems in uncertain and dynamic environments.
From an educational perspective, it is also a great means for exposing students
to the systems engineering approach for designing, building, managing, and
maintaining complex systems [1], [2]. In addition to the RoboCup web site,
the reader is referred to [3], [4], [5], [6], and the references therein, for an in-
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depth description of the competition, its history, and the long-term objectives
of RoboCup.

Year Location Teams competing Champion
1997 Nagoya, Japan 4 Carnegie Mellon University
1998 Paris, France 12 Carnegie Mellon University
1999 Stockholm, Sweden 18 Cornell University
2000 Melbourne, Australia 20∗ Cornell University
2001 Seattle, USA 20∗ Nee Ann Polytechnic
2002 Fukuoka, Japan 20∗ Cornell University
2003 Padova, Italy 20∗ Cornell University

Table 1. Small Size league results.
∗Since 2000, the competition has been restricted to the top 20 teams, as judged by
qualification papers and videos.

2 Physical System Architecture

The physical architecture used by the Cornell team is depicted in Fig. 2. A
global vision system, with up to three cameras, was used to identify game
objects. This information was then fed to the control workstation, whose task
was to coordinate the motion of the robots. Various versions of the Windows
operating system were used. A low-latency version of transmission control
protocol (TCP)/Internet protocol (IP) was used for inter-workstation com-
munication. The total round-trip latency of the system was different every
year. It constantly decreased as new technology was introduced and better al-
gorithms were developed. In 2003, the total system latency was approximately
80 ms.

3 The Robots

A picture and CAD drawing of a 2003 robot are shown in Fig. 3. Functionally,
each robot had the following components: a drive mechanism for locomotion;
a dribbling mechanism for imparting back-spin on the ball; a solenoid for
kicking and passing the ball; and microprocessor-based electronics for motor
control, kick and dribble control, and wireless communication. Some of these
are described below.

3.1 Drive mechanism

Cornell introduced the omni-directional drive for locomotion in 2000, an in-
novation which was adopted by most other teams. For example, in the 2003
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Fig. 2. Physical architecture

Fig. 3. 2003 robot

competition, seven out of eight teams in the quarter finals were using omni-
directional drives. There are two main advantages for using these drives over
their standard two-wheeled counterparts: 1) the robots are more maneuver-
able, and 2) the problem of trajectory generation is substantially simpler
[7]. Contrary to common belief, it is the second advantage that makes omni-
directional drive much more superior than two-wheel drive, when viewed from
an overall system perspective. This is discussed in more detail in Section 4.3.

The maximum controlled1 speeds and accelerations of the robots are listed
in Table 2. A rate gyro was introduced in 2002 to substantially increase the
performance envelope of the robots.

1The word “controlled” is taken to loosely mean ability to follow a pre-specified
trajectory.
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Year Max. Speed (m/s) Max. Accel. (m/s2)
1999 1.0 2.0
2000 0.6 1.5
2001 1.0 2.0
2002 1.4 2.5
2003 1.8 3.5

Table 2. Evolution of robot performance. Two-wheeled robots were used in
1999, three-wheeled omni-directional robots in 2000 and 2001, four-wheeled omni-
directional robots in 2002 and 2003.

3.2 On-Board electronics

A different microprocessor was used each year of the competition. The choice
was essentially dictated by the expertise of the current team members, and
the desire to shift more intelligence onto the robot and away from the control
workstation. For example, in 2003, various coordinate transformations and
some rudimentary prediction and estimation, made possible by the rate gyro,
were implemented directly on the robot.

Wireless communication also varied from year to year. For example, dedi-
cated, low-latency wireless modules in the 433, 418, 869, and 914 MHz bands
were used in 2002 and 2003. These wireless modules were used in half-duplex
mode, with one transmitter (connected to the control workstation, see Fig. 2)
and five receivers (on the robots). In 2003, information was sent to the robots
at a rate of 60 times per second, although very little performance degradation
was observed at the lower rate of 30 times per second.

4 Functional Architecture

The functional architecture is depicted in Fig. 4. There are five main blocks,
described in detail below.

4.1 Global vision

The global vision system was responsible for extracting the position and ori-
entation of the friendly robots and position of opponents and the ball. While
it was possible to extract the orientation of the opponents, this information
was of little use due to the widespread use of omni-directional vehicles and
the high rotation speed of two-wheeled vehicles.

Unlike the Middle Size League, computer vision in the Small Size league is
relatively straightforward. In particular, all motion is essentially two dimen-
sional (an overhead camera is typically used), and distinct color markers are
placed on the tops of the robots. A top view of the 2002 Cornell robots and
their vision markers is shown in Fig. 5, as well as the 2002 Vision Calibration
Graphical User Interface (GUI).
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Fig. 4. Functional architecture

Fig. 5. LEFT: Top view of the 2002 robots. Various color coding schemes were used
to make position and orientation determination robust to missed markers. RIGHT:
The Vision Calibration GUI. The vision system had to be recalibrated whenever the
lighting conditions changed substantially

4.2 Filtering and estimation

This block was responsible for taking the vision data, extracting velocity in-
formation from it, and predicting the location of the robots and the ball in the
robot temporal frame of reference. In particular, as far as all decision-making
blocks were concerned, “now” corresponded to the time when a robot was ob-
served to act upon a command. For the opponents and the ball, filtering and
estimation/prediction were performed using straightforward Kalman filters.
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For friendly robots, the commanded robot velocities were also used to obtain
a much more accurate prediction of their position. In the absence of distur-
bances, this essentially nullified the effects of latency. Note that this approach
is very similar in spirit to the standard Smith predictor [8], which is often
used for time delay compensation.

Various strategies were used to reset the filters when the ball and robots
abruptly changed direction (mainly due to collisions), or when substantial
discrepancies were observed between the predicted values of the friendly robots
and the actual values obtained via computer vision.

4.3 Trajectory generation

The responsibility of this block was to take as inputs candidate motion primi-
tives, such as “Move to location (X,Y), as quickly as possible, without hitting
anything”, and generating the appropriate robot velocities and other trajec-
tory parameters (time to execute a maneuver, for example).

In the absence of obstacles, nearly time-optimal trajectories were generated
for the omni-directional vehicles with very little computational burden: Less
than 300 floating-point operations; see [7] for details. A typical trajectory is
depicted in the left part of Fig. 6. The basic idea is captured in the right
part of Fig. 6. A compensator inserted in the vehicle control loop altered
the effective dynamics in a way that greatly simplified the associated optimal
control problem for trajectory generation. This simplification was achieved
with a very small sacrifice in performance [7].

Fig. 6. LEFT: Typical result of trajectory generation. RIGHT: Dynamics simplifi-
cation

The resulting trajectories were then used as primitives for various obstacle
avoidance algorithms, such as the randomized path planning algorithms in [9].

Using standard computing platforms, one could thus perform more than
one million trajectory calculations per second. Referring to the diagram of
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Fig. 4, the implications should be clear: the High Level Strategy block was
thus free to explore a very large number of nearly optimal motion scenarios.

4.4 Low level robot control

This block, which resided on the robots, essentially performed velocity track-
ing and supervised the control of all other mechanisms on the robot, such as
dribbling and kicking. As an example, the block diagram of the inner loop
used for angular velocity regulation is given in Fig. 7.

Fig. 7. Angular velocity regulation

4.5 High level strategy

Not surprisingly, this block relied the most on human input for design (such as
hard-coded successful sport strategies2 or scouting the opponents and altering
the behavior of the system before game time) and it was the least amenable to
systematic design and analysis. This, of course, is not to say that it is a trivial
task to design, test, and implement it. Rather, the system was architected so
that all the hierarchical levels below it had solid analytical backbones (such
as optimal control for trajectory generation and Kalman filtering for estima-
tion), while most of the heuristics were confined to the High Level Strategy
block. This block also changed the most from year to year, as we tried new
methodologies and approaches.

In 1999, our first year of competition, we adopted a role-based system
similar to what was used by the defending 1998 champion, Carnegie Mellon
University [10]. This approach was successful and yielded acceptable perfor-
mance, but it was very difficult to debug and build upon. In particular, role

2Interestingly, soccer did not prove to be the best inspiration for successful robot
soccer strategies. In many ways, the robotic game is much more like hockey and
basketball than soccer.
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interdependencies made systematic design extremely difficult; it was often im-
possible to predict the effects of adding a new role to the system. Having said
that, this variability and unpredictability could have its benefits if harnessed
by evolutionary optimization techniques.

Fig. 8 captures a simplified version of the High Level Strategy used in
2003. The directed graph in the left part of the figure captures the possible
Game States and the transitions between them. One possible Game State,
“Opportunistic Offense”, is depicted in the right part of the figure. In a given
Game State, each robot was assigned a role. Unlike a pure role-based system,
the five roles for each Game State were fixed. Each role, in turn, could make
use of various skills. Roles could be reused, as could skills. Both roles and
skills were typically parameterized, which resulted in small and manageable
sets of roles and skills.

Fig. 8. LEFT: Directed graph with Game States. RIGHT:Assigning roles and skills

One can then think of High Level Strategy in the following terms:

1. When should one switch to a different Game State?
2. How should the roles be assigned among the robots?
3. What skill should a robot be invoking?

The transitions between Game States were in general not deterministic. In
particular, randomness was introduced, especially on offense, to allow the ex-
ploration, and exploitation, of an opponent’s weaknesses; reinforcement learn-
ing could then be used to alter the transitional probabilities based on various
performance metrics, such as the position of the ball, scoring opportunities,
etc. State overlap and hysteresis were used to prevent rapid transitions be-
tween Game States. An alternate approach, which was not pursued but is
clearly of interest, is to design the system such that Game State transitions
are “smooth” and thus do not require overlap and hysteresis. From a con-
ceptual standpoint, this seems much more natural; in most situations, it does
not make sense for the behavior of the system to change dramatically when a
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transition from one Game State to the next is made. For others, however, it
certainly does make sense to have discontinuities; a free kick, for example.

Roles were generally assigned based on a cost function specific to the
current Game State, which was in general not only a function of the current
state of the system, but also the predicted (future) state of the system. A
greedy algorithm, based on the relative importance of the roles, was found
to yield performance similar to an exhaustive search. An interesting direction
that was not pursued was to extract the relative ordering required for a greedy
search from repeated runs of exhaustive searches.

The decision of which skill a robot should use was similarly based on a
local cost function, which was in general a function of the future, predicted
state of the system. This is, in fact, a simplified version of what was actually
implemented. Skill selection could actually be coordinated among the robots.
It was observed, however, that skill coordination was difficult to implement
and only helped in limited circumstances.

High Level Strategy development was greatly aided through the use of
a dedicated simulator, such as the one depicted in Fig. 9. The main use of
the simulator was for designing the directed graph of Game States and for
designing roles. Skill development, however, was typically performed directly
with the robots. It was thus a design requirement that the robot skills satisfied
the specifications used in the simulator, or conversely, that robot skills were
faithfully captured by the simulator.

Fig. 9. Screen shot of first simulated RoboCup game, played in February 1999. The
simulation engine was Working Model 2D, which was interfaced to MATLAB for
real-time control.
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5 Lessons Learned

The underlying system architecture is crucial to the success of a team. In
particular, it should be modular and easy to adapt, and should allow a large
number of individuals to concurrently develop the system. This modularity
should appear at all system levels: from the high level decision makers down
to the physical robots. While this may sound obvious, flexibility, adaptability,
and modularity are often sacrificed for potential performance gains that are
never realized.

Related to this point is the appropriate use of abstractions, again at all
system levels. For example, the use of motion primitives insulates the High
Level Strategy block from the details and complexities of robot motion con-
trol, which allows individuals with very little knowledge of robotics to design
successful high level strategies.

A solid understanding of feedback, dynamics, and control is critical. For
example, feedback is an excellent tool for making subsystems modular and
thus easier to use as building blocks by non-experts. The appropriate use of
filtering, estimation, and prediction can greatly simplify the interface between
the robots and the high level algorithms that ultimately control them.

The final point is related to the objectives of the competition itself. Many
teams use the RoboCup competition as a testbed for “artificial intelligence”
and machine learning. In order to do well at the competition, however, it was
much more useful to design a system that readily accepted inputs from humans
and was readily amenable to redesign than to develop a system that “learned”
on its own. One of the keys to our success in the RoboCup competition was
our ability to very quickly encode human information into the system, such
as implementing new strategies based on the scouting of opponents.

Not only was this important for winning the competition, it is also much
more technologically relevant. There is nothing that currently comes close
to the problem-solving abilities of humans, especially in environments where
decisions must be made quickly. It thus makes sense to push research in a
direction that utilizes these human assets, rather in one that marginalizes
them. By doing so, we will gradually, but incessantly, reduce the amount of
human input required to supervise and operate these multi-asset systems, and
move that much closer to building truly “intelligent” systems.
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bilateral transformation, 19
binary numbers, 145
bipolar input, 235
bisimulation, 544
bit file, 337, 343, 346
bit rate

in NCS, 592
bit reversed addressing, 284
BitGen, 337
bits, 145
bitwise logical operations, 149
block RAM, 324, see BRAM
blocking factor, 363
Bluetooth, 677, 678, 680, 686, 690, 692,

699
access code, 705
ACL, 706, 781
authentication, 709
baseband, 702
BD ADDR, 703, 705, 710
channel access, 705
channel access code, 703
chipset, 785
connection setup, 702, 703
control using, 692, 700, 785
controllers, 700
encryption, 702, 708, 709
eSCO, 707
frequency hopping, 702
HCI, 709
header, 705
inquiry, 703
L2CAP, 708
LAP, 703
link key, 709
link manager, 700, 709
LM, 700, 708
LMP, 708
LT ADDR, 704, 708
master, 701, 703, 704
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page, 703
pairing, 710
payload, 705
physical layer, 700, 702
piconet, 680, 704, 780
profiles, 701
protocol stack, 687
scatternet, 681, 704, 780
SCO, 707
slave, 703, 704
slot, 705, 706
synchronous connection-oriented, 707

Bluetooth 2, 679
bmm file, 343
board support package, see BSP
Bode plot, 28

magnitude, 28
phase, 29

Bosch, 750
bounded model checking, 549
bounded-input bounded-output, see

BIBO
brake-by-wire, 763
BRAM, 341

initialization, 342
bridge, 215

circuit, 233
BSP, 373
BTnode (ETH Zurich), 722
bubble diagram, 338
bus, 150

architecture, DSP, 280

C++, 400
CACE tools

JitterBug, 719
TrueTime, 719

cache memory, 170
Cadence Design Systems, 333
Calamari, 727
CAM, 326
CAN, 204, 220, 428, 461, 660, 741

gateways, 749
in Automation (CiA), 750
time-triggered communication, 750

CANKingdom, 748
CANopen, 747
carrier-sense multiple access, see CSMA
causality, 9

CBS, 362
hard deadline, 370

CEGAR, 550, 552
ceiling priority protocol, see CPP
central processing unit, see CPU, see

CPU
Cerfcube (Intrinsyc), 722
channel throughput

in NCS, 592
chattering, 110, 560
CHDS, 111
circular buffer, 283
CISC, 146
CLB, 324
clock constraint, 105
CLS-ε, 584
code

generation, 431
selection, 292

codesign
control and scheduling, 379
tools, 385

coefficient sensitivity, 56
collision detection, 203
commercial off the shelf, see COTS
common

Lyapunov function, 564
subexpression elimination, 292

communication
bottlenecks, 577
constraints, 575–577, 579, 582, 583,

585, 587, 589, 592, 593, 595, 596
dynamic, 582
failure rates

in NCS, 590, 591
feedback-based, 579, 580, 582–587
interrupt-driven, 582
policy

CLS-ε, 584, 585
dynamic, 579, 584–587
feedback-based, 579
fixed, 579
stabilizing, 586
static, 579
WFD, 587

sequence, 578, 579
continuous-time, 585
input, 579
observability-preserving, 580
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output, 579
reachability-preserving, 580

static, 578, 579
unreliable, 589–592

dropped packets, 589
in an NCS, 589

Compact Vision System, 457
compare-and-swap, 373
compensator, 31

lag, 31, 33
lead, 31, 33

compiler
back end, 292
front end, 292

complement, 53
complex

instruction set computer, see CISC
complex programmable logic device, see

CPLD
complexity, 512, 775
component reuse, 726
composition, 498
computation time, 174
computer

architecture, 145
automated multiparadigm modeling,

437
vision, 793

concatenation, 119
configurable logic block, see CLB
configuration RAM, 325
console window, 336
constant

folding, 292
propagation, 292

constant bandwidth server, see CBS
constraints, 335

editor
Webpack, 337

pinout, 337
timing, 337

containability, 595–596
contaminant transport, 733
content addressable memory, 326
context switch, 353
continuous

control, 112
dynamics, 109
state-spaces, 109

control
communication constraints, 575
constant time-delay, 711, 712
distributed, 207
hazard, 282
limited communication, 575
loop design

real-time, 471
lost samples, 712, 714
LQG, 712, 716
multirate, 205
network, 651
of a hybrid system, 519
PID, 711
store, 161
time-varying delays, 712, 715
unit (in CPU), 146, 301
using Bluetooth, 700
wireless, 710

control and scheduling codesign, 379
control system design, 441

simulation, 422
controllability, 13
controlled

hybrid dynamical system, see CHDS
impulses, 100
jump, 100
jump destination maps, 112
jump sets, 112
switching, 100
vector field, 97

controller
design, 27

frequency-response based, 33
model-based, 29

PID, 36
timing, 380

controller area network, see CAN
ControlNet, 658, 665
cost function, 530
COTS, 353
Cougar, 729
counter, 238
counterexample-guided abstraction

refinement, see CEGAR
CPLD, 323

special functions, 329
CPP, 366
CPU, 146, 298, 301, 323
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cycle, 161
CRC, 215
critical section, 363

competing, 365
crossbar switch, 327
Crossbow, Inc., 722
crossover frequency, 42
crystal time base, 301
CSMA, 204, 391, 724
CSMA/CD, 204
current loop, 234
cyclic redundancy check, see CRC

D-latch, 149
D/A converter, see DAC
D2SB FPGA prototyping board, 339
DAC, 48, 228, 238, 312
damping ratio, 30
DARPA SensIT, 733
data

acquisition, 227, 439
code, 434
direct memory access (DMA), 440
experiment design, 439
interrupt-based, 440
logging, 429
polling, 440

address
generation unit, 283
generation, in DSP, 281

flow graph, 292
hazard, 282
rate (in ADC), 304

data link layer, 202
data-centric storage, 730
data2mem.exe, 337

utility, 343
datapath, 155
DataSocket, 466
DDC, 261
dead code elimination, 292
dead-time

compensator, 636–642
2-degree-of-freedom, 641
modified Smith predictor, 637
modified Smith predictor, imple-

mentation, 638
Smith predictor, 636
two-stage design, 637

Watanabe–Ito predictor, 639
systems, 627

characteristic polynomial, 631
frequency response, 629
stability, 629, 631–632
state-space realization, 633

deadband effect, 66
deadline, 174, 378
deadline-monotonic (DM), 361
decidability, 512
decouple, 471
delay, 6, 385

compensation, 383, 589
in MB-NCS, 610

effect on stability, 587–589
estimation with, 594
margin, 384, 643, 644
random

stability with, 589
time-varying

stability with, 589
delay-locked loop, 324
DES, 71
description length, 775
design

constraints, 335
framework, 323, 332
hierarchy, 334
realizability, 339
reports, 336
security, 330

design-process IDE, 332
design-structure IDE, 332
deterministic

finite automaton, see DFA
hybrid system, 520

device drivers, 426
writing, 427

DeviceNet, 220, 660, 666, 747
DFA, 102
differential

equation, 493
inclusion, 97, 560
inputs, 236

Digilent Inc., 339
digital

I/O, 238
signal, 47

parameters, 305
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signal processor, see DSP
digital-to-analog converter, see DAC
dioid algebra, 85
Dirac delta function, 7
direct

digital control, see DDC
digital design, 38

direct-sequence spread-spectrum, see
DSSS

directed diffusion, 725, 729, 730
discrete

automaton, 103
decision sets, 112
dynamics (of an HDS), 109
states, 109

discrete event
simulation, 88

discrete event system, see DES
discrete-time

signal, 8
systems, 8

displacement addressing mode, 158
distributed

control, 207
architectures (CAN-based), 751

hash tables, 730
systems, 395, 415–417

distributed-delay control law, 634, 640
observer-predictor, 641

DLL, 324
DMA, 440
dribbling, 795
DSDV, 725
DSP, 279
DSR, 725
DSSS, 684
dual-port RAM, 326
Dunfield Development Services, 338
dust, 220
Dust Networks, 722
duty cycle, 305
dwell time, 571

average, 572
dynamic

programming, 530
range, 58
reconfiguration, 331

dynamical systems, 3

earliest deadline first, see EDF
ECS, 337
ECU, 741
EDA, 288, 333
EDF, 183, 361
edge, 493
EEPROM, 301, 327
effective address, 158
electrically erasable PROM, see

EEPROM
electronic

control unit, see ECU
design automation, see EDA

electronic design automation, 333
elementary functions, 356
embedded

control, 519
control system, 420
sensor network, 721
systems, 354, 447

real-time execution, 431
safety, 435
scheduling, 173
sensors and actuators, 434
supporting control algorithms, 434

Emstar, 727
emulation

controller design by, 38
encryption, 219, 731
endian, 217
enhancements, 332
entity, 488
EPROM, 301
erasable programmable ROM, see

EPROM
error

correction, 219
detection, 219

in CAN, 746
handling

in CAN, 746
Esterel, 413
estimation, 797

error, in NCS, 594
limited bit rate, 593–595

Ethernet, 204, 653, 665, 749
event, 71
event-driven, 91

model, 353
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system, 72
event-triggered systems, 413, 414, 417
execution time, 378, 388
experiment design, 439
exponent, 53
extensive form, 581

fault-tolerant systems, 415, 416
feedback, 16
fetch-decode-execute cycle, 301
FHSS, 684
Fiasco kernel, 372
field programmable gate array, see

FPGA
FieldPoint, 448
FIFO, 326

real-time, 463
filter

signal conditioning, 232
final states, 102
fine-grained logic designs, 328
finite

acceptor, 120
automaton

deterministic, see DFA
spectrum

assignment, 640
FIP, 220
fixed-point arithmetic, 52, 282
fixpoint, 505
flash memory, 327
flip-flop, 149

circuit, 274
floating-point arithmetic, 52, 53, 282
Floorplanner, 338
flow constraint, 493
foldover, 47
form factors, 426
formal languages, 774
formal verification, 539
four-legged, 793
Fourier transform, 6

discrete-time, 9
FPGA, 323

Editor (Xilinx ISE FPGA routing
tool), 338

special functions, 329
startup latency, 330

free running counter, 305

frequency, 305
response, 21

frequency hopping spread-spectrum, see
FHSS

frequency response, 28, 33
friction model, 437
front end, 292
functional

robustness, 384
testing, 335

gain margin, 27
gateways, 215
general HDS, see GHDS
general-purpose register (GR), 155
geographic routing, 725
GHDS, 108
Giotto, 409, 414
global routing pool, 326
GPIB, 254
GPSR, 725, 730
Grafcet, 264
Great Duck Island, 733
greedy algorithm, 802
grounding, 218
GRP, 326
guard, 493

habitat monitoring, 733
handler, 472
Harald, 791
hard-real-time, 473
hardness (of a deadline), 372
hardware

controller interface, see HCI
interface diagram, 318

hardware description language, see
HDL

hardware-in-the-loop, see HIL
hardware/software co-design, 287
harvard architecture, 147
hash tables

distributed, 730
hazard, 282
HCI, 781

layer, 783
HDL, 289, 335

Bencher, 338
HDS, 108, 442
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header, 200
hex file, 338, 343
hex2mem.exe utility, 338
HGA, 522
higher-layer protocols, 747
HIL, 426, 448, 452

simulation, 444
home control system, 317
horizontal microprogramming, 169
HoTDeC, 790
hub, 215
humanoid, 793
hybrid

automaton, 110, 491, 773
rectangular, 506

dynamical system, see HDS
game automaton, see HGA
state space, 109
system, 88, 559

deterministic, 520
language specification, 520
liveness, 500
non-deterministic, 520
optimal control, 520
properties, 500
run, 526
safety, 500
stability, 529
stabilization, 520
stochastic, 520

time set, 525
trajectory, 526

hysteresis, 801

I/O cell, 326
I/P converter, 234, 245
I2C, 337, 339, 345
IDE, 323
idle listening, 724
IDSQ, 732
IEC 61131-3, 262, 276
IEEE 802.11, 677, 724
IEEE 802.15.4, 677, 724
immediate

inheritance protocol, 373
mode addressing, 159

iMPact, 337
impulse

effect, 560

response, 6
impulses

autonomous, 99
in-network processing, 725
inclusion

differential, 97, 560
rectangular, 97

index register (XR), 155
indexed addressing mode, 158
initial state, 102
input

alphabet, 102
symbols, 105

controllable, 108
input-output

jitter, 380
latency, 380

input/output block, see IOB
inputs, 97
instruction

formats, 157
list, 273
scheduling, 292

instruction set
architecture, 145
simulator, 287

instruction-level parallelism, 293
integrated design environment, see IDE
intellectual property, 323
inter-IC, 337, 339
Interbus, 220
interface, 477
interlocking, 282
intermediate representation, 292
internal stability, 24
Internet Protocol, 725
interoperability, 214
interrupt, 301, 472

latency
worst-case, 473

lock, 364
request, see IRQ

invariant, 493
set, 528

IOB, 324
IrDA, 466
IRQ, 241
irreducible (LTI system), 14
ISE, 333, 337
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console window, 336
processes window, 335
reports, 336

ISM band, 680
isolation, 230, 233
ispLEVER, 333

James Reserve, 733
Java, 400, 731
Jini, 729
jitter, 370, 380, 385, 474

compensation, 370, 383
margin, 384, 719

Jitterbug, 385
job, 356

computation time, 174
deadline, 174
release time, 174

jobs (scheduling theory), 174
jump, 100

autonomous, 99
destination maps, 112
destination sets, 109
sets, 112

keeper, 326
kernel, 354, 472
Kleene’s Theorem, 127
Kripke structure, 541

L2CAP, 781
LabVIEW, 447

CompactRIO system, 458
FPGA, 449
Real-Time, 448

ladder diagram, 261, 262, 270
LAN, 200
language, 75, 101, 120

empty, 102
of a DFA, 102
rational, 126
recognisable, 122
regular, 126
specifications

of a hybrid system, 520
timed, 105

Laplace transform, 5
LaSalle’s principle, 572
latches, 149

latency, 198, 330, 795
Lattice

ispLEVER, 333
Semiconductor Corp., 324

laxity, 361
layering, 201, 214
layers, 203
LCM, 360
least common multiple, see LCM
least significant bit, see LSB
LED, 337
Lesser General Public License, 338
level shifter, 326
LGPL, 338
limit cycles, 66
limited communication control, 575
linear matrix inequality, see LMI
linear time-invariant, see LTI
linearization, 441
linkage editor, 148
linker, 290
Linux, 726, 787
Lipschitz

constant, 96
continuity, 96

list scheduling, 293
little-endian, 216
liveness, 500

of a hybrid system, 500
specification, 531

LMI, 565
load/store architecture, 284
local area network, 200
localization, 727

infrastructure, 728
location, 104, 493
logic

circuits, 269
gates, 149
simulator

Modelsim, 337
lookup table, see LUT
loop transfer function, 629
LSB, 52
LTI, 4
Lustre, 401
LUT, 325

m(z) notation, 148
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m[(reg)] notation, 148
MAC, 280, 652, 653

protocols, 724
machine learning, 803
macrocell

array, 326
slice, 327

mainframe, 145
mantissa, 53
manufacturing automation protocol, see

MAP
Manufacturing Message Specification,

217
MAP, 262
MAR, 153
marine biology, 733
Maté, 731
matched pole/zero method, see MPZ
MATLAB, 419
MAXIM ICs, 786
maximum

overshoot, 26, 357
principle, 530

MB-NCS, 601
MBR, 153
MC6801 microprocessor, 337
Mealy machine, 134
medium access

constraints, 577–579
control, see MAC
protocols, 390

mem file, 338, 343
memory, 148

address register, see MAR
addressing, 298
buffer register, see MBR
capacity, 298
map, 299
non-volatile, 300
system (in microcontroller), 298
volatile, 300

memory-mapped I/O, 147
MEMS sensors, 723
Mentor Graphics Corp., 333
mesh topology, 678
MFB, 326
Mica-2 mote, 722
microarchitecture, 155
microcontroller, 255, 295

microinstruction, 161
format, 163

microprocessor, 145
microprogram

counter register, 161
instruction register, 162

microprogramming, 161
Microsoft r© Bluetooth stack, 787
middle size, 793
MIMO, 4
minimal acceptor, 128
MMS, 217
mnemonics, 289
MOAP, 731
model checking, 539

CEGAR, 552
fixed-point algorithm, 548

model-based
NCS, see MB-NCS

Modelsim logic simulator, 337, 344
modes, 96, 104
module hierarchy, 334
monitors, 335, 502
Moore machine, 133
most significant bit, see MSB
motes, 220, 722
motion

description languages, 775
primitives, 799, 803

MPZ, 38
MSB, 52
multi-body modeling, 437
multi-function block, 326
multi-input multi-output, see MIMO
multi-modal control, 768
multi-periodic sampling, 395, 408, 413,

415, 416
multi-rate automaton, 106
multi-rectangular automata, 108
multilateration, 728
multiple Lyapunov functions, 569
multiple-packet transmission, 577
multiplexer, see MUX
multiplier/quotient register (MQ), 155
multiply and accumulate (MAC), 280
multirate control, 205
mutex, 364
mutual exclusion, 363
MUX, 150, 235
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natural frequency, 30
NCS, 91, 575–597, 601

dropped packets, 591
model-based, see MB-NCS
stabilization of, 579, 580
with unreliable communication, 589

ndo file, 344
nesC, 726
network

layer, 202
models, 390

networked control system, see NCS
neural network

toolbox, 438
NFA, 102
Nichols chart, 28
noise power gain, 61
non-deterministic

acceptor, 123
finite, 123
finite, with ε-transitions, 123
with ε-transitions, 123

finite automaton, see NFA
hybrid system, 520

non-linear plants
in MB-NCS, 621

non-volatile memory, 149, 300
notch filter, 32
ns-2 networking simulator, 727
nth-order hold, 49
NTP (internet time synchronization),

728
Nymph (U. Colorado), 722
Nyquist

criterion, 303
frequency, 47
plot, 28

OBDD, 549
object code, 290
object-oriented language, 400
observability, 13
obstacle avoidance, 799
OCD, 373
ODE, 4, 96

autonomous, 96
nonautonomous, 97
time invariant, 96
time varying, 97

with inputs and outputs, 97
omni-directional drive, 795
on-chip debugging, see OCD
onboard RAM, 329
one-time programmable, see OTP
OPC, 672
opcodes, 290
open systems interconnection, 742
Opencores.org, 338
optical fiber, 212
optimal control

hybrid system, 520
optimization

response optimization, 442
toolbox, 438

OR-gate array, 326
Ordered Binary Decision Diagram, see

OBDD
ordinary

difference equation, see ODE
differential equation, see ODE

OSA, 326
OSEK/VDX, 763
OSI, 742

network model, 202
OTP, 324
output sharing array, 326
outputs, 97
overall design cost, 329
overhearing, 724
overload management, 182
overrun task, 367
overshoot, 26

PAC, 448
PACE, 337
packet, 200
packetizing, 200
Padé approximation, 6, see time delay,

rational approximation
PAMAS, 724
PAN, 780
parallel

form (or a transfer function), 57
processing, 286

parameter
estimation, 437
tuning, 430

parity, 219
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parse tree, 292
passing, 795
PC104, 786
PCM, 358
PCP, 179, 366
percent overshoot, 26
performance

of MB-NCS, 611
performance index, see PI
period, 356

of a signal, 305
periodic

calibration method, see PCM
control loop, 481
sampling, 397, 402, 414, 415

personal access networks, see PAN
perturbation analysis, 88
Petri net, 81

dynamics, 82
pH control, 248
phase margin, 27
phase-locked loop block, 326
phases, 104
physical layer, 202
PI, 368
piconet, 680, 704, 780
PID

controller, 36
self-tuning, 37
tuning, 37

PIP, 179, 366
pipeline, 170
pipelined processing, 281
PLA, 164
plant modeling, 437

SimMechanics, 437
SimPowerSystems, 437

PLC, 259
PLCOpen, 277
PN, 333, 337

sources window, 333
poles, 12, 22
polling

in NCS, 582
server, 180

POSIX, 472
threads, 472

post-facto synchronization, 728
post-route testing, 335

Pottie, Greg, 721
power consumption, 330
power-over-ethernet, 220
precedence constraints, 360
predicate abstraction, 554
prediction, 797
preemption, 402, 406–409, 412–414, 416

lock, 364
prefix, 119

codes, 593
presentation layer, 202
primitives

communication, 354
synchronization, 354

priority
ceiling, 366

current, 366
ceiling protocol, see PCP
inheritance protocol, see PIP
inversion, 179, 355, 364

bounded, 364
unbounded, 365

scheduling, 174
procedure call, 160
processes window, 335
processor utilization, 362
proecesses tree, 335
Profibus, 204, 214, 220
program

address generation (in DSP), 281
counter register (PC), 155

programmable
automation controller, see PAC
logic array, see PLA
logic controller, see PLC
ROM, see PROM

Project Navigator, 333
PROM, 301
protocol, 205, 214
pseudo-instructions, 290
pthread create, 473
pulldown, 326
pullup, 326
pulse width modulation, see PWM
purely sequential

partial function, 135
transducer, 135

finite, 135
PWM, 311
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PXI, 448

quantization
error, 48, 53
in MB-NCS, 620
level, 57

quantized
control, 775
signal, 47

Quartus II, 333
queueing model, 86
Quicklogic Corp., 324

RADAR, 727
radix point, 52
RAM, 298, 300, 323
random access memory, 148, see RAM,

see RAM
randomness, 801
ranging, 727
rapid control prototyping, 448, 452
rapid prototyping, 422

bypass, 423
functional, 423
on-target, 423

rate-monotonic (RM)
analysis (RMA), 362
scheduling, 176, 360

rational
expression, 126
language, 126
partial function, 139
relation, 138

RBS, 728
reachability problem, 502
reactive systems, 398, 411
read-only memory, see ROM
real-time, 471

control loop design, 471
operating systems, see RTOS
scheduling, see scheduling, 378
system, 173, 354

Real-Time Workshop, 427
real-time execution, 431

realizability, 339
realization, 13

minimal, 14
recognisable language, 122
reconfiguration, 331

reconstruction, 46, 48
rectangular

automaton, 108
hybrid automaton, 506
inclusion, 97

reduced instruction set computer, see
RISC

reflective memory, 469
register, 148

allocation, 292
indirect mode, 158
transfer language, 158

registers
CPU, 154

regular
expression, 126
language, 126
partial function, 139
relation, 138

reinforcement learning, 801
relay

electromechanical, 243
solid state, 244, 246

release time, 174, 356
reliability, 217
ReOrg, 729
repeaters, 215
reprogramming, 730
resolution, 304
resource

access control protocol, 366
constraints, 377
discovery, 729
synchronization, 363

retargeting, 288
retasking, 730
retry, 210
RISC, 146, 284
rise time, 26, 50, 357
RoboCup, 793
robots, 767, 794
robustness, 26, 41

temporal, 382
role-based system, 800
ROM, 298, 300
root locus, 27, 31
rounding, 53
router, 201, 215
routing, 338
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RTCore, 471
RTLinux, 471, 472
RTOS, 353, 426

Asterix kernel, 372
Fiasco kernel, 372
Spring kernel, 372

run
of a DFA, 102
of a hybrid system, 526
of an NFA, 102
over an input word, 103

S-function, 427
S-MAC, 724
S.Ha.R.K., 372
S/R latch, 149
SAE J1939, 747
safety

hybrid system, 500
of a hybrid system, 500
problem, 502
specifications, 531

sample
path analysis, 76, 88
rate, 302

sample-and-hold, 48, 234
sampled control, 397
sampled-data system, 23
sampling, 46

interval, 17
jitter, 380
latency, 380
period, 23

scan cycle, 272
Scania, 751
scatternet, 681, 704, 780
schedulability analysis, 354
scheduler, 354

dynamic, 359
off-line, 360
static, 359

scheduling, 173, 359–370, 378
algorithm, 354
dynamic

best-effort, 359
planning-based, 359

dynamic priority, 174, 183
EDF, 183
fixed-priority, 174–183

horizon, 360
Least Laxity First, 183
overload management, 182, 188
PCP, 179, 366
PIP, 179, 366
polling server, 180
priority inversion, 179
processor demand analysis, 184
rate-monotonic (RM), 360
RM policy, 176, 360
SRP, 187
static

preemptive, 359
priority-driven, 359
table-driven, 359

TBS, 185, 362
theory, 378

SCO, 781
scratch-pad, 147
scripting, 730
SDP, 221
SeaCAN, 754
search engine, 729
second-order system, 30
security, 217, 330
seismology, 734
self-configuration, 722
semaphore, 364

binary, 364
counting, 364

sensitivity, 40, 42
nominal, 41

sensor network, 678
applications, 732

civil and commercial, 734
industrial, 734
military, 733
scientific, 733

energy consumption, 721
node hardware, 722

SensorWare, 731
separated I/O, 147
separation principle, 590
sequence control, 363
sequential

partial function, 137
transducer, 136

finite, 136
SERCOS, 220
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server, 361
budget, 362
capacity, 362
deferrable, 361
sporadic, 361

Service Discovery Protocol, 221
session layer, 202
settling time, 26, 357
SFC (sequential function chart), 264
shared memory, 465

communication, 466
shielding, 218
shift unit, 152
sign bit, 52
signal, 4

conditioning
analog, 230

signal processing
toolbox, 438

signal-to-noise ratio, 48
SIMD, 284
SimMechanics, 437
simple mail transfer protocol, see SMTP
SimPowerSystems, 437
simulation, 544
simulation tools, 385
Simulink, 399–401, 405, 408, 411, 416,

419
real-time execution, 431
simulation steps, 431

simultaneous parallel sequence, 267
single instruction multiple data, see

SIMD
single-ended input, 236
single-input single-output, see SISO
single-packet transmission, 577, 588
SISO, 5
SISO (single-input single-output), 22
skewed-clock automaton, 106
skills, 801
slack time, 361
sliding mode, 560

control, 771
small size, 793
SMART-1 spacecraft, 755
Smith predictor, see dead-time

compensator, 799
SMP machine, 479
SMTP, 466

SNR, 48, 59
snubber circuit, 245, 246
soccer, 793
SoftPLC, 277
software

architectures, 763
pipelining, 293

SolidWorks, 437
SOPC, 323

design problems, 332
design tools, 332
problems

configuration, 347
failure reporting, 347
path, 347

simulation
test bench, 335

sources window, 333
Spartan FPGA, 339
Spartan-IIE, 324
special functions (SOPC), 329
specks, 220
spectrum, 46
spin icon, 335
SPINS, 731
sporadic server, 361
SpotON, 727
Spring RTOS, 372
SQL, 729
SRP, 187, 372
ST, 276
stability, 9, 561

asymptotic, 561
BIBO, 10, 24
hybrid system, 529
internal, 24
uniform, 562

stabilization
ε-capture, 584
feedback-based communication, 583,

586
limited bit rate, 593, 595, 596
of hybrid systems, 520
of NCS, 579–597
simultaneous, 583
static communication sequence, 579
with medium access constraints,

579–587
stack, 203
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frame pointer register (BP), 155
pointer register (SP), 155

stack resource policy, see SRP
Stargate (Intel), 722
startup latency, 330
state, 263

explosion problem, 546
transition, 263

state space, 4
StateCAD, 338
Statechart, 435
Stateflow, 411, 416, 435
states, 102

discrete, 109
static cyclic scheduling, 382
steady-state error, 25, 357
steer-by-wire, 763
step response, 30
Stewart platform, 423
stochastic

hybrid system, 520
stopwatches, 106
string, 101, 119

accepted, 102
empty, 101

structural monitoring, 734
structured text, see ST
sum-of-products array, 327
superscalar processors, 285
supervisory control, 76, 87
SuperWIDE logic mode, 327
switched

linear system, 98
system, 98, 559

switching
autonomous, 98
control, 560
controlled, 100
manifolds, 109
theory, 259

symbol, 101
symbolic

model checking, 547
symbolic address, 148
synchronization, 207, 354, 363, 728

communication, 363
Synplicity Inc., 333
synthesizable design, 339
sysClock, 326

sysIO block, 326
system

clock, 153
input/output block, 326

system identification
toolbox, 438

systems on programmable chips, see
SOPC

T-MAC, 724
target

localization, 732
tracking, 732

task, 356
aperiodic, 356
classification, 372

critical, 372
essential, 372
firm, 372
hard aperiodic, 372
hard periodic, 372
non-essential, 372
soft aperiodic, 372
soft periodic, 372

control block, see TCB
graph, 356
periodic, 356
sporadic, 356

tasks, 402, 404–409, 413
TBS, 185, 362
TCB, 356
Tcl, 731
TCP, 214, 465, 466, 589, 685
TCP/IP, 202, 795
TDMA, 391, 724
team play, 793
Telos, 722
temporal

determinism, 380, 382
logic, 539, 542
robustness, 382

temporary blackout, 367
test

bench, 335
fixture, 335, 344

text editor
Xilinx, 337

threads, 472
three address code, 292
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three-state buffer amplifier, 149
throughput, 198
time delay, 627, 661, 671

rational approximation, 635
Kautz, 635
Padé, 635

transfer function
continuous-time, 627
discrete-time, 627

time synchronization, 728
time-division multiple-access, see

TDMA
time-driven system, 72
time-of-flight, 727
time-sync protocol for sensor networks,

see TPSN
time-triggered

communication
on CAN, 750

systems, 409, 412, 413, 416, 417
time-varying

delays, 712, 715, 719
transmissions

in MB-NCS, 612
timed

automaton, 105, 512
transition system, 496
word, 104

timer, 238
TinyDB, 729, 730
TinyOS, 220, 726
TinySec, 731
token

bus, 657
passing, 203

tools, 332
top-level design module, 335
topology, 213
TOSSIM, 727
total bandwidth server, see TBS
TPSN, 728
transducer, 137

finite, 137
transfer function, 6, 22

strictly proper, 38
transient response, 25
transition

diagram, 121
function, 102

manifolds, 109
system, 496
table, 121

transmission control protocol, 214, see
TCP

transport layer, 202
trapezoidal method, 19
trigger, 484
TrueTime, 388
truncation, 53
TTCAN, 750
Tustin’s method, 19, 38
twisted pair, 211
two’s complement, 52

ucf file, 343
UDP, 466, 467, 589, 672, 685
uniform stability, 562
unipolar input, 236
unit

impulse, 7
under test, see UUT

unity feedback, 22
Universal Plug and Play, 221
UPnP, 221
user datagram protocol, see UDP
UUT, 335

vacant sampling, 367
vector field, 96

controlled, 97
vehicle

dynamics, control system, 757
traffic monitoring, 734

vendor-specific component, 340
Verilog, 335
vertical microprogramming, 169
very long instruction word, see VLIW
VHDL, 289, 335
vibration harvesting, 723
virtual

instruments (VIs), 453
machine, 730, 731
prototype, 287

virtual reality, 437
VLIW, 285, 293
volatile memory, 300
Volvo, 751
von Neumann architecture, 147
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wait-free locking, 373
WAN, 201
WCET, 355
Webpack, 333

Constraints Editor, 337
information resources, 338
tutorials, 338

Weighted Fastest Decay, see WFD
WFD, 587
wide

area network, see WAN
fan-in logic designs, 328

widget, 488
Windows XP, 337
wireless

802.11, 722
communication, 677, 699

in control, 782
control, 710
Ethernet, 656, 671
networked sensing, 723
networks, 678, 725
robot communication, 797
technologies, 679

Wishbone bus, 340
word, 101

length, 52
timed, 104

worst-case
execution time, see WCET
interrupt latency, 473

x-by-wire, 763
X-Scale, 722
Xilinx

Answer Database, 346
file conversion utility, 337
FPGA

bit generator, 337
programming interface, 337

FPGA compiler, 337
FPGA layout tool, 338
Integrated Synthesis Environment

(ISE), 333
Project Navigator (PN), 333, 337
schematic editor, 337
simulation builder, 338
state machine editor, 338
text editor, 337
timing constraint specification, 337
Webpack, 333
XC2S200E FPGA, 339

Xilinx Inc., 324
XML-RPC, 479
xPC

Target, 419, 425
TargetBox, 419, 430

XST, 337

z-transform, 8, 23, 399
Zeno behavior, 105, 107
zero-order hold, see ZOH
zeros, 12, 22

finite, 12
infinite, 27

ZigBee, 724
Alliance, 678

zip file, 347
ZOH, 23, 48

in NCS, 578, 581, 586




